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Overview
To build systems at scale, we break them into modules, and we put abstraction barriers between the
modules. The most effective abstraction barrier we have is data abstraction. It’s a key element in
the design of systems implemented in Ada, C, C++, Eiffel, Go, Haskell, Java, and related languages.
Modules and abstract types are key mechanisms in Standard ML, which, not coincidentally, has one of
the most expressive and powerful system-level abstraction mechanisms ever created.

In this assignment, you will

• Practice using interfaces as they are found in ML, Java, and Go
• Learn about exploratory design by writing client code for an interface that is not yet implemented
• Write a client for an interface that has multiple implementations
• Revisit arbitrary-precision arithmetic, which you will see yet again in the last homework
• Learn something about two-player games of complete information

You’ll do this in two parts:

• In part one, you use an unknown implementation of natural numbers to implement signed integers
(exercise I).

• In part two, you implement an unsophisticated (yet unbeatable) computer opponent that can play
two-player games. You will also implement a two-player game. The computer opponent requires
careful attention to the design process but not a lot of code: in essence, it boils down to one carefully
crafted recursive function. The game will be your choice among three, most of which require less
thought and more code than the opponent.

You may do this work on your own or with a partner.

Note: Because you’re creating modules, not just functions, and you’re also learning some new tech-
nology, you’ll do a lot of reading before you write your first line of code. This experience makes the
assignment feel time-consuming, but overall, past students have reported spending the same amount
of time on this assignment as on other assignments.

Setup
The code in this handout is installed in /comp/105/lib. Your own code will be compiled using a spe-
cial script, compile105-sml, which is available on the servers via use comp105. This script does not
produce any executable binaries. Instead, it creates binary modules (“.uo files”) that you can load into
Moscow ML, as in load ”bignum”;. The script can compile all files or just a single file:

compile105-sml
compile105-sml bignum.sml
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Loading binaries into Moscow ML requires an additional argument to mosmlc and mosml, as in

mosml -I /comp/105/lib -P full

If anything surprises you, consult Appendix I below, which explains your options for compiling.

Dire warnings
Unless otherwise noted below, functions and constructs that were forbidden on earlier assignments remain
forbidden.

• Functions length, hd, and tl are still forbidden.

• The syntactic form open is still forbidden.

• Auxiliary functions at top level are still forbidden—but inside a module, you may define as many
auxiliary functions as you like.

In addition,

• ML’s hashtag syntax for record fields is forbidden. (It is non-idiomatic, and it doesn’t really have a
type.) To earn a passing grade, your code must not use #1, #2, #recommendation, #expected-
Outcome, or any other form of this syntax. Use pattern matching instead.

• Code must not contain bracket faults. Every file should pass sml-lintwithout errors or warnings.
Run sml-lint *.sml early and often. (The sml-lint program is also run by the submit scripts,
but if you wait until submission time, you’ll regret it.)1

Reading
For this homework, you will need to understand the ML Modules section of “Learning Standard ML.”
The book chapter on modules, chapter 9, is not included in your abridged edition—the language there is
a little too different from Standard ML. Instead of the book chapter, we recommend the sixth lesson on
program design: “Program design with abstract data types.”

Reading comprehension
Before starting the programming problems, answer the reading-comprehension questions for this module,
which you will find online. It is also OK to alternate between reading-comprehension questions and
related homework questions.

1If you copy a signature, sml-lint will complain. Don’t copy signatures.
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Arbitrary-precision signed integers
Standard ML’s primitive type int is limited to machine precision. If arithmetic on int results in a value
that is too large or too small to fit in one word, the primitive functions raise Overflow. In this part of the
homework, you will implement a true integer abstraction, called bigint, which never raises Overflow.
(The worst it can do is make your program run out of memory.)

Large integers are described by this interface:

signature BIGNUM = sig
type bigint
exception BadDivision (* contract violation for sdivmod *)

val ofInt : int -> bigint
val negated : bigint -> bigint (* ”unary minus” *)
val <+> : bigint * bigint -> bigint
val <-> : bigint * bigint -> bigint
val <*> : bigint * bigint -> bigint
val sdivmod : bigint * int -> { quotient : bigint, remainder : int }

(* Contract for ”short division” sdivmod, which is defined only on
*nonnegative* integers:

Provided 0 < d <= K and n >= 0,
sdivmod (n, d) returns { quotient = q, remainder = r }

such that
n == q /*/ ofInt d /+/ ofInt r
0 <= r < d

Given a negative n or d <= 0, sdivmod (n, d) raises BadDivision.

Given d > K, the program halts with a checked run-time error.
The constant K depends on the number of bits in a machine integer,
so it is not specified, but it is known to be at least 10.

*)

val compare : bigint * bigint -> order

val toString : bigint -> string

(* toString n returns a string giving the natural
representation of n in the decimal system. If n is
negative, toString should use the conventional minus sign ”-”.

And when toString returns a string containing two or more digits,
the first digit must not be zero.

*)

val invariant : bigint -> bool (* representation invariant---instructions below *)
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end

You will not build your implementation from scratch. Instead, you will use ML’s functor mechanism to
build on top of natural numbers. Natural numbers implement this interface:

signature NATURAL = sig
type nat
exception Negative (* the result of an operation is negative *)
exception BadDivisor (* divisor zero or negative *)

val ofInt : int -> nat (* could raise Negative *)
val /+/ : nat * nat -> nat
val /-/ : nat * nat -> nat (* could raise Negative *)
val /*/ : nat * nat -> nat
val sdivmod : nat * int -> { quotient : nat, remainder : int }

(* Contract for ”Short division” sdivmod:

Provided 0 < d <= K,
sdivmod (n, d) returns { quotient = q, remainder = r }

such that
n == q /*/ ofInt d /+/ ofInt r
0 <= r < d

Given a d <= 0, sdivmod (n, d) raises BadDivisor.

Given d > K, the program halts with a checked run-time error.
The constant K depends on the number of bits in a machine integer,
so it is not specified, but it is known to be at least 10.

*)

val compare : nat * nat -> order

val decimal : nat -> int list

(* decimal n returns a list giving the natural decimal
representation of n, most significant digit first.
For example, decimal (ofInt 123) = [1, 2, 3]

decimal (ofInt 0) = [0]
It must never return an empty list.
And when it returns a list of two or more digits,
the first digit must not be zero.

*)

val invariant : nat -> bool (* representation invariant---instructions below *)

end
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In this homework, you implement BIGNUM as a functor that takes an implementation of NATURAL as a
parameter (Exercise I).

Exercise I: Integers from natural numbers (30%)

Abstract data type: large integers. In file bignum.sml, define a functor BignumFn that takes as its
argument a structure Nmatching signature NATURAL, and returns as its result a structurematching signature
BIGNUM. Your functor should look like this:

functor BignumFn(structure N : NATURAL) :> BIGNUM
=

struct
... sequence of definitions here ...

end

Within the body of the functor, you refer to the representation of natural numbers as type N.nat, and you
call operations using the fully qualified names of the functions as in N./+/ (n, m).

ML syntax hint: The introduction form for the quotient/remainder record is

{ quotient = 𝑒1, remainder = 𝑒2 }

for any expressions 𝑒1 and 𝑒2.

The elimination form is

let val { quotient = 𝑞, remainder = 𝑟 } = …

for any patterns 𝑞 and 𝑟. (In typical usage, 𝑞 and 𝑟 will both be names.) You can see some examples in
the section on implementing short division in “Mastering Multiprecision Arithmetic”.

How big is it? My implementation is about 70 lines, of which about 15 are blank.

Representation, abstraction function, and invariant

What you need to know about an integer is how big it is and whether it is negative: its magnitude and
sign. Within that constraint, you have your choice of representations. Several representations will work;
here are three good ones:

• Represent the magnitude and sign independently.

• Encode the sign in a value constructor, and apply the value constructor to the magnitude, as in
NEGATIVE mag.

• Define three value constructors: one each for positive numbers, negative numbers, and zero.
A value constructor for a positive or negative number is applied to a magnitude. The value
constructor for zero is an integer all by itself.

Each of these representations has its advantages, and they all work. Pick what you think will make your
job easy.

Document your representation by writing down the abstraction function and invariant:

• Define the abstraction function in a comment. We recommend defining the abstraction function
using algebraic laws. The right-hand sides should use standard arithmetic notation for operations
on the mathematical integers.
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• Write the invariant in an ML function named invariant of type bigint -> bool, located inside
the module. Because it is located inside the module, the invariant function has complete access
to the representation of bigint.

The invariant function must typecheck. You may unit-test it if you wish, but you don’t have to.

It is OK if the invariant function for bigint is not interesting—depending on your chosen rep-
resentation, it might even be a function that returns true on every input.

Put the abstraction function and invariant inside your BignumFn functor, right after the definition of
type bigint.

Two mild warnings

This abstraction has just one pitfall: the integer zero is likely to have two or even three different represen-
tations. You must make it impossible for client code to distinguish them. That is, it must be impossible
for anyone to write a program that uses the BIGNUM interface and can tell one representation of zero from
another. The risks are greatest in exported functions compare and toString.

There is also a minor pitfall: if an adversary hands you the most negative integer (see Int.minInt), its
magnitude cannot be represented as a machine integer. For example, if a machine integer had only four
bits, it would represent integers in the range from −8 to 7, and if someone were to ask you to convert −8,
you wouldn’t be able to represent positive 8 as a machine integer.

To compute the magnitude of a negative integer safely, use the following steps:

1. Add one to the negative integer (from −8, this would give −7)
2. Negate the sum (this would give 7, no worries!)
3. Convert the result to nat
4. Add one to the nat (no worries; nat can be arbitrarily large!)

You would be wise to write a test case involving Int.minInt.

Recommendation: infix operators

Inside your BignumFn functor, I recommend you change the “fixity” of the major operators so you can
write both calls and definitions using infix notation. You can change the fixity using these declarations:

infix 6 <+> <->
infix 7 <*> sdivmod

If you also want to use the operations from the NATURAL interface as infix operators, try something like
this:

val /+/ = N./+/
val /-/ = N./-/
val /*/ = N./*/

infix 6 /+/ /-/
infix 7 /*/

Following these declarations, you can write both definitions and calls using infix notation:

fun thing1 <+> thing2 = ...
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... mag1 /+/ mag2 ...

Guidance: algebraic laws

Arithmetic on signed integers requires algorithms you may not have thought about since elementary
school. The heavy lifting is done in the implementation of natural numbers (below); the integer ab-
straction mostly has to get the signs right. To help you get signs right, we provide some algebraic laws.
In the laws, magnitudes appear as variables N and M; signs appear as symbols + and -, and the BIGNUM and
NATURAL operations are written using infix notation.

• Multiplication:

+N <*> +M == +(N /*/ M)
+N <*> -M == -(N /*/ M)
-N <*> +M == -(N /*/ M)
-N <*> -M == +(N /*/ M)

• Addition:

+N <+> +M == +(N /+/ M)
+N <+> -M == +(N /-/ M) == -(M /-/ N)
-N <+> +M == -(N /-/ M) == +(M /-/ N)
-N <+> -M == -(N /+/ M)

Warning: As shown in the laws, adding integers of opposite signs requires subtracting magni-
tudes. Unless the magnitudes are equal, only one of the subtractions will work—the other will
raise exception N.Negative.

• Subtraction can be implemented by changing the sign of the subtrahend and adding the result to
the minuend:2

+N <-> +M == +N <+> -M
... and so on ...

• Short division is defined only on nonnegative integers, and it just delegates to N.sdivmod.

• When “signed zeroes” are involved, comparison becomes tricky. A call to comparemustn’t be able
to distinguish a “plus zero” from a “minus zero.” That is, the following algebraic law must hold:

compare (+0, -0) == EQUAL

Here are some more general laws:

compare (+N, +M) = N.compare (N, M)
compare (-N, -M) = N.compare (M, N) (* order is swapped *)
compare (-N, +M) = LESS, provided N is not 0 or M is not 0
compare (+N, -M) = GREATER, provided N is not 0 or M is not 0

Guidance: short division

If it gets a divisor that’s too big, function sdivmod is allowed to fail with a checked run-time error. How
big is too big? Anything that makes division on natural numbers fail. In other words, your BignumFn

2Words like “subtrahend” and “minuend” are useful, but I always have to look them up.
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only has to check the sign of the dividend and divisor; it doesn’t have to worry about the magnitude of
the divisor.

Related reading: Using the information in the ML learning guide, read about ML signatures, structures,
and functors.

Testing your arithmetic
Signed integers are much less tricky than natural numbers, and they don’t require extensive testing. Make
sure every line of code you write is exercised by some test, and you’ll be good to go.

Testing is optional, but if you’re keen to do it, I provide some computer-generated tests for signed in-
tegers. These tests can be compiled using compile105-sml, but they’re useful only if you also have an
implementation of natural numbers. Such an implementation can be thrown together based on the model
solutions to the ML homework—as long as you can implement decimal, you can just skip sdivmod. If
you create an implementation of NATURAL that uses the representation from the ML
homework, you are welcome to share it with other students.

Once you have the modules you need, you can load them into Moscow ML and run the tests:

- load ”natural”;
- load ”bignum”;
- load ”bignum-tests”;
- structure B = BignumFn(structure N = Natural);
- structure BT = UnitTestsFun(structure Bignum = B);
- BT.run();

Avoid a common mistake
It’s a surprisingly common mistake to write a BIGNUM implementation of ofInt that doesn’t work with
negative inputs.

It’s a common mistake to think you need to write code in BignumFn to deal with K. The K in the division
contract is dealt with entirely in the implementation of natural numbers. All you need to do is catch the
exception from NATURAL and raise the exception from BIGNUM.

Two-player games
Data abstraction supports reuse. In this part of the assignment, you’ll reuse code for an algorithm that
can play a game. Because the game is abstract, your algorithm will be capable of playing any finite,
two-player game of complete information. It will be tested on several!

• The game abstraction is defined by an interface (the ML signature GAME). This interface mixes
abstract data types with “manifest” data types (exposed representations).3

• You’ll implement the GAME interface. You’ll pick one of the games on the games page, and you’ll
choose the representations of the game’s key abstractions.

• You will reuse my code to play your game against a computer opponent.
3The abstraction is based on a design by George Necula.
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• You will build your own computer opponent, the Abstract Game Solver, which will able to play
any GAME.

An abstraction of two-player games
The data in a two-player game are as follows:

• A player may be either X or O.
• An outcome is either “one player wins” or “the game ends in a tie”.
• A state is abstract.
• A move is abstract.

Every game is a state machine: the game starts in some initial state, and the game is played by transition-
ing from state to state. Each transition is triggered by a move. When the game reaches a final state, the
game is over. The GAME interface enables software not only to drive the state transitions, but also to ask
such questions as “what moves are legal in this state?”, “is the game over?”, and “whose turn is it?”

Manifest (exposed) types: Players and outcomes

The representations of players and outcomes are exposed. (In ML, exposed types are called “manifest”.
In other languages, they are “public.”) The types are exposed by the signature PLAYER:

signature PLAYER = sig
datatype player = X | O (* 2 players called X and O *)
datatype outcome = WINS of player | TIE

val otherplayer : player -> player
val unparse : player -> string
val outcomeString : outcome -> string

end

The signature PLAYER also includes some functions that compute with players and outcomes. Signature
PLAYER is implemented by a structure called Player:

structure Player :> PLAYER = struct
datatype player = X | O
datatype outcome = WINS of player | TIE

fun otherplayer X = O
| otherplayer O = X

fun unparse X = ”X”
| unparse O = ”O”

fun outcomeString TIE = ”a tie”
| outcomeString (WINS p) = unparse p ^ ” wins”

end

To refer to Player types, constructors, and functions, youwill use the “fully qualified”MLmodule syntax,
as in the examples Player.otherplayer p, Player.X, Player.O, and Player.WINS p. The last three
expressions can also be used as patterns.

10



First abstraction and abstract type: Moves

The move abstraction helps communicate gameplay to a human player. Functions visualize, prompt,
and parse can respectively show, request, and understand moves.

signature MOVE = sig
type move (* A move---perhaps an (x,y) location *)
exception Move (* Raised for invalid moves *)

(* CREATOR *)
val parse : string -> move

(* Converts the given string to a move; If the string
doesn't correspond to a valid move, parse raises Move *)

(* OBSERVERS *)
val prompt : Player.player -> string

(* A request for a move from the given player *)
(* Example: ”What square does player O choose?” *)

val visualize : Player.player -> move -> string
(* A short string describing a move.

Example: ”Player X picks up ...”.
The string may not contain a newline. *)

end

Second abstraction: a game (with abstract states and moves)

A game implements signature GAME. This signature (and its contract) subsumes the contracts for the ab-
stract types move and state, as well as all the exported functions. The game state includes complete
information about a game in progress, even “invisible” state like whose turn it is. Each operation’s con-
tract is expressed in terms of how it affects states.

The state abstraction is immutable—if a mutable representation is chosen, it must be impossible for a
client to tell if a mutation has taken place.

signature GAME = sig
structure Move : MOVE
type state

(* CREATORS *)

val initial : Player.player -> state
(* Initial state for a game in which

the given player moves first. *)

(* PRODUCERS *)

val makemove: state -> Move.move -> state
(* Returns the state obtained by making the

given move in the given state. Raises Move.Move
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if the state is final or if the given move is not
legal in the given state. *)

(* OBSERVERS *)

val visualize : state -> string
(* A string representing the given state.

The string must show whose turn it is,
and it must end in a newline. *)

val whoseturn : state -> Player.player
(* Given a _non-final_ state, returns the player

whose turn it is to move. When given a
final state, behavior is unspecified. *)

val isOver : state -> bool
(* Tells if the given state is final. *)

val outcome : state -> Player.outcome option
(* When given a final state, returns SOME applied to the outcome.

When given a non-final state, returns NONE. *)

val legalmoves : state -> Move.move list
(* Lists all moves that are valid inputs to `makemove` in the

given state. The list is empty if and only if the given
state is final. *)

end

This interface is not minimal. For example, there are three different ways to tell if a game is over. They
must all agree!

Third abstraction: a game solver

The GAME interface supports a computer opponent based on exhaustive search: an abstract game
solver (AGS). An AGS searches possible moves until it finds a move that leads to a win. If it can’t find
such a move, it tries to force a draw.

The AGS knows nothing about the rules of any game, or even whose turn it is—it knows only which
moves can be made in which states, which states are final, and what outcomes are good. It gets all that
information from the GAME interface. Provided there aren’t too many states, the AGS makes a worthy
opponent.

The AGS interface exports just one function: all a client can do is present a state and ask the AGS what
the current player (whose turn it is) should do in that state. If there are any legal moves, the AGS rec-
ommends one. And it always says what final outcome is expected, assuming that its recommendation
(if any) is followed and that no player ever makes a suboptimal move.

In addition to the advice function, the AGS contains a complete copy of the game itself! In effect, the
AGS extends the Game with new functionality. In ML, this idiom is common.
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signature AGS = sig
structure Game : GAME
type advice = { recommendation : Game.Move.move option

, expectedOutcome : Player.outcome
}

val advice : Game.state -> advice
(* Given a non-final state, returns a recommended move,

plus the expected outcome if the recommendation is followed.
Given a final state, returns no recommendation,
plus the outcome that has already been achieved. *)

end

The cost model of an AGS is that it tries all possible combinations of moves. AGS functions can be slow.
Wait patiently.

Two species of advice?!

The AGS interface defines a type advice and also a value advice. This apparent duplication is possible
because Standard ML uses one environment (Γ) for values and a different environment (Δ) for type
abbreviations and type constructors. So advice stands for both a type (in Δ) and a value (the function,
in Γ). This idiom is common: the type is what’s really important, and the function is named for the
type, which is what the function returns.

Exercise G: A game (30%)
Implementing a game will solidify your understanding of the GAME interface, which in turn will help you
build a good solver. You will choose from these three games:

• In pick up the last stick, there are sticks on a table, and players alternate taking 1, 2, or 3 sticks.
The player who picks up the last stick wins.

• In take the last coin, there is a mix of coins on the table, and players alternate taking coins, but on
any turn, all the coins taken have to be of the same denomination. The player who takes the last
coin wins.

• In tic-tac-toe, players alternate marking squares on a three-by-three grid. The first player to mark
three squares in a row wins. (If all squares are marked but neither player has three in a row, the
game ends in a tie.)4

Each game is more interesting to play (and more time-consuming to implement) than the game before it.

G. Implement a two-player game. Choose a game and implement one of the following:

• Functor SticksFun in file sticks.sml
• Structure Coins in file coins.sml
• Structure TTT in file ttt.sml

Detailed instructions, rules for play, and hints for implementation can be found on the games page. The
instructions include the strings that must be recognized by Move.parse. You need these instructions!

4If you want to tackle Tic-Tac-Toe, a good representation of the grid can be created using Standard ML’s Vector module.
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All three games can be played on the departmental servers: run coins, sticks, or ttt.5 In the first two
games, if you play perfectly, you can beat my AGS. In the third, the best you can do is tie.

What to watch out for. We’ll test your code to see if your observers provide a consistent picture of a
game’s state. For example, if your implementation says that player X won, it had better also say that the
game is over.

How big are they? Not counting embedded unit tests, my implementations look like this:

• My pick up the last stick is 51 lines of Standard ML, but 13 of those lines are blank.

• My take the last coin is 107 lines of code and comments, but 23 of those lines are blank. Most of
the length is in visualize (11 lines) and in makemove (12 lines). Depending on what representa-
tions you choose, your hot spots will be different.

• My tic-tac-toe is 89 lines of Standard ML, of which 5 are blank. Even though it’s shorter than my
coins game, it was more tiresome to write. (A less clever implementation written by a student at
CMU is 144 lines.)

Related reading: The contract of the GAME signature, the instructions for the game of your choice on the
games page, and the section on ML modules in the ML learning guide.

Test your game with my AGS
Once you’re satisfied with your game, you can test it with my AGS. You’ll load a functor I’ve written that
instantiates my AGS with your game, then runs the “play manager” with that AGS. Using Moscow ML
interactively, follow these steps:

1. Start mosml with the options -I /comp/105/lib -P full.
2. Load .uo files with the load command.
3. Use functor application to create a player.
4. Play interactively.

The steps are illustrated by this the annotated transcript below, which uses take the last coin as an exam-
ple:6

nr@homedog /tmp> mosml -I /comp/105/lib -P full
Moscow ML version 2.10-4 (Tufts University, April 2017)
Enter `quit();' to quit.
- load ”playvsnr”; <---- play manager with my AGS
> val it = () : unit
- load ”coins”; <---- your game
> val it = () : unit
- structure P = PersonVsAgs(structure Game = Coins);
> structure P : {val go : unit -> outcome}
- P.go ();
Player X sees 4 quarters, 10 dimes, and 7 nickels.
What coins does player X take?

If you want to watch the computer play both sides, try this:
5All binaries can be found in /comp/105/bin.
6If you choose the sticks game, you’ll have to instantiate your functor SticksFun with val N = 14.

14

games.html


nr@homedog /tmp> mosml -I /comp/105/lib -P full
Moscow ML version 2.10-4 (Tufts University, April 2017)
Enter `quit();' to quit.
- load ”playvsnr”; <---- play manager with my AGS
> val it = () : unit
- load ”coins”; <---- your game
> val it = () : unit
- structure C = AgsVsAgs(structure Game = Coins);
> structure C : {val go : unit -> outcome}
- C.go ();
Player X sees 4 quarters, 10 dimes, and 7 nickels.
Player X takes [redacted]

With this experience in hand, you’re ready for the final module of the assignment: the AGS itself.

Exercise A: Abstract Game Solver (40%)
Given a state, an AGS should advise us on the best move for the player whose turn it is.

• If the AGS finds a move that enables the current player to force a win, it’s done: it recommends
that move. It doesn’t consider other moves.

• If AGS can’t find a winning move, the next best move is one that forces a tie. (In the sticks and
coins games, ties are impossible, but ties are a common feature of tic-tac-toe and other games.)

• If the AGS can’t win or tie, then all moves lead to losses, and to the AGS, they are all equally bad.
It recommends an arbitrary move.

The AGS considers legal moves one by one—but to compute the consequences of a move, the AGS calls
itself recursively. So the search can be exponential in the length of the game. If you’ve ever studied AI or
search algorithms, you may be aware that there are lots of fancy tricks you can use to cut down the size
of a search like this. Ignore all of them. Implement the advice function in the simplest way possible.

Because the state type is abstract, the AGS can’t break down the state by forms of data. What the AGS
can and should do is break down observations. I recommend breaking down these observations:

• Because the contract of advice is itself broken down by cases (one for a final state and one for a
non-final state), I recommend that function advice begin by calling an observer that tells it whether
the given state is final.

• For the case of a non-final state, I recommend breaking the legal moves down by cases. Because
the legal moves are a nonempty list, you will have two main cases: a singleton list, or a value
move :: moves, where moves is also a nonempty list.7

– If there is just one legal move, the AGS must recommend that move (and whatever outcome
the move leads to).

– If there is more than one legal move, but the first move leads to a perfect outcome (win for
the player whose turn it is), the AGS can and should recommend that move, without ever
considering the remaining moves.

7To make the pattern matching exhaustive, the compiler also requires you to handle the empty list. Since an empty list is
impermissible according to the contract for legalmoves, I recommend that you handle this case with an expression like “let
exception ContractViolation in raise ContractViolation end.”
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– Otherwise the AGS must choose the best move from among those available.

This is almost a job for argMax; see the third section on implementation tactics.

Tactics for the implementation of the AGS

I’ve implemented the AGS in three different ways:

1. Continuation-passing style
2. Direct recursion
3. Recursion using something like argMax

Continuation-passing style

This is a search problem, so I was tempted to use continuation-passing style. But there’s no backtracking,
and I needed at least three continuations (one for each possible outcome). I got no benefit from CPS, and
the code’s a mess. Not recommended.

Direct recursion

The key part of advice is the search through a nonempty list of legal moves. The design process applies
beautifully. Imagine an internal function bestAdvice that takes a nonempty list of moves and returns the
advice that is best for the current player. That function might have something like these “mock algebraic
laws”:

• bestAdvice [move] ≡ recommend move
• bestAdvice (move :: moves) ≡ recommend move, when move leads to a win for the current

player
• bestAdvice (move :: moves)≡ recommend the better of “advise move” and bestAdvice moves,

when move does not lead to a win for the current player

I found it useful to implement helper functions with these types:

advice -> outcome Extract the outcome from an advice record
move -> advice Advice after making the given move
outcome -> bool Tells if the current player wins
outcome * outcome -> bool Tells if the first outcome is better for the current player
advice * advice -> advice Returns whichever advice is better for the current player

The comparison of the outcomes is annoying, but the rest of the code is nice. Recommended.

Recursion using something like argMax

The key part of advice is the search through a nonempty list of legal moves. Each move leads to a
configuration, and each configuration can be asked recursively for advice. The AGS should choose the
move that maximizes the value of the advice.

This is almost a job for argMax. But there’s an issue: argMax applies the value function to every possible
move. But when the value function sees a winning move, we shouldn’t look any further, because a
winning move has the highest possible value.
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I defined a version of argMax that stops when it hits a ceiling. Because it has to be efficient, it has a type
and a contract from hell:

val argAtCeilingOtherwiseMax :
('a -> 'b) -> ('b -> int) -> int -> 'a list -> 'a * 'b

(* Calling `argAtCeilingOtherwiseMax f ceiling xs`
finds an `x` in `xs` such that `f x` is at least
as big as `ceiling`, or if no such `x` exists,
an `x` that makes `f x` as big as possible.
The call returns the pair `(x, f x)`.

Function `argAtCeilingOtherwiseMax` guarantees
to call `f` at most once on every element of `xs`.

The list `xs` must be nonempty.
*)

This function is not pleasant to write or to talk about. But with argAtCeilingOtherwiseMax in place,
my implementation of advice needs only these additional helper functions:

advice -> outcome Extract the outcome from an advice record
move -> outcome Outcome after making the given move (defined by composition)
outcome -> int Value (to the current player) of the given outcome

The resulting advice function is super simple, super satisfying. Recommended with reservations.8

Implement an Abstract Game Solver. Choose one of the implementation tactics and write an AGS in
file ags.sml. Use the following template:

functor AgsFun (structure Game : GAME) :>
AGS

where type Game.Move.move = Game.Move.move
and type Game.state = Game.state

= struct
structure Game = Game

... helper functions, if any ...

fun advice state = ...
end

The where type declarations are annoying: they look tautological, but they’re not. Complain to Dave
MacQueen and Bob Harper.

Hints:

• ML syntax: The introduction form for the advice record is
8Function argAtCeilingOtherwiseMax is gnarly, and I can’t see a way around it.
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{ recommendation = 𝑒1, expectedOutcome = 𝑒2 }

for any expressions 𝑒1 and 𝑒2.

The elimination form is

let val { recommendation = 𝑥1, expectedOutcome = 𝑥2 } = …

for any names 𝑥1 and 𝑥2.9

• Do not assume that players take turns, that the last player to move always wins, that there are
no ties, or any other property of the game you have implemented. Use whoseturn and outcome
instead. We will test your AGS on games that are quite different, including Connect 3 and others.
Even a solitaire!

• Unit tests are useful, but they are hard to write inside an AGS. If you want unit tests, write them for
a particular game. Start with a known configuration and check the two fields returned by advice.
For example, if a computer player sees a table with only one denomination of coin, its best move
is to take all the coins and win. Unit tests like these are game-specific and will have to go into
another module. Put them in file ags-tests.sml.

To test your AGS, restart Moscow ML and load ”ags”;. As long as there is an ags.uo in the current
working directory, Moscow ML will prefer it to the one we provide in /comp/105/lib. You’ll be able to
run your unit tests. You can also run game-playing integration tests designed for your AGS. You can do
this with your own game or one of ours.

How big is it? My CPS version takes about 65 lines of Standard ML. My direct recursion takes under
40 lines. My version using argAtCeilingOtherwiseMax takes only 25 lines, but a module exporting
atLeastNOrBestOffer takes another 20 lines.

Related reading:

• The section on ML modules in the ML learning guide.
• The model solutions for nonempty lists on the scheme homework, including the model solution for

arg-max in μScheme

A common mistake to avoid when debugging your AGS

If you build a simple AGS that fits in 40 lines of code, it is not going to try to fool you: if the AGS
cannot force a win, it will pick a move more or less arbitrarily. A simple AGS has no notion of “better”
or “worse” moves; it knows only whether it can force a win.

Here’s the common mistake: you’re playing against the AGS, and it makes a terrible move. You think
it’s broken. For example, suppose you are playing Tic-Tac-Toe, with you as X, the AGS as O, and play
starting in this position:

-------------
| | O | |
-------------
| | X | |
-------------
| | | |
-------------

9Please choose good names!
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You place your X in the upper left corner. The AGS does not move lower right to block you. Is it broken?
No—the AGS recognizes that you can force a win, and it just gives up.

If you want an AGS that won’t give up, for extra credit you can implement an aggressive version that will
delay the inevitable as long as possible. An aggressive AGS searches more states so that it can (a) win as
quickly as possible and (b) hold on in a lost position as long as possible.

How big is it? My aggressive AGS is under 60 lines of Standard ML code.

Test your AGS with my game
Testing your AGS with one of my games requires a slightly different play manager. As an example, I test
an AGS with the binary implementation of Tic-Tac-Toe from file /comp/105/lib/ttt.uo:

nr@homedog /tmp> mosml -I /comp/105/lib -P full
Moscow ML version 2.10-4 (Tufts University, April 2017)
Enter `quit();' to quit.
- load ”ags”; <--- your AGS
> val it = () : unit
- load ”ttt”; <--- my game
> val it = () : unit
- load ”playvsags”; <--- play manager with no AGS
> val it = () : unit
- structure TTTAgs = AgsFun(structure Game = TTT);
> structure TTTAgs : ...
- structure P = PersonVsMyAgs(structure Ags = TTTAgs);
> structure P : {val go : unit -> outcome}
- P.go();
-------------
| | | |
-------------
| | | |
-------------
| | | |
-------------
Player X is to move

Square for player X?

If you want to test your own AGS with our Tic-Tac-Toe, our parser recognizes squares upper left,
upper middle, upper right, middle left, middle, middle right, lower left, lower middle, and
lower right, as well as abbreviations ul, um, ur, ml, m, mr, ll, lm, and lr.

Extra Credit

75c option. Implement a game that is like take the last coin, but that has an additional rule: if you take
exactly 75 cents’ worth of coins, you have the option to move again immediately, before your opponent
takes a turn. (As implied by the word “option,” the extra move is a choice—a player is never required
to exercise the option.) If you choose this extra credit, document your code with an explanation of what
you chose to change and why.
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Game theory. Professor Ramsey challenges you to a friendly game of “pick up the last stick,” with one
thousand sticks. The stakes are a drink at the Tower Cafe. As the person challenged, you get to go first.
Should you accept the challenge, or should you insist, out of deference to the professor’s age and erudition,
that the professor go first? Justify your answer.

More. Implement a second game from the approved list.

Even more. Implement all three games on the approved list.

Four. Implement Connect 4.

Aggression. If it can’t win, a standard AGS will “give up”—if every move leads to a loss, all moves
are equally bad, and it apparently moves at random. That’s because a standard AGS assumes that its
opponent is perfect. In the dual situation, when the standard AGS knows it can win no matter what, it
picks a winning move at random instead of winning as quickly as possible. This behavior may lead you
to suspect bugs in your AGS. Don’t be fooled.

Change your AGS so that it delays losing as long as possible, and when it can win, it wins as quickly as
possible. (For example, it should prune the search only if it finds a win on the next move.) One technique
is to assign each move a floating-point “benefit” (of type real) and to choose the move with the highest
benefit.

What and how to submit
Do not copy or submit the signatures provided with the assignment. Submit just the following files:

• A README file containing
– The names of the people with whom you collaborated
– A list of the exercises that you completed (including any extra credit)
– The name of the game you chose to implement for credit
– The names of additional games you might have implemented for extra credit
– Your answers to the Game Theory extra credit, if you choose to do it

• File bignum.sml, implementing the functor which builds signed integers on top of natural numbers
(your solution to exercise I)

• A file implementing your solution to exercise G, which must be one of the following:
– sticks.sml
– coins.sml
– ttt.sml

• File ags.sml, implementing your solution to exercise A
• File ags-tests.sml, containing any unit tests you may have written for your AGS (this file may

be empty)
• For exercises G and A, your coins.mlb, sticks.mlb, or ttt.mlb file. (You download this file;

for more information see Appendix I.)
• For exercises G and A, any other files you need in order to compile your game and your AGS

The ML files that you submit should contain all structure and function definitions that you write for this
assignment (including any helper functions that may be necessary), in the order they should be compiled.
Don’t include copies of files we provide; we already have them, and duplicates can confuse the compiler.

The files you submit must compile with Moscow ML, using the compile105-sml script we give you.
We will reject files with syntax errors or type errors. Your files must compile without warning messages.
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As soon as you have the files listed above, run submit105-sml-pair to submit a preliminary version of
your work. Keep submitting until your work is complete; we grade only the last submission.

Appendices

Appendix I: Two ways to compile Standard ML modules
The Definition of Standard ML does not specify where or how a compiler should look for modules in
a filesystem. And each compiler looks in its own idiosyncratic way. This issue should be handled by
compile105-sml, but if something goes wrong, this appendix explains not only what is going on but also
how to compile with MLton. (When the time comes to test your game, MLton is going to be important.)

Compiling Standard ML modules using Moscow ML

To compile an individual module using Moscow ML, you type

mosmlc -I /comp/105/lib -c -toplevel filename.sml

This command puts compiler-interface information into filename.ui and implementation information
into filename.uo. Perhaps surprisingly, either a signature or a structure will produce both .ui and .uo
files. This behavior is an artifact of the way Moscow ML works; don’t let it alarm you.

If your module depends on another module, you will have to mention the .ui file on the command line
as you compile. For example, a BignumFn functor depends on both NATURAL and BIGNUM signatures.
If BignumFn is defined in bignum.sml, NATURAL is defined in natural-sig.sml, and BIGNUM is defined
in bignum-sig.sml, then to compile BignumFn you run

mosmlc -I /comp/105/lib -toplevel -c natural-sig.ui bignum-sig.ui bignum.sml

The script compile105-sml knows about the files that are assigned for the homework, and in most situa-
tions it inserts the .ui references for you.

Calling mosmlc produces a bignum.uo file. The .uo files are good for two things:

• When you are debugging, you’ll can load compiled modules into the interactive system, using
load. For example,

: homework: mosml -I /comp/105/lib -P full
Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter `quit();' to quit.
- load ”bignum”;
> val it = () : unit

Once you load a module, you cannot recompile it and reload it later. Loading it again has no
effect, even if the code has changed; you have to start Moscow ML over again.

• You can use mosmlc to link a bunch of .uo files together to form an executable binary. For example,
the interactive game player can be built like this:

mosmlc -I /comp/105/lib -toplevel -o games \
player-sig.uo player.uo move-sig.uo \
game-sig.uo ags-sig.uo play-sig.uo \
slickttt.uo ags.uo aggress.uo coins.uo \
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four.uo peg.uo mrun.uo

Order matters; for example, I have to put player.uo after player-sig.uo because the Player
structure defined in player.sml uses the PLAYER signature defined in player-sig.sml.

Compiling Standard ML to native machine code using MLton

If your games are running too slow, compile them with MLton. MLton is a whole-program compiler that
produces optimized native code. Because of its superior error messages, MLton can be worth using on
other codes, too.

To use MLton, you list all your modules in an MLB file, and MLton compiles them at one go. If you
want to try MLton on your own codes, download file sml-homework.mlb, then compile with

mlton -verbose 1 sml-homework.mlb

You can then run any Unit tests with ./sml-homework.10

More information about MLton is available on the man page and at mlton.org.

If you want to try this with the coins game, download files coins.mlb and runcoins.sml, and then
compile with

mlton -output coins -verbose 1 coins.mlb

(You can also download and compile sticks.mlb, runsticks.sml, ttt.mlb, and runttt.sml.)

Because MLton requires source code, you will be able to use it only after you will have finished your own
AGS.

10The mlton-with-unit script we’ve been using won’t work here, because it’s limited to one source file at a time.
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Appendix II: How your work will be evaluated
Program structure

We’ll be looking for you to seal all your modules. We’ll also be looking for the usual hallmarks of good
ML structure.

Exemplary Satisfactory Must Improve

Structure • All modules are sealed
using the opaque sealing
operator :>
• Code uses basis functions
effectively, especially
higher-order functions on
list and vector types.
• Code has no redundant
case analysis
• Code is no larger than is
necessary to solve the
problem.

• Most modules are sealed
using the opaque sealing
operator :>
• Code uses the familiar
functions, but misses
opportunities to use
unfamiliar functions like
Vector.tabulate.
• Code has one redundant
case analysis
• Code is somewhat larger
then necessary to solve the
problem.

• Only some or no modules
are sealed using the opaque
sealing operator :>
• A module is defined
without ascribing any
signature to it (unsealed)
• Code misses
opportunities to use map,
fold, or other familiar
HOFs.
• Code has more than one
redundant case analysis
• Code is almost twice as
large as necessary to solve
the problem.

Correctness and performance

We’ll look to be sure your code meets specifications, and that the performance of your AGS is as good
as reasonably possible.

Exemplary

Satisfactory

Must improve

Correctness

• Game code fulfills the contracts specified in the GAME and MOVE signatures. In particular, every
observer and producer presents a consistent view of whether the game is over.

• AGS code makes no additional assumptions about the implementations of Player, Move, or Game.

• Game code fulfills the contracts specified in the GAME and MOVE signatures, except that it permits
illegal moves.

• Game code fulfills the contracts specified in the GAME and MOVE signatures, except it sometimes
raises the wrong exception.

• Game code violates one of its contracts.

• AGS code assumes that players take turns.

Performance

23

https://www.cs.tufts.edu/cs/105/handouts/redundant-ml-cases.pdf
https://www.cs.tufts.edu/cs/105/handouts/redundant-ml-cases.pdf
https://www.cs.tufts.edu/cs/105/handouts/redundant-ml-cases.pdf
https://www.cs.tufts.edu/cs/105/handouts/redundant-ml-cases.pdf
https://www.cs.tufts.edu/cs/105/handouts/redundant-ml-cases.pdf


• The AGS implements its advice function using a single, pruned search that stops once the best move
or outcome is known.

• Or, the AGS implements advice by making just one search through the state space of possible game
configurations.

• Function advice may search the state space of possible configurations more than once.

• Function advice may search the state space of possible configurations more than twice.
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