
Assignment: Operational Semantics

CS 105

Due Tuesday, September 20, 2022 at 11:59PM

Contents
Retrieval practice 1

Reading comprehension 2

Part A: Talking operational semantics (25%) 2

Part B: Operational semantics and language design (25%) 3

Part C: Operational-semantics derivations, proofs, and metatheory (50%) 4
How to get started and what a solution should look like 6
Note: Free variables, formal parameters, and actual parameters 7
Formal and actual parameters . 8

Extra credit: Eliminating begin 8

How to organize and submit your homework 8

How your work will be evaluated 9
Talking operational semantics (part A) . 9
Changed rules of Impcore (part B, exercise 16, parts (a) and (b)) 10
Program to probe Impcore/Awk/Icon semantics (part B, exercise 16, part (d)) 13
Derivations (part C, exercises 12 and 13) . 14
Metatheory (part C, exercise F) . 17

If you’re going to talk about languages you’ve never seen before, you need a vocabulary. This assignment
introduces you to the basics of operational semantics, inference rules, and syntactic proof technique.
You will use these skills heavily throughout the first two-thirds of the course, and after 105 is over, when
you want to understand a new language idea, you will use them again.

Some of the essential skills are

• Understanding what judgment forms mean, how to read them, and how to write them

• Understanding what constitutes a valid syntactic proof, known as a derivation

• Understanding how a valid derivation in the operational semantics relates to a successful, termi-
nating evaluation of an expression

1

• Proving facts about families of programs by reasoning about derivations, a technique known as
metatheory

• Using operational semantics to express language features and language-design ideas

• Connecting operational semantics with informal English explanations of language features and
program behaviors

Few of these skills can be mastered in a single assignment. When you’ve completed the assignment,
I hope you will feel confident of your knowledge of exactly the way judgment forms, inference rules, and
derivations are written. On the other skills, you’ll have made a start.

On this assignment, there is no pair programming.

The most unusual problem on this assignment is metatheory. What’s the role of metatheory? If some-
body is trying to sell you a language you have never seen before, they might try to sell it on the basis of
some kind of guarantee. For example, in the Singularity project, Microsoft tried to sell the language
“Sing#” on security and reliability grounds: that any program written in “Sing#” would meet their
reliability claims. If you know metatheory, you’ll know whether to buy what somebody is selling
about “any program.”

Retrieval practice
Before tackling reading-comprehension or other homework questions, you have the option to check your
understanding by looking at the “retrieval practice” questions in section~1.10.1, which starts on page~75
of the textbook. Look at questions G through L, and N. (Example question: what does the metavariable 𝑥
stand for?) If you can answer these questions quickly and easily, then you are prepared to tackle the actual
reading-comprehension and other homework questions. If you can’t answer a retrieval-practice question,
a TA will be happy to answer it for you.

Do not submit answers to any retrieval-practice questions. They are indicators of preparedness, nothing
more.

Reading comprehension
Before starting the programming problems, answer the reading-comprehension questions for this module,
which you will find online. It is also OK to alternate between reading-comprehension questions and
related homework questions.

Part A: Talking operational semantics (25%)
The homework is divided into parts A, B, and C. This assignment is almost exclusively a theory assign-
ment, and almost everything goes into one file theory.pdf. (The exception is some code you will write
for part (d) of exercise~16, in part B, which goes into file awk-icon.imp.) In this part (part A), you
translate between colloquial, informal English and the language of operational semantics.

Related reading:

• For rules of operational semantics, see section~1.5, which starts on page~29. The most important
rules are summarized on pages~80–81.

2

Translating operational semantics into English. From exercise~10 on page~79 of Build, Prove, and
Compare, complete parts (a) and (d). Your informal English must not use any symbols that refer to
environments—talk about environments using your knowledge of what names stand for. Make your
explanations as simple as possible, and use only language that a beginning programmer (e.g., a CS 11
student) would understand. (In other words, it is OK to talk about “variables,” but it is not OK to talk
about “environments.”)

Translating English into operational semantics. From exercise~11 on page~79 of Build, Prove, and
Compare, complete parts (a), (c), and (d). Notes:

• The convention of the field is that new metavariables are implicitly universally quantified. For ex-
ample, if you just write a global-variable environment 𝜉, you’re assumed to be talking about any
possible 𝜉. If what you’re saying is true for just some environments, the conventional opening is
to say “there exists a 𝜉 such that.” (Or more likely, “There exist 𝜉, 𝜙, 𝜌, 𝑣, 𝜉′, and 𝜌′ such that.”)

• If you need to write an implication, use the words “if” and “then.” Do not use inference-rule
notation—every new inference rule risks inadvertently changing the language definition, and it
adds an additional obligation (a new case) to every metatheoretic proof.

• Some of the statements in this problemmost easily formalized in the form “if evaluation judgment
then conclusion.”

Exercise R. Meanings of rules. The following notation suggests an alternative to the WhileEnd rule
of Impcore. Either explain why this rule is effectively the same as the original rule, or explain why it’s
different.

⟨e1,ξ,φ,ρ⟩ ⇓ ⟨0,ξ′,φ,ρ′⟩
-- (WhileEnd')
⟨while(e1, e2), ξ, φ, ρ⟩ ⇓ ⟨0, ξ′, φ, ρ′⟩

The following notation suggests an alternative to the FormalAssign rule of Impcore. Either explain why
this rule is effectively the same as the original rule, or explain why it’s different.

x ∈ dom ρ ⟨e,ξ,φ,ρ⟩ ⇓ ⟨v,ξ′,φ,ρ′⟩
-- (FormalAssign')
⟨set(x, e), ξ, φ, ρ⟩ ⇓ ⟨v, ξ′, φ, ρ′⟩

Note: A convincing explanation of why two rules are different is should include not only an explanation
in English but also a code example on which the two rules behave differently.

Part B: Operational semantics and language design (25%)
This part contains just one exercise, in which you explore two alternative ways of dealing with unbound
variables, and you write code to distinguish them.

We encourage you to discuss ideas, but no other student may see your rules or your code. If you have
difficulty, find a TA, who can help you work a couple of similar problems.

Specifying new language features with new rules. Do all parts of exercise 16 on page~82 of Build,
Prove, and Compare. This is an exercise in language design. The exercise will give you a feel for the
kinds of choices a language designer might have made in a language you have never seen before. It will

3

also give you a tool you can use to think about the consequences of language-design choices even without
an implementation.

To complete the exercise, you must analyze three variations on a design: the Impcore standard and two
alternatives, which resemble the languages Awk and Icon. For the Impcore standard, you can confirm the
results of your analysis using the Impcore implementation. But for the Awk-like and Icon-like variations,
you don’t have an implementation that you can use to verify the results of your analysis. To get the
problem right, you have two choices: think carefully about the semantics you have designed and the
program you have written—or build two more interpreters, so that you can actually test your code. (Each
new interpreter requires only a two-line change to file eval.c, so if you wanted to build new interpreters,
you wouldn’t be deep in the weeds.)

Part (d) involves coding from scratch, and it could involve new functions. But these functions are not
trying to do anything useful with data; instead, they are trying to tease out differences in language se-
mantics. Moreover, unless you choose to build interpreters, you cannot run unit tests of the Awk-like and
Icon-like semantics. For these reasons, the only steps we expect from our recommended design process
are a name and a contract for each function you choose to write (steps 3 and 4).

We will assess your code by running it in three interpreters. This assessment leaves you vulnerable to
these common mistakes:

• You might define a function and forget to call it. If you forget to call your function, then when we
run your code, the last thing the interpreter does will probably not be to print 0 or 1, which is what
is called for in the exercise.

• You might forget that after evaluating an expression, the interpreter prints the result of the expres-
sion.

• You might use print or printu where you really meant println.

• You might include unit tests in your code. In that case, the last thing the interpreter prints will be
the results of running the unit tests.

Hint: For part (d), retrieval question I (page 75) is especially relevant.

Part C: Operational-semantics derivations, proofs, and metatheory
(50%)
This part takes you into proof: theory, derivations, and metatheory. We encourage you to discuss ideas,
but no other student may see your rules, your derivations, or your proof. If you have difficulty, find a
TA, who can help you work a couple of similar problems.

Related reading:

• For an explanation of a valid derivation and for the algorithm used to build one, see section~1.7,
which starts on page~56.

• For an example of a derivation tree, see page~58.
• For rules of operational semantics, see section~1.5, which starts on page~29. The most important

rules are summarized on pages~80–81.
• For metatheory, see section~1.7.2, which starts on page~60.

4

Proof by derivation. Do exercise~12 on page~79 of Build, Prove, and Compare. The purpose of the
exercise is to develop your understanding of derivations, so be sure to make your derivation complete and
formal. You can write out a derivation like the ones in the book, as a single proof tree with a horizontal
line over each node. If you prefer, you can write a sequence of judgments, number each judgment, and
write a proof tree containing only the numbers of the judgments, which you will find easier to fit on the
page.

If it helps to make your derivation fit on the page, you are welcome to use abbreviations like Lit for Literal,
ForVar for FormalVar, GloVar for GlobalVar, and so on.

In this exercise, or in writing any derivation, the most common mistake made is to copy judgments
blindly from the rules of the semantics. This kind of copying results in superfluous primes. In the rules,
the primes in 𝜉′ and 𝜌′ are a way of saying “I don’t know.” In particular, what’s unknown is the exact
nature of the subexpressions, and therefore the results of evaluating them. (Notice that the syntactic forms
Var and Literal don’t have any subexpressions, and their rules don’t have any primes.) In the expression
(begin (set x 3) x), all of the subexpressions are known, and a correct derivation doesn’t have any
primes.

Proof using derivations. Do part (a) of exercise~13 on page~79 of Build, Prove, and Compare. Now
that you know how to write a derivation, in this exercise you start reasoning about derivations. This
problem calls for a math-class proof about formal semantics, so any formal derivations you write need
to be supplemented by a few words explaining what the formal derivation is and what role it plays in the
proof.

As in the previous exercise, be wary of primes. The 𝜉′, 𝜌′, 𝜉″ and 𝜌″ in the problem are not necessar-
ily different from the initial environments or from each other. The primes say only that they might be
different.

Exercise F: Metatheory. This final exercise requires you to raise your game again, by reasoning about
the set of all valid derivations. It’s metatheory. Metatheoretic proofs are probably unfamiliar, but you
will have a crack at them in lecture and in recitation.

It’s an annoying quirk of the fall schedule, but metatheory won’t be covered in lecture until the Monday
before the homework is due. If you want to get started before then, Section 1.7.3 (page 62) has everything
you need. The exercise you’ll do is very similar to the final example on pages 63 to 66.

Metatheory is a fantastic tool, because it gives you results that can apply to any program written in a
language. But it’s hard to get started: there are useful metatheoretic results, and there are easy metatheo-
retic results, but I don’t know any useful, easy metatheoretic results. Here are a couple of results that are
useful but not easy:

• Impcore is deterministic: the same program gives the same answer every time (not true of Java!).

• Impcore can be evaluated using a call stack (like C and Java).

Tomake it possible to do something relatively interesting but also relatively easy, I’ll ask you to investigate
a metatheoretic conjecture that’s not true:1

Conjecture: If global variable 𝑦 is defined, and if 𝑦 does not appear in expression 𝑒, and
if expression 𝑒 evaluates to some value, then the evaluation of 𝑒 does not change the value
of 𝑦.

1A famous scientist once said that proofs in programming languages are interesting only when they are wrong.

5

To disprove a metatheoretic conjecture, it is sufficient to find a counterexample, but to show insight into
how metatheory works, you will also explain what parts of the proof fail and how. To structure your
explanations, you’ll rely on a stylized structure that applies to every metatheoretic proof: as described in
the book in section~1.7.3, a proof needs a case for each rule in the semantics.

Using the detailed definitions below, complete the following four tasks, each of which relates to the
conjecture.

(a) Exhibit a counterexample. That counterexample will include an expression 𝑒 whose evaluation
changes the value of some variable 𝑦, even though 𝑦 won’t appear in 𝑒.

(b) Since the conjecture relates to a change in the value of a variable, the cases for assignment (set)
are likely to be relevant. Both those cases actually work; show that they go through.

Note that the two cases are actually different; both need to be handled in full.

(To prove these cases, which are inductive, you will be proving an implication. Please identify the
induction hypothesis, which is the left-hand side of that implication. You may wish to review the
handout “Overview of Induction” by Chris Phifer.)

(c) Find one case of the metatheoretic proof that fails, and explain why the proof doesn’t go through
for that case.

(d) Briefly explain, in language a beginning programmer would understand, why the conjecture fails.
(A sentence or two is plenty.)

To reduce bureaucracy, you will show that the conjecture fails in Simplified Impcore. Simplified Impcore
is a restricted subset of Impcore in which:

• There are no while or begin expressions.
• Every function application has exactly two arguments.
• The only primitive function is +.

Using Simplified Impcore reduces the number of cases to something manageable.

Here’s the conjecture in detail: whenever ⟨𝑒, 𝜉, 𝜙, 𝜌⟩ ⇓ ⟨𝑣, 𝜉′, 𝜙, 𝜌′⟩ and 𝑦 is a variable that is in dom 𝜉
but does not appear (“free”) in 𝑒, then 𝜉′(𝑦) = 𝜉(𝑦). We will not formalize “appearing free” just yet, but
the appearance of a free variable is defined inductively over the abstract syntax. Here is the definition for
Impcore:

• 𝑥 appears free in VAR(𝑥).
• 𝑥 appears free in SET(𝑥, 𝑒).2
• If 𝑥 appears free in any of 𝑒’s subexpressions, then it also appears free in 𝑒. For example, if

𝑥 appears free in 𝑒1, then it also appears free in IF(𝑒1, 𝑒2, 𝑒3).

This concept is so central to the proof that it benefits from notation: for the set of variables that appear
free in 𝑒, we write fv(𝑒). We can then make things more formal:

• fv(VAR(𝑥)) = {𝑥}.
• fv(SET(𝑥, 𝑒)) = {𝑥} ∪ fv(𝑒).
• If 𝑒 has subexpressions, its set of free variables is the union of the free variables of the subex-

pressions. For example, fv(IF(𝑒1, 𝑒2, 𝑒3)) = fv(𝑒1) ∪ fv(𝑒2) ∪ fv(𝑒3). As another example,
fv(APPLY(𝑓, 𝑒1, … , 𝑒𝑛)) = fv(𝑒1) ∪ ⋯ fv(𝑒𝑛).

2And in addition, any variable that appears free in 𝑒 also appears free in SET(𝑥, 𝑒).

6

https://www.cs.tufts.edu/cs/105/handouts/induction.pdf

And we can also formalize the conjecture:

• Whenever ⟨𝑒, 𝜉, 𝜙, 𝜌⟩ ⇓ ⟨𝑣, 𝜉′, 𝜙, 𝜌′⟩ and 𝑦 ∈ dom 𝜉 and 𝑦 ∉ fv(𝑒), then 𝜉′(𝑦) = 𝜉(𝑦).
This is the form of the conjecture that will be most useful for your solutions.

How to get started and what a solution should look like

If you’re lucky, you’ll have a flash of insight that will tell you exactly what is wrong with the conjecture—
and you’ll have your counterexample. But that is neither likely nor necessary to solve the problem. This
problem should be solved by applying the method “How to attempt a metatheoretic proof” in the book
in section~1.7.3, which starts on page~62. So, to get started, attempt a case of a proof for each rule in
Simplified Impcore.

• Begin with the cases for rules FormalAssign and GlobalAssign, which you have to do anyway for
part b. Each case should follow the template in section~1.7.3, with its six numbered steps.

• Keep going with other cases, one for each rule of Simplified Impcore, until you find a case for
which the proof fails. You can use insight here, or you can just plod through until you find a case
that fails.

• Once you’ve found a case for which the proof fails, explain why. That’s part c. If you’re not certain
why it fails, find the counterexample, then go back to part c.

• Still working with the case for which the proof fails, you want to exhibit a counterexample.
The counterexample refutes the conjecture. (That is, it demonstrates conclusively that the
conjecture is no good.)

To exhibit a counterexample you must exhibit a choice of 𝑒, 𝑣, and five environments for which
the evaluation judgment holds—but in which evaluating 𝑒 changes the value of a defined global
variable, even though the variable does not appear free in 𝑒. The syntactic form of 𝑒 is going to
be an instance of the form in the conclusion of the rule that fails. For example, if the IfTrue case
were to fail, then 𝑒 would be an If expression. (Hint: it doesn’t and it’s not.)

Once you find an expression 𝑒 that refutes the conjecture, you need to say the environments in
which 𝑒 is to be evaluated. Environments 𝜉 and 𝜌 can be tiny, so they must be written out in full.
But writing out 𝜙 in full would be tiresome, so instead, you may say “𝜙 contains all the functions
in the initial basis, plus the following additional function definitions,” and then show the code for
the definitions. (If you solve the problem without any additional definitions, that is OK.)

The counterexample is part a.

• The last part of the problem, part d, is to show that you understand what is going on. Write out
your explanation in a sentence or two.

Your solution should be written in two parts:

• The cases for the proof that you attempted. At minimum these must include the two successful
set cases from part b, plus the failing case from part c. If you proved other cases successfully, you
are welcome to include them.

• Answers to parts a, b, c, and d in an organized sequence.

– The answer to part a must include the 𝑒, 𝜉, 𝜙, 𝜌, 𝑣, 𝜉′, and 𝜌′ that refute the conjecture. A few
words of explanation are also appropriate.

7

– The answer to part b should simply say that the two cases are included.

– The answer to part c should identify the case (rule) for which the proof fails, and should
include a short explanation as to why the proof doesn’t go through.

– The answer to part d should include a sentence or two suitable for a beginning programmer
(e.g., CS 11 student).

Note: Free variables, formal parameters, and actual parameters

If 𝑒 calls a function 𝑓 , then 𝑓’s variables (its formal parameters and any global variables it mentions),
are not considered free in 𝑒. Only variables mentioned in the actual parameters appear free in 𝑒. If you
are not confident on the distinction between formal and actual parameters, here is an explanation:

Formal and actual parameters

A function’s formal parameters are the names of the parameters in its definition. For example, sup-
pose I define function square:
(define square (x)

(* x x))
A function’s formal parameters never change; function square always has exactly one formal param-
eter, and it is named x.
Actual parameters are the values of the arguments given to a function at a call site (function applica-
tion). These values, when the function is applied, will be the values that the formal parameters refer to.
For example, if I write
(square 10)
then when this code is evaluated, square will be called with actual parameter 10. In the body of
square, for this application, environment 𝜌 will bind x to 10.
Actual parameters may differ at each call, even at a single call site. For example, in this code,
(while (> n 0)

(begin
(println (square n))
(set n (- n 1))))

function square is called multiple times, and its actual parameter is different at each call.

Extra credit: Eliminating begin

Simplified Impcore has neither while nor begin. You already have an idea that you can often replace
while with recursion. For extra credit, show that you can replace begin with function calls: complete
exercise~14 on page~81 of Build, Prove, and Compare.

How to organize and submit your homework
Create files awk-icon.imp and theory.pdf. Please leave your name out of your PDF—that will enable
your work to be graded anonymously.

You will turn in your code for exercise~16 (d) in file awk-icon.imp; everything else goes into the-
ory.pdf. For the theory.pdf, you could consider using LaTeX, but unless you already have experience
using LaTeX to typeset mathematics, it’s a bad idea. We recommend that you write your theory home-
work by hand, then scan or photograph it, as described in the syllabus.

8

https://www.cs.tufts.edu/cs/105/syllabus.html#then-how-should-theory-homework-be-written

If you do already know LaTeX and you wish to use it, you may benefit by emulating our Latex source
code for a simple proof system or Sam Guyer’s LaTex source code for typesetting operational semantics.
You might also like Matthew Ahrens’s video tutorial on typesetting proof trees.

Please also create a file called README, in which you tell us anything else you think is useful for us to
know. We provide a template for your README; it’s online.

As soon as you have the files for all parts, cd into the appropriate directory and run submit105-opsem to
submit a preliminary version of your work. You’ll need files README, awk-icon.imp, and theory.pdf,
but preliminary versions are good enough. Keep submitting and resubmitting until your work is complete;
we grade only the last submission.

When you submit theory.pdf, the provide program should email you a copy of the PDF. Check the
email and be sure that the PDF opens and displays what you expect. If there is a problem with the PDF,
resubmit the file or ask for help on Piazza.

To help us read your work, we need for you to organize your answers carefully:

• The answer to each question must start on a new page.

• The theory answers must appear in this order: exercises 10, 11, R, 16 (parts a, b, and c), 12,
13 (part a), and finally F. If you choose to complete exercise~14 (the extra-credit problem shown
above), put it last, after F.

How your work will be evaluated
Below is an extensive list of criteria for judging semantics, rules, derivations, and metatheoretic proofs.
As always, you are aiming for the left-hand column, you might be willing to settle for the middle column,
and you want to avoid the right-hand column.

Talking operational semantics (part A)

9

https://www.cs.tufts.edu/cs/105/handouts/noset.tex
https://www.cs.tufts.edu/cs/105/handouts/noset.tex
https://www.cs.tufts.edu/cs/105/handouts/latexexample.tex
https://www.youtube.com/watch?v=zxVAi4L3y4Y&t=232s
https://www.cs.tufts.edu/cs/105/files/opsem-README-template
https://www.cs.tufts.edu/cs/105/files/opsem-README-template

Exemplary Satisfactory Must Improve

Talking • Explanations are correct
and use only words a
beginning programmer
would understand.
• Formalism is completely
correct; all primes,
subscripts, and quantifiers
are used correctly.
• Claimed differences with
Impcore are supported by
example code (which may
be just a fragment;
complete, running code is
not necessary).
• When a rule is claimed to
be effectively the same as
the original, the solution
explains why the notational
differences are irrelevant.

• Explanations are correct,
but they use words that a
beginning programmer
might not understand, like
“environment.”
• Explanations are almost
correct, and course staff can
see what went wrong.
• Formalism would be
correct except for problems
with quantifiers.
(Quantifiers may be missing
or may be in the wrong
places, or ∀ may be
confused with ∃.)
• Formalism would be
correct except for issues
with subscripts or primes.
• Claimed differences with
Impcore are not supported
by any code.
• A rule is correct claimed
to be effectively the same as
the original, but the
solution does not explain
why the notational
differences are irrelevant.

• There are explanations
that the course staff can’t
easily relate to the
formalism.
• There are explanations
that the course staff can’t
understand.
• Formalism wouldn’t be
correct even if quantifiers,
subscripts, and primes were
corrected.
• Differences with Impcore
are not identified correctly.

Changed rules of Impcore (part B, exercise 16, parts (a) and (b))

10

Exemplary Satisfactory Must Improve

Rules • Every inference rule has a
single conclusion which is a
judgment form of the
operational semantics.
• In every inference rule,
every premise is either a
judgment form of the
operational semantics or a
simple mathematical
predicate such as equality
or set membership.
• In every inference rule, if
two states, two
environments, or two of any
other thing must be the
same, then they are notated
using a single metavariable
that appears in multiple
places. (Example: 𝜌 or 𝜎)
• In every inference rule, if
two states, two
environments, or two of any
other thing may be different,
then they are notated using
different metavariables.
(Example: 𝜌 and 𝜌′)
• New language designs
use or change just enough
rules to do the job.
• Inference rules use one
judgment form per
syntactic category.

• In every inference rule,
two states, two
environments, or two of any
other thing must be the
same, yet they are notated
using different
metavariables. However,
the inference rule includes
a premise that these
metavariables are equal.
(Example: 𝜌1 = 𝜌2)
• A new language design
has a few too many new or
changes a few too many
existing rules.
• Or, a new language
design is missing a few
rules that are needed, or it
doesn’t change a few
existing rules that need to
be changed.

• Notation that is presented
as an inference rule has
more than one judgment
form or other predicate
below the line.
• Inference rules contain
notation above the line that
does not resemble a
judgment form and is not a
simple mathematical
predicate.
• Inference rules contain
notation, either above or
below the line, that
resembles a judgment form
but is not actually a
judgment form.
• In every inference rule,
two states, two
environments, or two of any
other thing must be the
same, yet they are notated
using different
metavariables, and nothing
in the rule forces these
metavariables to be equal.
(Example: 𝜌 and 𝜌′ are
both used, yet they must be
identical.)
• In some inference rule,
two states, two
environments, or two other
things may be different, but
they are notated using a
single metavariable.
(Example: using 𝜌
everywhere, but in some
places, 𝜌′ is needed.)
• In a new language design,
the number of new or
changed rules is a lot
different from what is
needed.
• Inference rules contain a
mix of judgment forms
even when describing the
semantics of a single
syntactic category.

11

Exemplary Satisfactory Must Improve

12

Program to probe Impcore/Awk/Icon semantics (part B, exercise 16, part (d))

Exemplary Satisfactory Must Improve

Semantics • The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
behaves exactly as specified
with each semantics.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
behaves almost exactly as
specified with each
semantics.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics gets
one or more semantics
wrong.
• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
looks like it is probably
correct, but it does not meet
the specification: either
running the code does not
print, or the last thing
printed is not the 0 or 1
called for in the problem.

13

Derivations (part C, exercises 12 and 13)

14

Exemplary Satisfactory Must Improve

Derivations • In every derivation, every
utterance is either a
judgment form of the
operational semantics or a
simple mathematical
predicate such as equality
or set membership.
• In every derivation, every
judgement follows from
instantiating a rule from the
operational semantics.
(Instantiating means
substituting for meta
variables.) The judgement
appears below a horizontal
line, and above that line is
one derivation of each
premise.
• In every derivation, equal
environments are notated
equally. If both 𝜌 and 𝜌′

appear, they must not be
known to be equal.
• Every derivation takes the
form of a tree. The root of
the tree, which is written at
the bottom, is the judgment
that is derived (proved).
• In every derivation, new
bindings are added to an
environment exactly as and
when required by the
semantics.

• In one or more
derivations, there are a few
horizontal lines that appear
to be instances of inference
rules, but the instantiations
are not valid. (Example:
rule requires two
environments to be the
same, but in the derivation
they are different.)
• In a derivation, the
semantics requires new
bindings to be added to
some environments, and the
derivation contains
environments extended
with the right new bindings,
but not in exactly the right
places.

• In one or more
derivations, there are
horizontal lines that the
course staff is unable to
relate to any inference rule.
• In one or more
derivations, there are many
horizontal lines that appear
to be instances of inference
rules, but the instantiations
are not valid.
• Environments in
intermediate or final states
have primes or subscripts
not found in the initial
environment, and there is
no unknown derivation (or
unknown subexpression)
whose result could account
for a prime or a subscript.
• A derivation is called for,
but course staff cannot
identify the tree structure of
the judgments forming the
derivation.
• In a derivation, the
semantics requires new
bindings to be added to
some environments, and the
derivation contains
environments extended
with new bindings, but the
new bindings in the
derivation are not the
bindings required by the
semantics. (Example: the
semantics calls for a
binding of answer to 42,
but instead answer is
bound to 0.)
• In a derivation, the
semantics requires new
bindings to be added to
some environments, but the
derivation does not contain
any environments extended
with new bindings.

15

Exemplary Satisfactory Must Improve

16

Metatheory (part C, exercise F)

Exemplary Satisfactory Must Improve

Metatheory • The counterexample
includes everything
mentioned in the evaluation
judgment: expression,
result, and all
environments.
• Proofs by induction
explicitly identify the
induction hypothesis.
• Metatheoretic proofs
operate by structural
induction on derivations,
and derivations are named.
• Metatheoretic proofs
classify derivations by case
analysis over the final rule
in each derivation. Cases
with similar proofs are
grouped together.
• When a problem calls for
a complete metatheoretic
proof, the case analysis
covers every possible
derivation.
• Failed cases for
metatheoretic proof explain
the failure even in the
presence of a good
induction hypothesis.

• The counterexample
includes an expression, but
it omits the result or one or
more value environments.
• A proof by induction is
not explicit about what the
induction hypothesis is, but
course staff can figure it
out.
• Metatheoretic proofs
operate by structural
induction on derivations,
but derivations and
subderivations are not
named, so course staff may
not be certain of what’s
being claimed.
• Metatheoretic proofs
classify derivations by case
analysis over the final rule
in each derivation, but the
grouping of the cases does
not bring together cases
with similar proofs.
• Failed cases for
metatheoretic proof are
correctly identified, but
they blame the induction
hypothesis for the failure.

• The counterexample
doesn’t work.
• In a proof by induction,
course staff cannot figure
out what the induction
hypothesis is.
• Metatheoretic proofs
don’t use structural
induction on derivations
(serious fault).
• Metatheoretic proofs are
missing many cases
(serious fault).
• Course staff cannot figure
out how metatheoretic
proof is broken down by
cases (serious fault).
• A problem calls for a
complete metatheoretic
proof, but the cases that are
presented don’t cover every
possible derivation.
• Failed cases for
metatheoretic proof are not
correctly identified.

17

	Retrieval practice
	Reading comprehension
	Part A: Talking operational semantics (25%)
	Part B: Operational semantics and language design (25%)
	Part C: Operational-semantics derivations, proofs, and metatheory (50%)
	How to get started and what a solution should look like
	Note: Free variables, formal parameters, and actual parameters
	Formal and actual parameters

	Extra credit: Eliminating begin
	How to organize and submit your homework
	How your work will be evaluated
	Talking operational semantics (part A)
	Changed rules of Impcore (part B, exercise 16, parts (a) and (b))
	Program to probe Impcore/Awk/Icon semantics (part B, exercise 16, part (d))
	Derivations (part C, exercises 12 and 13)
	Metatheory (part C, exercise F)

