
Object-Oriented Programming in Smalltalk

CS 105 Assignment

Due Tuesday, December 13, 2022 at 11:59PM

Contents
Overview 2

Preliminaries 2
Using the interpreter effectively . 2
Noting errors in the book . 3

Reading comprehension 3

Individual Problem 4

Pair problems: Bignum arithmetic 5
Natural numbers . 5
Large (signed) integers . 6
Mixed arithmetic (large and small together) . 7
Testing . 7
Final followup . 8

Hints and guidelines 10
How to write recursions that terminate . 10
Avoid common mistakes . 12

Simple coding mistakes . 12
Common mental mistakes . 12

Four diagnostic techniques 13
Stack tracing . 13
Tools that analyze your code for potential faults . 14
Message tracing . 14
An analysis you can do by hand . 15

Extra credit 16

What and how to submit: Individual problem 17

What and how to submit: Pair problems 17

How your work will be evaluated 18

1

Overview
Object-oriented programming has been popular since the 1990s, and like lambdas, object-oriented fea-
tures are found everywhere. But these features are not always easy to tease out: many object-oriented
languages, such as Java and C++, are hybrids, which mix objects with abstract data types or other no-
tions of encapsulation and modularity. When you don’t already know how to program with objects,
hybrid designs are more confusing than helpful. For that reason, we study pure objects, as popularized
by Smalltalk: even simple algorithms send lots of messages back and forth among a cluster of coop-
erating, communicating objects. Popular languages that use similar models include Ruby, JavaScript,
Objective C, and Swift.

The assignment is divided into two parts.

• On your own, you do a small warmup problem, which acquaints you with pure object-oriented
style and with 𝜇Smalltalk’s large initial basis.

• Possibly with a partner, you implement bignums in 𝜇Smalltalk. You will complete the following
parts:

– Arithmetic on natural numbers
– Arithmetic on large signed integers
– Arithmetic on all combinations of large and small integers
– Test cases for each of the previous three parts
– Followup questions to demonstrate what you have learned

This assignment is time-consuming. Many students have experience in languages called “object-
oriented,” but few students have experience with the extensive inheritance and pervasive dynamic
dispatch that characterize idiomatic Smalltalk programs.

Preliminaries

Using the interpreter effectively
If you do not already have it set to run automatically when you login, run this command:

use -q comp105

You now have access to the 𝜇Smalltalk interpreter, usmalltalk. To run it interactively with line-editing
features, use the command

ledit usmalltalk

Smalltalk is a little language with a big initial basis; there are lots of predefined classes and methods.
To help you work with the big basis, as well as to debug your own code, we recommend sending the
messages printProtocol and printLocalProtocol. These messages, which are shown in Figure 10.10
on page~648, are understood by every uSmalltalk class. They provide a quick way to remind yourself
what messages an object understands and how the message names are spelled.

To apply the interpreter to a whole file named solution.smt, use the command

usmalltalk -q < solution.smt

2

Noting errors in the book
There are two errors in the book that will affect your ability to do the homework. Make note of them:

• In Figure 10.21 on page 676, the protocol gives the wrong specification for the result from sdiv:.
The result should be a large integer, not a natural number. In total, the specification for sdiv:
should read as follows:

Answer the large integer closest to but not greater than the quotient of the receiver and
the argument.

• In Figure 10.22 on page 677, the new: message is sent to class Natural. The message name should
be fromSmall:. The correct line reads as follows:

{((LargePositiveInteger new) magnitude: (Natural fromSmall: anInteger))}))

These errors have been corrected in the starter code that we provide.

Reading comprehension
Before starting the programming problems, answer the reading-comprehension questions for this module,
which you will find online.

3

Individual Problem
Working on your own, please work exercise~36(a) on page~731 of Build, Prove, and Compare. This ex-
ercise is a warmup designed to prepare you for the bignum problems in the pair portion of the assignment.

36(a). Interfaces as Abstraction Barriers. Do exercise~36(a) on page~731 of Build, Prove, and Com-
pare. Put your solution in file frac-and-int.smt.

When the problem says “Arrange the Fraction and Integer classes”, the text means that examples like
this one should work:

((1 / 2) + 3)

If you try this with the bare code, you’ll see that class Fraction sends messages that the argument 3
doesn’t understand. The problem can be solved with one of these two approaches:

• You can alter methods on class Fraction so they interrogate the argument about its form of data
(i.e., its class), then act accordingly. This is the approach that you would use with algebraic data
types, when the forms of the argument are limited by a static type system.

• You can alter methods on class Integer and add additional methods to class Integer until a num-
ber like 3 is guaranteed to understand any message that Fraction could send it. This is the ap-
proach you would use with objects, when you want Fraction to work with any argument that
understands the right protocol, regardless of the argument’s class.

Either way, you add or alter methods using the “reflection” interface, in particular the addSelec-
tor:withMethod: message (Figure 10.10 on page~648). As a (useless) example, I add an identify
method to the Integer class but not to the Fraction class:

-> (Integer addSelector:withMethod: 'identify
(compiled-method () ('I-am-an-integer println) self))

<class Integer>
-> (3 identify)
I-am-an-integer
3
-> ((1 / 2) identify)
Run-time error: Fraction does not understand message identify
Method-stack traceback:

Sent 'identify' in standard input, line 3

Message addSelector:withMethod: can be used to add new methods or to redefine existing methods.

Hints:

• At minimum, your solution should support addition, subtraction, and multiplication, so include at
least one check-expect unit test for each of these operations. These tests are run only on your
own code, so they do not have to be formatted in any special way.

• You are doing only part (a) of this problem, so the only cases that have to work are cases where
the receiver is an instance of class Fraction. In particular, we expect that (3 + (1 / 2)) will
not work.

Related reading:

4

• For an overview of the numeric classes and their protocols, read section~10.4.6, which starts on
page~658.

• For discussion of how different numbers interoperate, read section~10.7, which starts on page~670.
(This section is also important for the pair problems.) The section presents some methods of class
Integer, but for this problem, the key part is understanding how Fraction works.

• Read the section “forms of data, access to representation”, which describes three levels of access,
in the lesson on “Program Design with Objects”.

• The full implementation of class Integer is not so important for this problem, but if you want it,
you can find it in the Supplement on page 672.

How big is it? You shouldn’t need to add or change more than 10 lines of code in total.

Pair problems: Bignum arithmetic
Sometimes you want to do computations that require more precision than you have available in a machine
word. Full Scheme, Smalltalk, Haskell, Icon, Python, and many other languages provide “bignums,”
which automatically expand to as much precision as you need. Unlike languages that use abstract data
types, Scheme, Smalltalk, and Icon make the transition from machine integers to bignums transparent—
from the source code, it’s not obvious when you’re using native machine integers and when you’re using
bignums.

By working exercise~37 on page~731, exercise~38 on page~732, and exercise~39 on page~732 of Build,
Prove, and Compare, you will build transparent bignums in 𝜇Smalltalk. You will also work exercises
T and F below. You may work all these exercises with a partner.

Natural numbers

37. Implementing arbitrary-precision natural numbers. Do exercise~37 on page~731 of Build, Prove,
and Compare. Implement the protocol defined in Figure 10.19 on page~662. Put your solution in file
bignum.smt.

Your design choices:

• The base of natural numbers. You must choose a base for natural numbers. For full credit, you
must choose a base 𝑏 such that 𝑏 > 10, and small enough that (𝑏+1)⋅(𝑏−1) does not overflow.1

• Representation. A natural number is represented by a sequence of digits. But how will that
sequence be represented?

– An array. Every natural number is represented by an array of digits. This representation is
described in the book on page~679. We provide starter code and a detailed implementation
guide.

– A list. Every natural number is represented by a mutable Smalltalk List of digits. In ML,
this is a good representation. But in Smalltalk, it is not recommended.

– Custom classes. A natural number’s representation depends on its value:
1Test it.

5

https://www.cs.tufts.edu/cs/105/design/lessons.pdf
https://www.cs.tufts.edu/cs/105/supplement.pdf
https://www.cs.tufts.edu/cs/105/files/bignum-array-starter.smt
small-array-guide.html
small-array-guide.html

∗ The natural number zero is represented by an instance of concrete class NatZero, which
represents only zero.

∗ A natural number of the form “𝑛 times base 𝑏 plus digit 𝑑” is represented by an instance
of class concrete class NatNonzero, which holds instance variables 𝑛 and 𝑑. Objects of
class NatNonzero represent only nonzero natural numbers, so this class has an invariant
that 𝑛 and 𝑑 are not both zero.

This representation is described in the book on pages 679 to 681. We provide starter code
and a detailed implementation guide.

The array representation is hardest to get right but easiest to get started.

The custom-class representation is the easiest to get right but the hardest to get started. In my
opinion, it is superior.

How big is it? Using the hints in the book, I’ve written two implementations of class Natural:

• Using the array representation, my solution is about 130 lines of 𝜇Smalltalk code.

• Using the custom classes, my solution is about 150 lines of 𝜇Smalltalk code.

Related reading:

• To learn how to get access to arguments of + and *, read section~10.7, which starts on page~670.

• In the 7th lesson on program design, read the section on how the design steps are adapted for use
with objects. Focus on steps 6, 7, and 8: algebraic laws, case analysis, and results. In the same
lesson, you may also wish to revisit the three levels of access to representation. You will need
level C, but you won’t need double dispatch here.

• If you use arrays, study the interface to a Smalltalk array, which is part of the Collection protocol
in section~10.4.5, which starts on page~651. Also study the array protocol in Figure 10.13 on
page~653, including the class method withAll:. Among instance methods, you are more likely
to use the KeyedCollection protocol in Figure 10.14 on page~656, especially at: and at:put:.
You may also want the class method new: that is defined on arrays (page 683).

• To build a Smalltalk list, which you will need for the decimal method, look at the List protocol
in section~10.4.5, especially Figure 10.16 on page~658.

Large (signed) integers

38. Implementing arbitrary-precision integers. Do exercise~38 on page~732 of Build, Prove, and
Compare. Add your solution to file bignum.smt, following your solution to exercise~37. We provide
starter code (for array natural numbers and subclass natural numbers), which corrects the error in Fig-
ure 10.22 on page 677. We also provide a detailed implementation guide.

Because you build large integers on top of Natural, you don’t have to think about array, list, or subclass
representations. Focus on dynamic dispatch and on getting information from where it is to where it is
needed.

How big is it? My solutions for the large-integer classes are 30 lines apiece.

Related reading: This problem is all about dynamic dispatch, including double dispatch.

• Read section~10.7, which starts on page~670.

6

https://www.cs.tufts.edu/cs/105/files/bignum-subclass-starter.smt
small-subclass-guide.html
small-array-guide.html
small-subclass-guide.html
https://www.cs.tufts.edu/cs/105/design/lessons.pdf
https://www.cs.tufts.edu/cs/105/files/bignum-array-starter.smt
https://www.cs.tufts.edu/cs/105/files/bignum-subclass-starter.smt
small-ints-guide.html

• Read the last section, “Laws for double dispatch,” in the 7th lesson on program design You’ll also
have a chance to practice double dispatch in the second Smalltalk recitation.

Mixed arithmetic (large and small together)

39. Modifying SmallInteger so operations that overflow roll over to infinite precision. Do exer-
cise~39 on page~732 of Build, Prove, and Compare. Put your solution in a fresh file, mixnum.smt.
On the first line of file mixnum.smt, include your other solutions by writing (use bignum.smt).2

In this problem, you modify class SmallInteger and the large-integer classes without touching their
source code. We provide a detailed implementation guide.

The modifications to SmallInteger change the basic arithmetic operations that the system uses in-
ternally. If your code has bugs, the system will behave erratically. You must restart your interpreter and
fix your bugs. Then try again.

How big is it? I added or changed almost 20 SmallInteger methods, with an average code size of less
than two lines per compiled method. That total includes a number of methods devoted to comparisons.
There are also a few additions to large-integer classes.

Related reading:

• Everything about dispatch and double dispatch still applies, especially the example in the 7th lesson
on program design.

You also need to know how overflow is handled using “exception blocks”:

• Review the presentation of blocks, especially the parameterless blocks (written with curly braces)
in section~10.4.3, which starts on page~648.

• Read the description of at:ifAbsent: in the keyed-collection protocol in Figure 10.14 on
page~656. Now study this expression:

('(0 1 2) at:ifAbsent: 99 {0})

This code attemps to access element 99 of the array (0 1 2), which is out of bounds because the
array only has only 3 elements. When given an index out of bounds, at:ifAbsent: sends value
to the “exception block” {0}, which ultimately answers zero.

• Study the implementation of the at: method in code chunk 694c, which uses at:ifAbsent: with
an “exception block” that causes a run-time error if value is sent to it.

• Finally, study the overflow-detecting primitives in exercise~39 on page~732, and study the imple-
mentation of addSmallIntegerTo: in the code chunk immediately below. That is the technique
you must emulate.

Testing

T. Testing Bignums. In standalone file bigtests.smt, you will write 9 tests for bignums:

• 3 tests will test only class Natural.
2If there is a bug in your solution to exercise~39, it can break your solutions to the previous exercises. By putting the solution

to exercise~39 in its own file, we make it possible to test your other code independently.

7

https://www.cs.tufts.edu/cs/105/design/lessons.pdf
small-mixnum-guide.html

• 3 tests will test the large-integer classes, which are built on top of class Natural.

• 3 tests will test mixed arithmetic involving both small and large integers. (Mixed comparison is
optional, so you must not test it—but any combination of addition, subtraction and, multiplication,
as large as you can fit under the CPU limit, is fair game.)

These tests will be run on other people’s code, and they need to be structured and formatted as follows:

1. The test must beginwith a summary characterization of the test in at most 60 characters, formatted
on a line by itself as follows:

; Summary:

The summary must be a simple English phrase that describes the test. Examples might be “Acker-
mann’s function of (1, 1),” “sequence of powers of 2,” or “combinations of +, *, and - on random
numbers.”

2. Code must compute a result of class Natural, LargePositiveInteger, or LargeNegativeIn-
teger. The code may appear in a method, a class method, a block, or wherever else you find
convenient. The code must be included in file bigtests.smt.

3. The expected result must be checked using the check-print form.

4. Code must use only public methods.

Each test must take less than 2 CPU seconds to evaluate.

Here is a complete example containing two tests:

; Summary: 10 to the tenth power, mixed arithmetic
(check-print (10 raisedToInteger: 10) 10000000000)

; Summary: 10 to the 30th power, mixed arithmetic
(check-print (10 raisedToInteger: 30) 1000000000000000000000000000000)

Here is another complete example:

; Summary: 20 factorial
(define factorial (n)

((n isStrictlyPositive) ifTrue:ifFalse:
{(n * (factorial value: (n - 1)))}
{1}))

(check-print (factorial value: 20) 2432902008176640000)

Related reading: No special reading is recommended for the testing problem. As long as you understand
the examples above, that should be enough.

Final followup

F. After completing the rest of the assignment, please download the text version of the followup questions
below and fill in your answers. Many of the questions ask about particular coding scenarios; you are
welcome to answer these questions by experimentingwith code, by thinking through the scenarios without
running any code, or by any combination thereof.

8

small-followup.md
small-followup.md

1. While implementing large signed integers, you implement + and *, and you use methods for div:
and mod: that are provided for you. Why isn’t subtraction defined on the large-integer classes?
When large integers are subtracted, what code you wrote, if any, is run?

2. C++haswhat is called “subclass polymorphism”: if a function is has a formal parameter of class𝐶 ,
a caller can pass any instance of class 𝐶 or any instance of any class 𝐶′ that inherits from 𝐶 .
Class 𝐶’ is called a subclass of 𝐶 .

Smalltalk and Ruby have what is called “subtype polymorphism”: if a message is expecting an
argument that understands protocol 𝑃 , a caller can pass any object with protocol 𝑃 ′, provide that
𝑃 ′ understands all the messages in 𝑃 (and in both protocols, the messages must have with the
same meaning). Protocol 𝑃 ′ is called a subtype of 𝑃 .

Answer this question:

a. After you have modified the predefined classes to complete Exercise 36(a), is the Integer
protocol a subtype of the Fraction protocol? Based on your implementation, justify your
answer.

(If you are submitting as a pair, say which individual implementation forms the basis for your
answer.)

3. This question illustrates some possibilities that arise when contracts arewrittenwithout reference to
representation. Depending on which representation of natural numbers you implemented, answer
one of the following two parts:

a. If you chose the array representation: When message divBase is sent to a natural number 𝑋,
it answers 𝑋 div 𝑏, where 𝑏 is the base of natural numbers. In the subclass representation,
divBase usually just answers an instance variable. Explain how you would implement di-
vBase efficiently using the array representation. You may write an explanation in informal
English, or you may just write the code.

b. If you chose the subclass representation: A natural number 𝑋 can be viewed a sum of dig-
its 𝑥𝑖 times powers of 𝑏, as in

𝑋 =
𝑛

∑
𝑖=0

𝑥𝑖 ⋅ 𝑏𝑖, where 0 ≤ 𝑥𝑖 < 𝑏.

Whenmessage digit: 𝑖 is sent to a natural number, it answers 𝑥𝑖. In the array representation,
digit: is usually implemented by an array lookup. To explain how you would implement
digit: efficiently using the subclass representation, complete the following two method
definitions.Write no English.

(NatZero addSelector:withMethod: digit:
(compiled-method (i) ...))

(NatNonzero addSelector:withMethod: digit:
(compiled-method (i) ...))

4. This question is about the internals of natural numbers. Depending on which representation of
natural numbers you implemented, answer one of the following two parts:

a. If you chose the array representation: Adding private methods digit: and digit:put:
complicates the private protocol for class Natural. A simpler protocol might be better. And

9

after the fact, it seems like it would be easy enough to remove these methods by inlining their
code. Maybe they should never have been there.

Answer this question: if digit: and digit:put: had not been suggested, how would your
development experience have been different? Do these methods provide enough benefit to
justify complicating the protocol?

b. If you chose the subclass representation: Suppose class method first:rest: never creates
an instance of NatZero. Suppose instead that an instance of NatZero is created only by class
method fromSmall: when it receives 0. Under this supposition, natural-number arithmetic
may allocate more objects and send more messages than the code we recommend. But will
it still work? If not, what goes wrong? Justify your answer.

5. Suppose the multiplication method on small integers is changed so that it always promotes self
to a large integer:

(method * (anInteger) ((self asLargeInteger) * anInteger))

This code seems inefficient, but it has the virtue of being simple. Will it work? If not, explain what
goes wrong.

6. If you’re trying to design or debug code in a procedural or functional language, you can usually
make progress by figuring out what function is being called and inspecting its source code. But
with dynamic dispatch, this strategy doesn’t work: a single call site often invokes many different
methods, and tracing all the paths through the code is almost impossible. (This is why languages
like Java and JavaScript require such sophisticated compilers.)

a. How well did “trust the contract” work for you as a strategy for design and debugging?

b. Name a message you had to debug where you wanted to see what code would run when the
message was sent, but it was difficult. (If there was no such message, name a message where
you wanted to see code but didn’t need to debug. If you never wanted to see code, then
explain how you handled multiplyBySmallInteger: without wanting to see code.)

c. Was the message associated with a contract? If so, what was the contract? Was the contract
testable?

d. In a functional language, ideal unit tests exercise all combinations of forms of input data.
In an object-oriented language, what analogous thing should unit tests ideally exercise?

Hints and guidelines
Start early. Seamless arithmetic requires in-depth cooperation among about eight different classes (those
you write, plus Magnitude, Number, Integer, and SmallInteger). This kind of cooperation requires
aggressive message passing and inheritance, which you are just learning.

The bignums algorithms are the same as in the first ML assignment and the ML modules assignment.
You are welcome to adapt your solutions or mine.

How to write recursions that terminate
For most beginning Smalltalk programmers, infinite recursion is a significant problem. In Smalltalk,
recursions are often mutual and hard to trace. To eliminate “recursion too deep” errors, consider the

10

guidelines below.

• Diagnosis. If you get “recursion too deep” in a unit test, you won’t know for sure where the
problem is. Your first step is to get a stack trace by running the faulty code interactively, outside
a unit test:

((Natural fromSmall: 7) * (Natural fromSmall: 99))

You may discover that the infinite recursion you thought was in * is actually in plus:carry:.

• Natural numbers (exercise~37). In methods like plus:carry: and *, when you send a recursive
message, be sure that the number of digits in the receiver of the new message is smaller than
the number of digits in an existing number. That existing number may be either the receiver or
the argument of the method that sends the recursive message.

In multiplication, it is common to send the * message to a natural number that is not guaranteed
to have fewer digits. Infinite recursion ensues.

• Large integers (exercise~38). At each recursion the number of objects of unknown class has
to get smaller. For example, when an object receives the * message, the class of the receiver
is known but the class of the argument is unknown. When an object receives the multiplyBy-
LargePositiveInteger: message, the classes of both the receiver and the argument are known.
If multiplyByLargePositiveInteger: then sends * to a large integer, the number of unknowns
isn’t getting smaller, and in fact that’s an infinite loop.

Sending messages from large integers to objects of class Natural shouldn’t cause any loops, be-
cause none of the Natural methods sends messages to large integers.

• Mixed arithmetic (exercise~39). In mixed arithmetic, every potentially recursive operation
should decrease one of the following two quantities:

– The number of small integers not yet promoted

– The number of objects whose class is unknown (provided the number of small integers not
yet promoted stays the same)

For example, if a small integer receives * and sends multiplyBySmallInteger:, then it decreases
the number of objects of unknown class. And if the multiplyBySmallInteger: method defined
on class LargeInteger promotes its argument, then it has decreased the number of small integers
not yet promoted, so it is OK for it to use * again, even though * increases the number of objects
whose class is unknown.3

Mixed arithmetic also must ensure that in any recursion, the number of digits in the operands is
decreasing. That job is mostly done for you by class Natural, but there is still one potential infinite
recursion that is truly insidious. That recursion arises if you try to promote every operation to be
done on large integers. For example,

– Message * is sent to a small integer, which promotes.

– Message * is then sent to large integers, which delegates to Natural.

– Method * on class Natural then breaks down its operands by digits, and it begins by multi-
plying two least-significant digits 𝑥0 ⋅ 𝑦0.

3The object that receives * must always treat its argument as an object of unknown class.

11

– The multiplication 𝑥0 ⋅ 𝑦0 sends * to a small integer, which promotes…

This recursion is the easiest one to avoid: doing an operation on two small integers must always
invoke a primitive expression. To see how this is done, look at the definitions of the methods
on class SmallInteger (in predefined.smt). And to see an example of a version that detects
overflow, look at page~732.

Avoid common mistakes
Below you will find some common mistakes to avoid.

Simple coding mistakes

There are two common mistakes that lead to Name not found errors:

• In a continuation argument, such as to ifTrue:ifFalse: or sdivmod:with:, you forgot to put
round brackets inside the curly brackets.

• While editing or uploading a file, you inadvertently introduced a Unicode character into your code.
These characters can be found on the Unix command line by using grep:

env LC_ALL=C grep -n '[^[:print:]]' bignum.smt mixnum.smt

Some of these mistakes can be detect with lint-usmalltalk. You might get lucky.

Common mental mistakes

It is a common mistake to ignore the design process. Don’t be like the students who said,

We followed the design process for assignments where we were to design individual
functions but when the specification told us what to do stepwise, like in the Naturals
homework, we didn’t.

It is common to overlook class methods. They are a good place to put information that doesn’t change
over the life of your program.

It’s a terrible mistake to make decisions by interrogating an object about its class—a so-called “run-
time type test.” Run-time type tests destroy behavioral subtyping. This mistake is most commonly made
in two places:

• If you are representing a Natural number as a list of digits, you may be tempted to interrogate
the representation to ask “are you nil or cons?” This is the functional way of programming, but
in Smalltalk, it is wrong. You must make the decision by sending a message to an object, and the
method that is dispatched to will know whether it is nil or cons. When in doubt, “don’t ask; tell.”

• If you are mixing arithmetic on large and small integers or on integers and fractions, you may be
tempted to interrogate an argument about its class. This interrogation is wrong. You must instead
figure out how to accomplish your goals by sendingmessages to the argument—probably including
messages from some private protocol.

There is a right way to do case analysis over representations: entirely by sending messages. For an
example, study how we calculate the length of a list: we send the size message to the list instance.
Method size is dispatched to class Collection, where it is implemented by using a basic iterator: the do:

12

method. If you study the implementation of do: on classes Cons and ListSentinel (which terminates
a 𝜇Smalltalk list), you’ll see the case analysis is done by the method dispatch:

• Sending do: to a cons cell iterates over the car and cdr.

• Sending do: to a sentinel does nothing (thereby terminating the iteration).

The idea of “case analysis by sending messages” applies equally well to arithmetic—and the suggestions
in the step-by-step guides are intended to steer you in the right direction. If you find yourself wanting to
ask an object what its class is, seek help immediately.

It is relatively common for students’ code to make a false distinction between two flavors of zero. In in-
teger arithmetic, there is only one zero, and it always prints as “0”.

In exercise T, it’s surprisingly common to fail to tag the test summary with the prefix Summary:, or to
forget it altogether.

In exercise~39, it’s a common mistake to try to implement (self - anArgument) by evaluating (anAr-
gument - self)—or more precisely, by evaluating ((anArgument asLargeInteger) - self). This
recursion terminates, but it produces an answer with the wrong sign. If you get “Array index out of
bounds” errors, look for this mistake.

It’s not common, but if you rely on the recommended invariant for the subclass-based approach (𝑛 and 𝑑
are not both zero), forgetting to enforce the invariant is a bad mistake.

Four diagnostic techniques
To help you diagnose problems in your code, we recommend four diagnostic techniques: stack tracing,
static spell checking, dynamic message tracing, and static call-graph analysis.

Stack tracing
In Smalltalk programs, many faults manifest as checked run-time errors, like “name not found” or “mes-
sage not understood.” When the interpreter detects a run-time error, it will show you a stack trace of
every method that was active when the error occurred. But you get the trace only if the expression is
evaluated outside of any unit test. If a fault occurs in a unit test, you won’t automatically get a stack trace.
To get one, you must copy the offending expression and paste it into the interactive read-eval-print loop.

A stack trace shows every active message to which the interpreter is waiting for a reply. For example, if
I look up a key in an empty dictionary, the error isn’t discovered until half a dozen methods are active:

-> (val empty (Dictionary new))
Dictionary()
-> (empty at: 'cs105)
Run-time error: key-not-found
Method-stack traceback:

In predefined classes, line 425, sent `error:` to an object of class Dictionary
In predefined classes, line 427, sent `value` to an object of class Block
In predefined classes, line 434, sent `value` to an object of class Block
In predefined classes, line 427, sent `associationAt:ifAbsent:` to an object of class Dictionary
In predefined classes, line 425, sent `at:ifAbsent:` to an object of class Dictionary
In standard input, line 3, sent `at:` to an object of class Dictionary

13

->

The most recent pending message appears at the top. Each line shows where in the source code a message
was sent from, the name of the message, and the class of the receiver.4 Use the trace to find exactly what
was running when things went wrong.

Tools that analyze your code for potential faults
Smalltalk has no type system. But some properties of of your code can still be checked statically:

• A “wrong number of arguments” check is built into the language. A symbolic message like + or !=
expects exactly one argument (not counting the receiver). An alphanumeric message like println
or ifTrue:ifFalse: expects a number of arguments equal to the number of colons in the mes-
sage’s name—not counting the receiver. If these expectations aren’t met, the offending code is
flagged with a syntax error.

• We provide a simple static-analysis tool called lint-usmalltalk. It spell checks each message
send to be sure a method with that name is defined somewhere. If no such method is defined, the
message name is misspelled.

Normally, lint-usmalltalk also checks for unused methods. An unused method might be mis-
spelled, or it might just be one that isn’t used in any code or test. Here’s an example run:

% lint-usmalltalk bignum.smt
instance method compare: of class Natural is never used anywhere
instance method smod: of class Natural is never used anywhere

Message tracing
Almost all run-time issues can be resolved with a stack trace. But if you are getting wrong answers with
no errors, then as a last resort, you can trace every message send and reply involved in evaluating an
expression. Just put the expression in a block and send messageTrace to the block. Here is an example
message trace of a block that sends message new to class List, which is the subject of one of the reading-
comprehension questions:

-> ({(List new)} messageTrace)
standard input, line 5: Sending message (value) to an object of class Block

standard input, line 11: Sending message (new) to class List
predefined classes, line 593: Sending message (new) to class SequenceableCollection
predefined classes, line 593: (<class List> new) = <List>
predefined classes, line 593: Sending message (new) to class ListSentinel

predefined classes, line 581: Sending message (new) to class Cons
predefined classes, line 581: (<class ListSentinel> new) = <ListSentinel>

predefined classes, line 582: Sending message (pred: <ListSentinel>) to an object of class ListSentinel
predefined classes, line 582: (<ListSentinel> pred: <ListSentinel>) = <ListSentinel>
predefined classes, line 583: Sending message (cdr: <ListSentinel>) to an object of class ListSentinel
predefined classes, line 583: (<ListSentinel> cdr: <ListSentinel>) = <ListSentinel>
predefined classes, line 593: (<class ListSentinel> new) = <ListSentinel>

predefined classes, line 593: Sending message (sentinel: <ListSentinel>) to an object of class List
predefined classes, line 593: (<List> sentinel: <ListSentinel>) = <List>

4Unless the message was sent to super. In that case, the stack trace shows the class where the method search started.

14

standard input, line 11: (<class List> new) = <List>
standard input, line 5: (<Block> value) = <List>
List()

An analysis you can do by hand
When all else fails, there is a static analysis you can do by hand called call-graph analysis. It can help
you understand how classes work together, and it’s the best tool for diagnosing problems with infinite
loops and recursions.

Call-graph analysis works by identifying what methods transfer control to what other methods.
Every node in the call graph is a combination of class name and message name. For example,
Boolean/ifTrue: or List/select:. Each node has outgoing edges that illustrate what happens if the
node’s message is sent to an instance of the node’s class:5

1. If the message is implemented by a primitive method, like + on SmallInteger, it has no outgoing
edges.

2. If the method is inherited from the superclass, the node has a dotted edge to the same message
on the superclass. For example, node True/ifTrue: has a dotted edge to Boolean/ifTrue:.

3. If the method is a subclass responsibility, the node has a dotted edge to each subclass.

4. If the method is defined on the class, the node has a solid outgoing edge for each message that
could be sent during the method’s execution.

You have to look at each message send and figure out what class of object it might be sent to.
This part can’t easily be determined by looking at the code; you have to know the protocol. For
example, if message & is sent to a Boolean, we know the argument is also a Boolean. As another
example, if message + is sent to a natural number, the protocol says the argument obeys the Natural
protocol.

Usually all the possibilities are covered by a superclass. For example, even though message size
could be sent to a List or an Array, you can just draw a single edge to node Collection/size.
Sometimes you might have more then one outgoing edge per message—for example, if a message
could be sent to an Integer or a Fraction, but not to any Number.

5. If the method is not defined and not inherited from a superclass, the message is not understood,
and your program is broken.

Here are some tips about call graphs:

• If you have a cycle in the graph, it represents a potential recursion. Be sure that on every
trip through the cycle, some argument or some receiver is getting smaller, or that the algorithm is
making progress in some other way. For example, my code for * on class Natural can sometimes
send the * message to a natural number, but on every trip through this cycle, the receiver of * gets
smaller (by a factor of 𝑏).

• Have a goal in mind, and ignore messages that are unrelated to the goal. For example, if you are
building a call graph to study addition, you probably don’t have to include the max: message.

• Loops and conditionals are technically message sends, but I urge you to simplify your call graph
by simply assuming that all the code is (eventually) executed.

5If you encounter a class method, just call the message something like “class method new,” and proceed as you would otherwise.

15

• A call graph can help with unit testing: you want to make sure that every solid edge is exercised
by some unit test.

• Like any other analysis technique, call-graph analysis is worth it only when you have a problem.
You have an infinite recursion? Or you don’t understand how the methods are supposed to work
together? Build a call graph. Otherwise, continue to apply your standard design process, and
everything will be fine.

A final note: not all of our TAs have used call graphs before. You may be learning together.

Extra credit
Seamless bignum arithmetic is an accomplishment. But it’s a long way from industrial. The extra-credit
problems explore some ideas you would deploy if you wanted everything on a more solid foundation.

Speed variations. For extra credit, try the following variations on your implementation of class Natural:

1. Implement the class using an internal base 𝑏 = 10. Measure the time needed to compute the first
50 factorials. And measure the time needed to compute the first 50 Catalan numbers.

The Catalan numbers, which make better test cases than factorial, are defined by these equations
(from Wikipedia):

𝐶0 = 1 𝐶𝑛+1 =
𝑛

∑
𝑖=0

𝐶𝑖 ⋅ 𝐶𝑛−𝑖

2. Determine the largest possible base that is still a power of 10. Explain your reasoning. Change
your class to use that base internally. Measure the time needed to compute the first 50 factorials,
and also the time needed to compute the first 50 Catalan numbers.

3. In both cases, measure the additional time required to print the numbers you have computed.

4. Specialize your 𝑏 = 10 code so that the decimalmethod works by simply reading off the decimal
digits, without any short division. Measure the improvement in printing speed.

5. Finally, try a compromise, like 𝑏 = 1000, which should use another specialized decimal method,
making both arithmetic and decimal conversion reasonably fast. Can this implementation beat the
others?

6. For subtraction, Implementing sub:withDifference:ifNegative: with a private method mi-
nus:borrow: requires you to compare the receiver and argument since minus:borrow: should
only be called to compute non-negative differences. Doing both the comparison and the subtrac-
tion redundantly traverses the receiver and argument representations. Convert the minus:borrow:
algorithm to a CPS style in a method called minus:borrow:withDifference:ifNegative: that
takes a success and failure continuation so that sub:withDifference:ifNegative: does not need
to do the comparison. Measure the time difference between subtractions using these two imple-
mentations for big number subtractions.

Write up your arguments and your measurements in your README file.

16

Long division. Implement long division for Natural and for large integers. If this changes your argument
for the largest possible base, explain how. For the algorithm, see Per Brinch Hansen, Multiple-length
Division Revisited: a Tour of the Minefield. Software—Practice & Experience, 24(6): 579-601.

Space costs. Instrument your Natural class to keep track of the size of numbers, and measure the space
cost of the different bases. Estimate the difference in garbage-collection overhead for computing with the
different bases, given a fixed-size heap.

Representation comparison. For the truly dedicated, implement both the array and subclass representa-
tions, then compare their speed:

• Do experiments that enable you to predict roughly how much slower the subclass representation is.

• Explore the computation so you can explain why the subclass representation is slower. You expla-
nation should be quantitative; count messages.

Pi (hard). Use a power series to compute the first 100 digits of pi (the ratio of a circle’s circumference
to its diameter). Be sure to cite your sources for the proper series approximation and its convergence
properties. Hint: I vaguely remember that there’s a faster convergence for pi over 4. Check with a
numerical analyst.

What and how to submit: Individual problem
Submit these files:

• A README file containing the names of the people with whom you collaborated

• A file frac-and-int.smt showing whatever definitions you used to do exercise~36(a). It probably
sends message addSelector:withMethod: to one or more of these classes: Fraction, Integer,
and SmallInteger. And it most definitely includes at least three unit tests.

Please identify your solution using conspicuous comments, e.g.,

;;
;;;;
;;;; Solution to Exercise XXX
(class Array ...
)

As soon as you have the files listed above, run submit105-small-solo to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

What and how to submit: Pair problems
Submit these files:

• A README file containing

– The names of the people with whom you collaborated
– The numbers of the exercises you worked (including any extra credit)
– Narrative and measurements to accompany your extra-credit answers, if any

17

• A file bignum.smt showing your solutions to exercises 37 and 38. This file must work with an
unmodified usmalltalk interpreter. Therefore if you use results from exercise~36(a), or any other
problem, you will need to duplicate those modifications in bignum.smt.

Also, the file must load without any warnings.

If you wish, you may include unit tests in this file, provided the result meets these requirements:

– Every included unit test must pass.
– The entire file must load in under 2 CPU seconds.

Longer-running unit tests can go into file longtests.smt.

• A file mixnum.smt showing your solution to exercise~39. This file should incorporate your other
solution by reference, using the line

(use bignum.smt)

at the beginning. Do not duplicate code from bignum.smt.

This file must also load without any warnings.

If you wish, you may include unit tests in this file, provided the result meets these requirements:

– Every included unit test must pass.
– The entire file must load in under 2 CPU seconds.

Longer-running unit tests can go into file longtests.smt.

• Optionally, a file longtests.smt containing as many unit tests as you wish. There is no limit on
the amount of time these tests may take.

• A file bigtests.smt containing your solution to exercise T.

• A file small-followup.md containing your (joint) answers to exercise F.

As soon as you have the files listed above, run submit105-small-pair to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

How your work will be evaluated
All our usual expections for form, naming, and documentation apply. But in this assignment we will
focus on clarity and structure. To start, we want to be able to understand your code.

Exemplary Satisfactory Must Improve

Clarity • Course staff see no more
code than is needed to solve
the problem.
• Course staff see how the
structure of the code
follows from the structure
of the problem.

• Course staff see
somewhat more code than
is needed to solve the
problem.
• Course staff can relate the
structure of the code to the
structure of the problem,
but there are parts they
don’t understand.

• Course staff see roughly
twice as much code as is
needed to solve the
problem.
• Course staff cannot follow
the code and relate its
structure to the structure of
the problem.

18

Structurally, your code should hide information like the base of natural numbers, and it should use proper
method dispatch, not bogus techniques like run-time type checking.

19

Exemplary Satisfactory Must Improve

Structure • The base used for natural
numbers appears in exactly
one place, and all code that
depends on it consults that
place.
• Or, the base used for
natural numbers appears in
exactly one place, and code
that depends on either
consults that place or
assumes that the base is
some power of 10
• No matter how many bits
are used to represent a
machine integer, overflow
is detected by using
appropriate primitive
methods, not by comparing
against particular integers.
• Code uses method
dispatch instead of
conditionals.
• Mixed operations on
different classes of numbers
are implemented using
double dispatch.
• Or, mixed operations on
different classes of numbers
are implemented by
arranging for the classes to
share a common protocol.
• Or, mixed operations on
different classes of numbers
are implemented by
arranging for unconditional
coercions.
• Code deals with
exceptional or unusual
conditions by passing a
suitable exnBlock or other
block.
• Code achieves new
functionality by reusing
existing methods, e.g., by
sending messages to super.
• Or, code achieves new
functionality by adding new
methods to old classes to
respond to an existing
protocol.
• An object’s behavior is
controlled by dispatching
(or double dispatching) to
an appropriate method of
its class.
• Unit tests are indented by
8 spaces.

• The base used for natural
numbers appears in exactly
one place, but code that
depends on it knows what it
is, and that code will break
if the base is changed in any
way.
• Overflow is detected only
by assuming the number of
bits used to represent a
machine integer, but the
number of bits is explicit in
the code.
• Code contains one
avoidable conditional.
• Mixed operations on
different classes of integers
involve explicit
conditionals.
• Code protects itself
against exceptional or
unusual conditions by using
Booleans.
• Code contains methods
that appear to have been
copied and modified.
• An object’s behavior is
influenced by interrogating
it to learn something about
its class.

• The base used for natural
numbers appears in
multiple places.
• Overflow is detected only
by assuming the number of
bits used to represent a
machine integer, and the
number of bits is implicit in
the value of some
frightening decimal literal.
• Code contains more than
one avoidable conditional.
• Mixed operations on
different classes of integers
are implemented by
interrogating objects about
their classes.
• Code copies methods
instead of arranging to
invoke the originals.
• Code contains case
analysis or a conditional
that depends on the class of
an object.

20

Exemplary Satisfactory Must Improve

21

	Overview
	Preliminaries
	Using the interpreter effectively
	Noting errors in the book

	Reading comprehension
	Individual Problem
	Pair problems: Bignum arithmetic
	Natural numbers
	Large (signed) integers
	Mixed arithmetic (large and small together)
	Testing
	Final followup

	Hints and guidelines
	How to write recursions that terminate
	Avoid common mistakes
	Simple coding mistakes
	Common mental mistakes

	Four diagnostic techniques
	Stack tracing
	Tools that analyze your code for potential faults
	Message tracing
	An analysis you can do by hand

	Extra credit
	What and how to submit: Individual problem
	What and how to submit: Pair problems
	How your work will be evaluated

