
Functional programming in 𝜇Scheme

CS 105 Assignment

Due Tuesday, September 27, 2022 at 11:59PM

Contents
Introduction 1

Setup . 2
Diagnostic tracing . 2
Dire Warnings . 2

Reading comprehension 3

Theory problems 3

Expectations for programming problems: Algebraic laws and unit tests 4
A checklist for your laws . 5
A checklist for your code . 5
A checklist for your tests . 5

Programming problems 6
Lists and S-expressions . 6
Classic list functions . 7
Programming with nonempty lists . 8

Extra credit: theory of algebraic laws 9

What and how to submit 9

How your work will be evaluated 10
Programming in 𝜇Scheme . 10

Laws must be well formed and algorithmic . 10
Code must be well structured . 12
Code must be well laid out, with attention to vertical space 12
Code must load without errors . 13
Costs of list tests must be appropriate . 13

Your proofs . 14

This assignment is all individual work. There is no pair programming.

1

Introduction
This assignment develops new skills that you can use to write one kind of code from scratch: code that
inspects and manipulates lists, trees, or other linked data structures. From CS 15, you know how to
manipulate these structures using machine-level abstractions that operate on one word and one pointer
at a time. In 105 you will develop a flexible, powerful vocabulary of functions that enable you to ma-
nipulate a whole list in just one or two operations. These skills come from the discipline of functional
programming.

The key thing that’s new here is that no data structure is ever mutated—instead of changing an existing
list or tree, code allocates a new list or tree with the desired values and structure. This discipline of
programming has benefits for testing, specification, and coding:

• Tests are easy to write, require no setup, and can be repeated without fear of failure.

• Contracts are written without having to refer to multiple states of execution: a function’s contract
mentions only the inputs and the result.

• Because unchanging data structures can safely be shared, the functions in your vocabulary can
easily be composed.

(You will learn more about composition of functions next week.)

In addition to programming, you will get more practice with programming-language theory and proofs.
You will see that algebraic laws are built on top of operational semantics, and you will learn that on top
of algebraic laws, we can build calculational proofs of program properties. This “cheap and cheerful”
way of assuring program correctness is another benefit of functional programming.

This week’s assignment is based primarily on material from sections 2.1 to 2.4 of Programming Lan-
guages: Build, Prove, and Compare. You will also need to know the syntax in figure 2.2 (page~95),
and the initial basis (also in section~2.2). The initial basis is summarized in table 2.3 on page~99—that
table is your lifeline. Finally, although it is not necessary, you may find some problems easier to solve if
you read ahead from section2.7 to section2.9.

You will define many functions and write a few proofs. The functions are small; most are in the range of
4 to 8 lines, and none of the model solutions is more than a dozen lines. If you don’t read ahead, a couple
of your functions will be a bit longer, which is OK.

Setup
The executable 𝜇Scheme interpreter is in /comp/105/bin/uscheme; once you have run use comp105
(or set it up to run automatically on login), you should be able to run uscheme as a command. The inter-
preter accepts a -q (“quiet”) option, which turns off prompting. When using the interpreter interactively,
you may find it helpful to use ledit, as in the command

ledit uscheme

Please also download our template for solution.scm. It contains a skeleton version of each function
you must define, but the body of the function calls error. Each call to error should be replaced with a
correct implementation.

2

files/solution-template.scm

Diagnostic tracing
𝜇Scheme does not ship with a debugger. But in addition to the println and printu functions, it does
ship with a tracing facility. The tracing facility can show you the argument and results to every function
call, or you can dial it back to show just a limited number.

The tracing facility is specified in exercise~60 on page~200 of Build, Prove, and Compare. This exercise
asks for an implementation of the tracing facility. But we have already implemented it for you! We used
the approach sketched in part (b) of the exercise.

If the specification is a bit murky, you can probably master the tracing facility just by playing around
with it. Here are a couple of examples:

-> (val &trace 5)
-> (append '(a b c) '(1 2 3))
-> (set &trace 500)
-> (append '(a b c) '(1 2 3))

Used carefully, &trace can save you a lot of time and effort. But do not leave even an unexecuted
reference to &trace in your submission.

Dire Warnings
Since we are studying functional programming, the 𝜇Scheme programs you submit must not use any
imperative features. Banish set, while, println, print, printu, and begin from your vocabulary! If
you break this rule for any problem, you will get No Credit for that problem. You may find it useful
to use begin and println while debugging, but they must not appear in any code you submit. As a
substitute for assignment, use let or let*.

Helper functions may be defined at top level only if they meet these criteria:

• Each helper function has a meaningful name.

• Each helper function is given an explicit contract—or, as described in the general coding rubric,
we can infer the contract by looking at the names of the function and its formal parameters.

• Each helper function is specified by algebraic laws.

• Each helper function is tested by check-expect or check-assert, and possibly check-error.

As an alternative to helper functions, you may read ahead and define local functions using lambda along
with let, letrec, or let*. If you do define local functions, avoid passing them redundant parameters—a
local function already has access to the parameters and let-bound variables of its enclosing function.

Except as specified, functions without algebraic laws will earn failing grades.

Your solutions must be valid 𝜇Scheme; in particular, they must pass the following test:

/comp/105/bin/uscheme -q < myfilename

without any error messages or unit-test failures. If your file produces error messages, wewon’t test your
solution and you will earn No Credit for functional correctness. (You can still earn credit for structure
and organization). If your file includes failing unit tests, you might possibly get some credit for functional
correctness, but we cannot guarantee it.

3

coding-rubric.html
coding-rubric.html

Case analysis involving lists and S-expressionsmust be structural. That is, your case analysis must involve
the results of functions like null?, atom?, pair?, and so on, all of which are found in the initial basis.
Please note that the length function from the book is not in the initial basis, and code submitted for this
assignment must not compute the length of any list.

Code you submit must not even mention &trace. We recommend that you use &trace only at the inter-
active prompt.

We will evaluate functional correctness by automated testing. Because testing is automated, each func-
tion must be named be exactly as described in each question. Misnamed functions earn No Credit.
It’s best to use the template provided above, which has the correct function names.

Reading comprehension
Before starting the programming problems, answer the reading-comprehension questions for this module,
which you will find online. It is also OK to alternate between reading-comprehension questions and
related homework questions.

Theory problems
The problems are organized into two groups: theory and programming. Theory problems include exer-
cise 22 in the book, plus problem A below. There are also two extra-credit theory problems: problems
TDP and CCL.

22. Calculational proof. Do exercise~22 on page~185 of Build, Prove, and Compare: prove that
appending lists is an associative operation.

This problem yields to structural induction, but there are three lists involved. The hard part is to identify
which list or lists have to be broken down by cases and handled inductively, and which ones can be treated
as variables and not scrutinized. Hint: it is not necessary to break down all three lists.

Related Reading:

• The proof technique is described in section~2.5.7, which starts on page~116.

• Section~2.3.1, which starts on page~100, develops append, and it states two laws that you should
use in your proof:

(append '() ys) == ys
(append (cons z zs) ys) == (cons z (append zs ys))

You will find additional laws for append on page~115, but you may not use those additional laws—
in particular, the third law is what you are trying to prove.

• The laws in the book are interrupted by explanations. We have condensed the basic laws of
𝜇Scheme into a summary, which is online.

A.From operational semantics to algebraic laws. The contribution of operational semantics to program
design is to justify algebraic laws. In this problem, you use the operational semantics of𝜇Scheme—which
is simpler than the operational semantics of Impcore—to understand how and when a valid algebraic law
can be used to simplify code. The problem has two parts:

4

files/solution-template.scm
handouts/initial-laws.html

a) The operational semantics for 𝜇Scheme includes rules for cons, car, and cdr. Assuming that x
and xs are variables and are defined in 𝜌 (rho), use the operational semantics to prove that

(cdr (cons x xs)) == xs

As a reminder, the judgment form for 𝜇Scheme evaluation is ⟨𝑒, 𝜌, 𝜎⟩ ⇓ ⟨𝑣, 𝜎′⟩.
b) The preceding law can be used to simplify code in which cdr is applied to cons applied to variables.

In this part, you show that when cons is applied to general expressions, the two sides aren’t always
equal.

Find two expressions 𝑒1 and 𝑒2 and a context (that is, 𝜌 and 𝜎) such that all of the following are
true:

• The evaluation of 𝑒1 terminates.

• The evaluation of 𝑒2 terminates.

• The evaluation of (cdr (cons 𝑒1 𝑒2)) terminates, and

• (cdr (cons 𝑒1 𝑒2)) ≠ 𝑒2

For this problem, you may use any syntactic form of 𝜇Scheme, including those that are forbidden
in the programming parts of the assignment.

Related Reading: The operational semantics for cons, car, and cdr can be found on page~153.

Expectations for programming problems: Algebraic laws and unit
tests
For each function you define, you must specify not only a contract but also algebraic laws and unit tests.
Even helper functions! For some problems, algebraic laws are not needed or are already given to you.
Those problems are noted below.

Laws and tests make it easy to write code and easy for readers to be confident that code is correct. To get
your laws, code, and tests right, use the checklists below.

A checklist for your laws
As described in the second lesson on program design, laws used to design a function must be algorithmic.
A good set of algorithmic laws satisfies all these requirements:

• The left-hand sides break the inputs down by cases. In each case, each argument is a variable or
is a form of data such as (cons y ys). A good left-hand side never has a call to a non-primitive
function like list2 or append.

• Cases are mutually exclusive. Mutual exclusion is usually accomplished by using mutually exclu-
sive forms of data on distinct left-hand sides, but occasionally, mutual exclusion may be accom-
plished via side conditions.

• You can tell which case is which via a constant-time test, like (null? xs) or (= n 0).

• Each left-hand side is equal to some right-hand side, and the right-hand side can be computed as a
function of the variables named on the left-hand side. Every variable that appears on a right-hand
side also appears on the corresponding left-hand side.

5

• If a variable on the left-hand side stands for a part of an argument, then on the right-hand side that
variable stands for the same part of the same argument—not the whole argument.

• No algebraic law is completely redundant. That is, no law is fully implied by a combination of
other laws. (It is OK if some inputs are covered by more than one law, which we call “overlapping.”
Overlapping laws are handy, but you must be sure that on the overlapping inputs, all laws agree on
the result.)

• If, given a particular input, the function’s contract says that a value is returned, there must be some
algebraic law that specifies what the value is.

• In every recursive call on every right-hand side, some input is getting smaller.

A checklist for your code
Your laws will be evaluated not just in isolation but in the context of your code. (The whole purpose of
laws is to help write code.) In particular, your laws must be consistent with your code. We expect the
following:

• The number of cases in your code is equal to the number of algebraic laws.

It is always possible to structure your code so it has one case per law. But it is acceptable to take
shortcuts with things like short-circuit && and ||. It is also acceptable, if unusual, to use if on the
right-hand side of an algebraic law, in which case that law would cover two cases in the code.

• The names of formal parameters are consistent with the names used in algebraic laws. If there is no
case analysis on a parameter, its name is the same everywhere it appears. If there is case analysis,
a parameter’s name is different from the names of its parts. Example: parameter xsmight take the
form (cons y ys).

A checklist for your tests
While it is often useful to write additional tests for corner cases, here is a checklist for our minimum
expectations.

• Every algebraic law is tested.

• If the function returns a Boolean, each algebraic law is tested using check-assert. Otherwise,
each algebraic law is tested using check-expect.

• If the function returns a Boolean, then when possible, each algebraic law is tested twice: once
with a true result and once with a false result. (Such testing is not always possible; for example,
the empty list is always a sublist of any other list, and it is not possible to test that case with a false
result.)

• A function is tested using check-error if and only if the function’s contract says that certain
inputs cause a checked run-time error.

Programming problems
Programming problems include exercises 1, 8, and 31 in the book, plus the problems B through E below.

6

Related Reading: Many of the following problems ask you to write recursive functions on lists. You can
sometimes emulate examples from section~2.3, which starts on page~100. And you will definitely want
to take advantage of 𝜇Scheme’s predefined and primitive functions (the initial basis). These functions
are listed in section~2.2, which starts on page~93, and they are summarized in table 2.3 on page~99.

Lists and S-expressions
In this set of problems, you work with lists, and you also work with ordinary S-expressions, which are
“lists all the way down.”

1. Recursive function on lists of values. Do part (a) of exercise~1 on page~180 of Build, Prove, and
Compare (contig-sublist?).

The algebraic laws for contig-sublist? may be too challenging for beginners, so you may omit them.
But do write laws for all other functions, including helper functions. And each function you define,
including contig-sublist? and any helper functions, must be accompanied by unit tests written using
check-expect or check-assert.

Hint:

• If you’re having trouble thinking about how to write contig-sublist? in Scheme, think about
how you would implement it in C++: probably with a doubly nested loop. For this homework,
then, you probably will implement it using two recursive functions: one corresponding to the outer
loop and one corresponding to the inner loop. The additional function, like every function, will
need a good name and contract.

8. Recursive functions on lists of S-expressions. Do parts (c) and (d) of exercise~8 on page~182 of
Build, Prove, and Compare (mirror and flatten). Expect to write some recursive functions, but you
may also read ahead and use the higher-order functions in sections 2.7 through 2.9.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

Related reading:

• Ordinary S-expressions are defined in in Figure 2.1 on page~93.

• The first section of the second Lesson in Program Design describes several ways to break down
S-expressions. Look at the “expanded” version at the end of the section.

Hints:

• Every list of S-expressions is itself an S-expression—or formally, LIST(SEXP) ⊆ SEXP. It is
therefore acceptable to extend the contracts of the LIST(SEXP) functions so that they can also
accept an SEXP. For example, you might extend the contract of mirror so that if it receives an
atom, it returns that atom. Extending a contract in this way can simplify code. But in some cases
it may be unnecessary or even counterproductive. Use your judgment.

• Once you extend a contract, you can profitably break SEXP down by three cases: empty list, cons,
and atom different from empty list.

7

Classic list functions
In this set of problems, you write some classic functions for manipulating whole lists, or for chopping
lists into big pieces.

31. Taking and dropping a prefix of a list (takewhile and dropwhile). Do exercise~31 on page~187
of Build, Prove, and Compare.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

B. Take and drop. Function (take n xs) expects a natural number and a list of values. It returns the
longest prefix of xs that contains at most n elements.

Function (drop n xs) expects a natural number and a list of values. Roughly, it removes n elements from
the front of the list. When acting together, take and drop have this property: for any list of values xs and
natural number n,

(append (take n xs) (drop n xs)) == xs

Implement take and drop.

Each function you define, including helper functions, must be accompanied by algebraic laws and by
unit tests written using check-expect or check-assert. Be aware that the property above (the “ap-
pend/take/drop” law) is not algorithmic. Therefore, it cannot be used as the sole guide to implementa-
tions of take and drop. Before defining take, you must write laws that define only what take does. And
before defining drop, you must write more laws that define only what drop does.

C. Zip and unzip. Function zip converts a pair of lists to a list of pairs by associating corresponding
values in the two lists. (If zip is given lists of unequal length, its behavior is not specified.) Function
unzip converts a list of pairs to a pair of lists. In both functions, a “pair” is represented by a list of length
two, e.g., a list formed using predefined function list2.

-> (zip '(1 2 3) '(a b c))
((1 a) (2 b) (3 c))
-> (unzip '((I Magnin) (U Thant) (E Coli)))
((I U E) (Magnin Thant Coli))

The standard use cases for zip and unzip involve association lists, but these functions are well defined
even when keys are repeated:

-> (zip '(11 11 15) '(Guyer Sheldon Korman))
((11 Guyer) (11 Sheldon) (15 Korman))

As further specification, provided lists xs and ys are the same length, zip and unzip satisfy these prop-
erties:

(zip (car (unzip pairs)) (cadr (unzip pairs))) == pairs
(unzip (zip xs ys)) == (list2 xs ys)

Neither of these properties is algorithmic. You are excused from writing algebraic laws for unzip, but
you must write algorithmic laws for zip.

Implement zip and unzip.

8

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert, with this exception:

• The algebraic laws for unzip are too challenging for beginners, so you may omit them.

Related Reading: Information on association lists can be found in section~2.3.8, which starts on
page~107.

Programming with nonempty lists
Many useful functions, like “find the smallest,” work only on nonempty lists. In this set of problems, you
implement two such functions.

A nonempty list of 𝐴’s is notated LIST1(A).1 The usual forms of data don’t work here: '() is not a
nonempty list. On the course web site you will find a short handout that defines nonempty lists in two
different ways:

1. We can define LIST1(A) in terms of LIST(A). This definition is not inductive.2

2. We can define LIST1(A) inductively,3 without any reference to LIST(A).

Both definitions are useful, because they say what LIST1(A) is, not what it isn’t. (Saying “a LIST1(A) is
a LIST(A) that is not empty” is not very useful.) And over time, you’ll use both definitions for writing
code—different definitions are good for different functions. For this homework, you’ll use one or both to
solve the following two problems.

D. Arg max. This problem gives you a taste of higher-order functions, which we’ll explore in more detail
in the next homework assignment. Function arg-max expects two arguments: a function f that maps a
value in set A to a number, and a nonempty list as of values in set A. It returns an element a in as for
which (f a) is as large as possible. This function is commonly used in machine learning to predict the
most likely outcome from a model.

-> (define square (a) (* a a))
-> (arg-max square '(5 4 3 2 1))
5
-> (arg-max car '((105 PL) (160 Algorithms) (170 Theory)))
(170 Theory)

Implement arg-max. Be sure your implementation does not take exponential time.4

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

Avoid this common mistake: It’s all too easy to return the result of applying f. But that’s not what’s in
the contract: arg-max returns an argument x that, when passed to f, maximizes the value of (f x).

E. Rightmost point. Here is a 𝜇Scheme definition that defines a record for a point in the plane, with
x and y coordinates:

(record point [x y])

1Because it has at least one element.
2That’s math talk for “the definition is not recursive.” That is, this definition of LIST1(A) does not refer to LIST1(A).
3That’s math talk for “recursively”.
4It is sufficient (but not necessary) to ensure that the body of arg-max contains only one call to arg-max.

9

Copy this definition into your code. Define a function rightmost-point that takes a nonempty list of
point records and returns the one with the largest x coordinate. Break ties arbitrarily.

For this problem, you need not write any algebraic laws. Write unit tests as usual.

To earn full credit for this problem, define rightmost-point without defining any new recursive func-
tions (which means that rightmost-point itself must not be recursive). Using recursive functions de-
fined for other problems is OK.

Extra credit: theory of algebraic laws
Here are two extra-credit problems about justification of algebraic laws.

TDP. Proof of a take-drop law. Using the same techniques you used to solve exercise~22, plus your
algebraic laws for take and drop, prove the append-take-drop law: for any list of values xs and natural
number n,

(append (take n xs) (drop n xs)) == xs

CCL. Repair of a cdr-cons law. Answer all three parts:

1. For what class of expressions 𝑒1 and 𝑒2 is it true that

• (cdr (cons 𝑒1 𝑒2)) = 𝑒2 ?

2. How would you prove it?

3. We know the law works if the forms of 𝑒1 and 𝑒2 are restricted to variables. Is there a less severe
syntactic restriction (on the forms of expressions) that is sufficient to make the law work?

What and how to submit
Please submit three files:

• A README file containing

– The names of the people with whom you collaborated
– A list identifying which problems that you solved

• A PDF file theory.pdf containing the solutions to Exercises 22 and A. If you already know La-
TeX, by all means use it. Otherwise, write your solution by hand and scan it or photograph it.
Do check with someone else who can confirm that your work is legible—if we cannot read your
work, we cannot grade it.

Please leave your name out of your PDF—that will enable your work to be graded anonymously.

• A file solution.scm containing the solutions to all the other exercises.

As soon as you have the files listed above, run submit105-scheme to submit a preliminary version of
your work. Keep submitting until your work is complete; we grade only the last submission.

10

http://www.latex-project.org/
http://www.latex-project.org/

How your work will be evaluated

Programming in 𝜇Scheme
The criteria we will use to assess the structure and organization of your 𝜇Scheme code, which are de-
scribed in detail below, are mostly the same as the criteria in the general coding rubric, which we used
to assess your Impcore code. But some additional criteria appear below.

Laws must be well formed and algorithmic

11

coding-rubric.html

Exemplary Satisfactory Must Improve

Laws • When defining function 𝑓 ,
each left-hand side
applies 𝑓 to one or more
patterns, where a pattern is
a form of input (examples:
(+ m 1), (cons x xs)).
• When a law applies only
to equal inputs, those inputs
are notated with the same
letter.
• The left-hand side of each
algebraic law applies the
function being defined.
• On the left-hand side of
each algebraic law, the
number and types of
arguments in the law are the
same as the number and
types of arguments in the
code.
• The only variables used
on the right-hand side of
each law are those that
appear in arguments on the
left-hand side.
• When a variable on a
left-hand side is part of a
form-of-data argument, that
variable is used on the
right-hand side as a part of
the argument.
• For every permissible
form of the function’s input
or inputs, there is an
algebraic law with a
matching left-hand side
(and a matching side
condition, if any).
• The patterns of the
left-hand sides of laws
defining function 𝑓 are all
mutually exclusive, or
• The patterns of the
left-hand sides of laws
defining function 𝑓 are
either mutually exclusive or
are distinguished with side
conditions written on the
right-hand side.

• On a left-hand side, 𝑓 is
applied to a form of input,
but the form of input is
written in a way that is not
consistent with code.
• When a law applies only
to equal inputs, the equality
is written as a side
condition.
• Once or twice in an
assignment, a variable
appears on the right-hand
side of a law without also
appearing on the left-hand
side. The variable appears
to name an argument.
• Once or twice, a variable
on a left-hand side is part of
a form-of-data argument,
but on the right-hand side,
it is used as if it were the
whole argument.
• For every permissible
form of the function’s input
or inputs, there is an
algebraic law with a
matching left-hand side, but
some inputs might
inadvertently be excluded
by side conditions that are
too restrictive.
• Laws are distinguished by
side conditions, but the side
conditions appear on the
left-hand side.
• There are some inputs
that match more than one
left-hand side, and these
inputs are not distinguished
by side conditions, but the
laws contain a note that the
ambiguity is intentional,
and for such inputs, the
right-hand sides all specify
the same result.

• One or more left-hand
sides contain laws that are
not applications of 𝑓 .
• On a left-hand side, 𝑓 is
applied to something that is
not a form of input, like an
arbitrary sum (+ j k) or
an append.
• The left-hand side of an
algebraic law applies some
function other than the one
being defined.
• The left-hand side of an
algebraic law the function
being defined to the wrong
number of arguments, or to
arguments of the wrong
types.
• The right-hand side of a
law refers to a variable that
is not part of the left-hand
side and which appears not
to refer to an argument.
• The assignment shows a
pattern of using argument
variables on right-hand
sides, instead of or in
addition to the variables
that appear on left-hand
sides.
• The assignment shows a
pattern of using
part-of-data variables as if
they were whole arguments.
• There is permissible input
whose form is not matched
by the left-hand side of any
algebraic law.
• There is at least one input
to which it is ambiguous
which law should apply: the
input matches more than
one left-hand side, and
either there are no side
conditions, or the side
conditions are insufficient
to distinguish the
ambiguous laws. And there
is no note explaining that
the ambiguity is intentional
and OK.

12

Exemplary Satisfactory Must Improve

Code must be well structured

We’re looking for functional programs that use Boolean and name bindings idiomatically. Case analysis
must be kept to a minimum.

Exemplary Satisfactory Must Improve

Structure • The assignment does not
use set, while, print, or
begin.
• Wherever Booleans are
called for, code uses
Boolean values #t and #f.
• The code has as little case
analysis as possible (i.e.,
the course staff can see no
simple way to eliminate any
case analysis)
• When possible, inner
functions use the
parameters and let-bound
names of outer functions
directly.

• The code contains case
analysis that the course staff
can see follows from the
structure of the data, but
that could be simplified
away by applying
equational reasoning.
• An inner function is
passed, as a parameter, the
value of a parameter or
let-bound variable of an
outer function, which it
could have accessed
directly.

• Some code uses set,
while, print, or begin
(No Credit).
• Code uses integers, like 0
or 1, where Booleans are
called for.
• The code contains
superfluous case analysis
that is not mandated by the
structure of the data.

Code must be well laid out, with attention to vertical space

In addition to following the layout rules in the general coding rubric (80 columns, no offside violations),
we expect you to use vertical space wisely.

13

Exemplary Satisfactory Must Improve

Form • Code is laid out in a way
that makes good use of
scarce vertical space. Blank
lines are used judiciously to
break large blocks of code
into groups, each of which
can be understood as a unit.

• Code has a few too many
blank lines.
• Code needs a few more
blank lines to break big
blocks into smaller chunks
that course staff can more
easily understand.

• Code wastes scarce
vertical space with too
many blank lines, block or
line comments, or syntactic
markers carrying no
information (like a closing
bracket on a line by itself).
• Code preserves vertical
space too aggressively,
using so few blank lines
that a reader suffers from a
“wall of text” effect.
• Code preserves vertical
space too aggressively by
crowding multiple
expressions onto a line
using some kind of greedy
algorithm, as opposed to a
layout that communicates
the syntactic structure of
the code.
• In some parts of code,
every single line of code is
separated form its neighbor
by a blank line, throwing
away half of the vertical
space (serious fault).

Code must load without errors

Ideally you want to pass all of our correctness tests, but at minimum, your own code must load and pass
its own unit tests.

Exemplary Satisfactory Must Improve

Correctness • Your 𝜇Scheme code
loads without errors.
• Your code passes all the
tests we can devise.
• Or, your code passes all
tests but one.

• Your code fails a few of
our stringent tests.

• Loading your 𝜇Scheme
into uscheme causes an
error message (No Credit).
• Your code fails many
tests.

Costs of list tests must be appropriate

Be sure you can identify a nonempty list in constant time.

14

Exemplary Satisfactory Must Improve

Cost • Empty lists are
distinguished from
non-empty lists in constant
time.

• Distinguishing an empty
list from a non-empty list
might take longer than
constant time.

Your proofs
The proofs for this homework are different from the derivations and metatheoretic proofs from the
operational-semantics homework, and different criteria apply.

Exemplary Satisfactory Must Improve

Proofs • Course staff find proofs
short, clear, and
convincing.
• Proofs have exactly as
much case analysis as is
needed (which could mean
no case analysis)
• Proofs by induction
explicitly say what data is
inducted over and clearly
identify the induction
hypothesis.
• Each calculational proof
is laid out as shown in the
textbook, with each term on
one line, and every equals
sign between two terms has
a comment that explains
why the two terms are
equal.

• Course staff find a proof
clear and convincing, but a
bit long.
• Or, course staff have to
work a bit too hard to
understand a proof.
• A proof has a case
analysis which is complete
but could be eliminated.
• A proof by induction
doesn’t say explicitly what
data is inducted over, but
course staff can figure it
out.
• A proof by induction is
not explicit about what the
induction hypothesis is, but
course staff can figure it
out.
• Each calculational proof
is laid out as shown in the
textbook, with each term on
one line, and most of the
the equals signs between
terms have comments that
explain why the two terms
are equal.

• Course staff don’t
understand a proof or aren’t
convinced by it.
• A proof has an
incomplete case analysis:
not all cases are covered.
• In a proof by induction,
course staff cannot figure
out what data is inducted
over.
• In a proof by induction,
course staff cannot figure
out what the induction
hypothesis is.
• A calculational proof is
laid out correctly, but few of
the equalities are explained.
• A calculational proof is
called for, but course staff
cannot recognize its
structure as being the same
structure shown in the
book.

15

	Introduction
	Setup
	Diagnostic tracing
	Dire Warnings

	Reading comprehension
	Theory problems
	Expectations for programming problems: Algebraic laws and unit tests
	A checklist for your laws
	A checklist for your code
	A checklist for your tests

	Programming problems
	Lists and S-expressions
	Classic list functions
	Programming with nonempty lists

	Extra credit: theory of algebraic laws
	What and how to submit
	How your work will be evaluated
	Programming in \muScheme
	Laws must be well formed and algorithmic
	Code must be well structured
	Code must be well laid out, with attention to vertical space
	Code must load without errors
	Costs of list tests must be appropriate

	Your proofs

