
Notes on the Lambda-Calculus
COMP 598 Winter 2015

Prakash Panangaden
School of Computer Science, McGill University

January 25, 2015

1 The λ-Calculus

The λ-calculus is a formalism for studying ways in which functions can be formed, combined
and used for computation. Unlike set-theoretic accounts of functions, the λ-calculus takes an
intensional view of functions1 in that functions are “rules” for establishing a correspondence
between an object, the argument to the function, and another object, the value or result.
The process of using the “rule” to obtain the correspondence is called function application.
In the λ-calculus the basic objects available are called λ-terms. The notation for λ-terms re-
flects the viewpoint alluded to above. In the subsequent discussion lowercase letters, x, y, . . .
will represent variables in the λ-calculus while uppercase letters M,N, . . .will (usually) rep-
resent meta-variables which stand for generic λ-terms. In the present discussion we shall
try to understand λ-terms through rules for building and manipulating them. A model in
which λ-calculus terms actually denote functions is quite hard to construct but the intuitive
interpretation of λ-terms as functions should become clear.

We begin by assuming that there is a (countable) set of symbols called variables.

Definition 1.1. The set of λ-terms is defined inductively by the following clauses:

1. All variables are λ-terms

2. If M is a λ-term and x is a variable then so is λx.M

3. If M and N are λ-terms then so is MN

4. If M is a λ-term then so is (M).

In a term of the form λx.M the x is the formal argument to the function and the M represents
the body of the function. Note that the functions defined in the λ-calculus are all one-place
functions. This is not really a restriction because functions which take several arguments

1Extensionality can be treated within the λ-calculus as an added axiom.

1

can be expressed in terms of functions of a single argument. This is done as follows: suppose
f is a function of two arguments x and y, then we may think of f as a function that takes
a single argument and returns a function that takes a single argument. Thus, for example,
suppose f is the function plus of ordinary arithmetic. Normally, we think of plus as taking
two arguments. We could think of plus as a function which takes as argument an integer
n and returns a function, the latter function takes as argument an integer m and returns
n+m. This generalizes in the obvious way to functions of several arguments. The process of
viewing functions with several arguments as functions of a single argument is called currying.
In the λ-calculus all functions are written in curried form.

Example 1.1. Here are some examples of simple λ-terms.

xy
λx.x
λx.xx
λx.λy.xy
λx.λy.λz.(xz)(yz)
λx.y
x(λx.xz)y

A sequence of applications is assumed to associate to the left. Thus a term of the form
MNPQ represents (((MN)P)Q). Often a sequence of λs is abbreviated with a single λ.
Thus, for example, the λ-term λx.λy.λz.xyz is often written λxyz.xyz. In parsing compli-
cated λ-terms the following convention is used: If λx.M occurs within a larger expression
we assume that M extends as far to the right as possible; i.e. until the first unmatched right
parenthesis or the end of the expression whichever occurs first.

Example 1.2. The λ-term
λx.λy.yxx

contains λy.yxx as a sub-term whereas the λ-term

λx.(λy.yx)x

contains λy.yx as a sub-term but does not contain λy.yxx as a sub-term.

To use the λ-calculus as a computational formalism we need to describe what happens
when a λ-term is applied to an argument. Roughly speaking, when the λ-term λx.M is
applied to an argument N the occurrences of x in M are replaced by N . To make this
statement more precise we need to define the concept of free and bound variables.

Definition 1.2. Free and bound variables are defined by the following rules:

1. In x, x occurs free, no other variables occur at all

2. If x occurs free in M then all these free occurrences of x are bound in λx.M , if y is a
variable different from x then all free occurrences of y in M remain free in λx.M

2

3. Any variable which occurs free in M or N occurs free in MN .

A term which has no free variables is called a closed term or combinator. Note that a variable
may occur both bound and free in a given λ-term. For example, in λx.y(λy.xy) the first
occurrence of y is free while the second occurrence of y is bound.

Bound variables are present to establish a correspondence between the argument to a
function and positions within the body of a λ-term where the argument is to be substituted.
The actual symbol used as a bound variable is irrelevant. This notion of bound variable
closely corresponds to the notion of bound variable in the predicate calculus or to parameters
appearing in function declarations in programming languages like Pascal. Typically, free
variables only arise in sub-terms of some larger λ-term. The following diagram illustrates
the concept of free and bound variables in a λ-term.

λx. λy.

y free︷ ︸︸ ︷
(λz.xyz) y︸ ︷︷ ︸
y bound

The process of substitution of terms for variables is the key computational mechanism of
the λ-calculus. The notation is M [x 7→ N] and means “replace all free occurrences of x in
M by N”. The formal definition of substitution is:

Definition 1.3. Substitution is defined by the following clauses where the symbol ≡ stands
for identity of λ-terms.

1. x[x 7→ N] ≡ N

2. y[x 7→ N] ≡ y where x 6≡ y

3. MM ′[x 7→ N] ≡M [x 7→ N]M ′[x 7→ N]

4. (λx.M)[x 7→ N] ≡ λx.M

5. (λy.M)[x 7→ N] ≡ λy.(M [x 7→ N]) where x 6≡ y and y does not appear free in N or x
does not appear free in M

6. (λy.M)[x 7→ N] ≡ λz.(M [y 7→ z])[x 7→ N] where x 6≡ y, z is a variable different from
both x and y not occurring in either M or N , x does occur free in M and y does occur
free in N .

The reason that the last clause is so complicated is that we need to be careful, when substi-
tuting a λ-term for a variable, that a free variable does not become a bound variable. This
phenomenon is called capture. Consider the λ-term λy.x, this is the function that returns x
when applied to any λ-term. Now suppose we performed the substitution (λy.x)[x 7→ w]. If
w 6≡ y clause five above would apply and we would get λy.w as expected. If, however, w ≡ y
and clause six, above, were not included in the definition of substitution, we would get λy.y

3

if we attempted to use clause five. Using clause six we get λz.y which is exactly what we
should expect.2

The trick of renaming a bound variable to avoid the capture of free variables is sufficiently
useful to deserve its own formal definition:

Definition 1.4. A change of bound variables in a λ-term M is the replacement of a subterm
of the form λx.N with x not bound in N by a term of the form λv.N [x 7→ v] where v is a
variable that does not occur (either free or bound) in N . A λ-term X is said to be congruent
to another λ-term Y if Y is the result of applying a series of changes of bound variables to
X.

Why should we demand that v does not occur either free or bound in N? Consider the
following example. Suppose that we have the λ-term λy.λv.vy and we wish to rename the
bound variable y to v. Note that v only occurs bound in the body of the λ-term. If we
carried out the renaming of y to v we would get the λ-term λv.λv.vv, now we can no longer
tell that one of the vs should be bound to the outer λ and the other one should be bound
to the inner λ. For all practical purposes congruent terms are regarded as being the same.
We shall often say “identical” when we should be saying “congruent” if the difference is not
important. A change of bound variables is often called α-conversion or α-reduction.

We are now ready to define the all important concept of reduction. This formalizes the
process of “computing with λ-terms”. The symbol⇒ is used to represent logical implication.

Definition 1.5. Reduction is a binary relation, written→, between λ-terms defined by the
following rules:

α λy.M → λv.(M [y 7→ v]) where v does not occur free or bound in M

β (λy.M)N → M [y 7→ N] (all the caveats about avoiding capture are hidden in the defini-
tion of substitution)

ρ M →M

µ M → N ⇒ PM → PN

ν M → N ⇒MP → NP

ξ M → N ⇒ λx.M → λx.N3

τ M → N and N → P ⇒M → P

The rule β above is the rule with non-trivial computational content.

Example 1.3. Reducing a λ-term:

2Some authors (Church, for example) leave the last case undefined.
3Note that capture can occur while using this rule, indeed it should occur if this rule is to make any

non-trivial statement.

4

(λx.λy.λz.x(yz))fg
→ (λy.λz.f(yz))g
→ λz.f(gz)

The original λ-term above performs function composition.
In any computational system the basic expectation is that the computational process

proceeds by “simplifying” a term and producing another term of “equal” value. In our
system, we have defined the computational process, namely reduction, but we have not
defined a notion of equality. The relation of identity or congruence will not serve since it is
not preserved by β-reduction. The relation of equality that we shall use is defined in terms
of the reduction relation.

Definition 1.6. Equality of λ-terms, written =, is defined by replacing → by = in the
definition of reduction given above and adding the following rule:

σ M = N ⇒ N = M

Equality is often called convertibility. We shall say two λ-terms are equal if we can prove that
they are equal using the above rules. It is important to understand the difference between
equality and reduction. If M reduces to N then M is equal to N and by the rule σ N is
equal to M . On the other hand N does not reduce to M . Reduction is thus one way while
equality is symmetric.

Example 1.4. Consider the λ-terms (λx.(λy.y)x)z and (λx.z)y. Neither one reduces to the
other but they are equal since each of them reduces to z.

The last example is also a little misleading. It is clearly not true that if two λ-terms are
equal then one of them reduces to the other. But is it true that they must reduce to a
common term? In fact the answer is “yes” but this is a hard theorem, it is certainly not
what the definition says. What the definition does say is that if two terms, say M and N
are equal then there is a sequence of terms M1, . . . ,Mk with M1 = M , Mk = N and with
M →M2, M3 →M2, M3 →M4 and so on. In other words there is a “zig-zag” of reductions
and reversed reductions which interpolates between the two terms.

How do we establish that two terms are not equal? We do not yet have the machinery
to do this properly. However, we can temporarily adopt the following approach. First, note
that we would like our theory to have more than one function definable in it. Now if we are
trying to establish that two λ-terms M and N are not equal we can try to show that by
assuming M = N we can apply the rules for deducing equality and conclude that all λ-terms
are equal. To illustrate this approach, consider the λ-terms λx.λy.x and λx.λy.y. We shall
call them T and F respectively. What happens if we assume T = F? The following proof
shows that any pair of λ-terms, M,N can be proven equal.

T = F assumption
TM = FM using ν
TMN = FMN using ν

5

TMN = M using β
FMN = N using β
M = N using τ and σ appropriately.

Thus we could “prove” two terms unequal if we can show that assuming that they were equal
led to the equation T = F .

So far we have shown how the steps of a computation in the λ-calculus proceed. Normally
we think of computation as proceeding until a “result” is obtained. What is the result of a
computation in the λ-calculus? Put another way, how do we know when to stop the reduction
process. This latter question has a straightforward answer, “stop when no more reduction is
possible”. These considerations lead us to single out a special class of λ-terms which serve
as the results of computations in the λ-calculus.

Definition 1.7. A term of the form (λx.M)N is called a redex and M [x 7→ N] is called its
contractum.

Definition 1.8. A term is said to be in normal form if it contains no redices. If M → N
and N is in normal form then N is said to be a normal form of M and M is said to normalize
to N .

Notice the definition of redex refers to the possibility of β-reduction only; clearly we could
perform α-reductions indefinitely if we wished. The appearance of a normal form in a
sequence of reductions signals the end of our computation.

The definition of normal form raises some interesting questions. Does every term have
a normal form? Clearly not, consider (λx.xx)λx.xx. There is exactly one opportunity for
β-reduction. If we carry out this reduction we get exactly the same term back and hence
again have an opportunity for β-reduction. Terms without normal forms are the λ-calculus
analogues of non-terminating programs. If a λ-term does have a normal form does any choice
of reductions lead to that normal form? Again the answer is “no” as the following example
illustrates.

Example 1.5. Let W stand for the λ-term λx.xxx. It is easy to see that WW → WWW →
WWWW Let I stand for the λ-term λx.x, the identity function. Let F be the λ-term
introduced in the previous example. Now consider F (WW)I. There are two opportuni-
ties for β-reduction. We could do the leftmost reduction first getting I as the result im-
mediately. We could choose to reduce the sub-term WW first, getting F (WWW)I, and
then reduce by applying F giving I again. Thus there are infinitely many sequences of
reductions starting from F (WW)I and ending in I. There is also the (infinite) sequence
F (WW)I → F (WWW)I → F (WWWW)I . . . which never reaches normal form.

How do we know that we will find the normal form if there is one? This is a fairly subtle
question and I will not try to justify the answer formally. If you always perform the leftmost
reduction then you will find the normal form if one exists. Thus in the example above,
the leftmost reduction possible involves applying F , whenever we did this we immediately

6

reached the normal form. Intuitively, the reason this works is that a term which does have
a normal form may have a sub-term which does not have a normal form. However, the
sub-term which does not have a normal form may never be needed so we should apply the
“outermost” function to see if a particular sub-term is actually needed before trying to reduce
potentially non-terminating subterms. This particular reduction strategy is called normal
order reduction and is the λ-calculus analogue of “call-by-need” evaluation.4 There is of
course no way of looking at a generic λ-term and deciding whether a normal form does exist
(why not?).

4If you have never heard of this before ignore this remark for now.

7

2 Computing with λ-Calculus

So far we have seen the λ-calculus as a purely formal system. Two pressing questions
remain, how do we compute with it? and why would we want to? The answer to the second
question is simple; the λ-calculus has very few constructs and it is thus very easy to prove
theorems about it. Furthermore, the λ-calculus, though simple, is rich enough to express
all the computable functions. This means that all programming languages that we may be
interested in can be expressed in terms of the λ-calculus.

The simplicity of the λ-calculus is precisely what makes it awkward to work with as
a programming language. The answer to the first question will therefore involve a fairly
lengthy demonstration of how to encode ordinary computational constructs in the λ-calculus.
Recall that the λ-calculus is a formalism where computation is expressed via the successive
application of the reduction rules. Thus expressing computations involves taking terms that
mimic familiar constructs and reducing them to normal form. The rest of this section is
devoted to examining a variety of special λ-terms and seeing how they express familiar
computational constructs.

The pure λ-calculus provides only one mechanism for making “programs” and “data”5

interact, namely application. Quite frequently, however, we would like to have a part of
a program execute only if certain conditions are met, in short we would like to have a
conditional construct. What do conditionals look like? First, we would like to have a notion
of “boolean” expression which can evaluate to “true” or “false”. Second we would like a
construct that takes a boolean expression and two other expressions as arguments, evaluates
the boolean expression and depending on whether the result is true or false evaluates either
the first or the second expression. The combinators6 T and F introduced previously perform
this function very handily. Their definitions are λx.λy.x and λx.λy.y respectively. Now
consider the λ-term BMN where B is some λ-term that reduces to either T or F . If B
evaluates to T then BMN reduces to M , if B evaluates to F then BMN reduces to N .
Thus BMN can be viewed as encoding the construct “if B is true then reduce M otherwise
if B is false reduce N”.

What else would we like in a programming language? We would certainly like to
have some kind of “data structure”. This is achieved by the combinator D defined by
λy.λz.λx.xyz. This forms “pairs” when applied to two terms; DMN → λx.xMN . For this to
really qualify as a data structure we need to have a means of recovering the original terms M
and N from the pair. This is provided by the λ-terms first ≡ λw.wT and second ≡ λw.wF .
It is easy to see by applying the rule for β-reduction that first(DMN)→M and similarly
for second.

We now have the skeleton of a reasonable programming language but we would still
like to operate on familiar data like the integers. To do this we must choose a sequence
of λ-terms to represent the integers and we must represent familiar arithmetic operations
on these λ-terms. There are many choices possible. We shall use a representation due

5Note that both programs and data are represented by λ-terms.
6A combinator is a λ-term with no free variables

8

to Church. Other systems for encoding the integers are due to Curry, Barendregt, Scott
and Wadsworth. We shall use the following notational convention. Actual numbers will
be written n,m, . . . whereas the λ-terms used to represent the numbers will written with
an underline thus n,m, The basic idea is to represent n by a λ-term which takes two
arguments and applies the first argument to the second argument n times. In symbols, n is
represented by the λ-term λf.λx. f(f(. . . f︸ ︷︷ ︸

n times

x) . . .). In particular, 0 is represented by λf.λx.x,

1 is represented by λf.λx.fx and 2 is represented by the λ-term λf.λx.(f(fx)). Note that
the associativity is the opposite to what we would have if we left out the parentheses in the
definitions. These λ-terms are called the Church numerals or simply numerals.

As an exercise in λ-gymnastics let us argue that if n 6= m then n 6= m. Without loss of
generality we may assume that n < m. Now consider the λ-termQ ≡ DN0(DN1(. . . DNmM) . . .).
This is a nested sequence of paired terms which we could write more picturesquely (but infor-
mally!) as [N0, [N1, [. . . [Nm,M] . . .]︸ ︷︷ ︸

m+1 times

. Now consider the λ-term first(n second Q). The

λ-term n causes second to be applied n times to Q thus stripping off the first n applications
of the pairing construct. The outermost first then picks out the first member of the re-
maining outermost pair, in other words Nn. Similarly we can show that first(m second Q)
reduces to Nm. If we assume that n = m where n and m are different it follows that
first(m second Q) = first(n second Q) (why?). But, since n and m are different we can
easily construct Q so that Nn and Nm are any two terms we choose. Thus we have shown that
any two λ-terms can be proven equal if we assume that any two distinct Church numerals
are equal.

Now we are ready to do some basic arithmetic within the λ-calculus. The very first thing
we would like to have is the successor function. To simplify the notation let us agree that
fnx shall mean f applied to x n times. Thus, for example, the Church numeral for n can be
written as λf.λx.fnx. The successor function is just λy.λf.λx.yf(fx). This is easy to check
directly as the following little calculation shows.

(λy.λf.λx.yf(fx))(λg.λu.gnu)
→ λf.λx.(λg.λu.gnu)f(fx)
→ λf.λx.(λu.fnu)(fx)
→ λf.λx.fn(fx)
→ λf.λx.fn+1x

The predecessor function can also be encoded but this is a rather complicated exercise.
The other basic arithmetic functions can be encoded fairly easily once we recognise that the
Church numeral for n applied to a pair of arguments applies the first argument n times to
the second argument. The function for plus is the λ-term λu.λv.λf.λx.uf(vfx). This can
also be checked directly. To simplify the notation further we shall write λxyz. . . . instead of
λx.λy.λz.

9

(λuvfx.uf(vfx))nm
→ λfx.nf(mfx) two steps
→ λfx.nf(fmx)
→ λfx.fn(fmx)
→ λfx.fn+mx this is n+m

It is now an easy exercise to see that multiplication of two Church numerals is defined
by the λ-term λuvfx.u(vf)x and that exponentiation is defined by λuvfx.uvfx.

If we want to write more complicated “programs” involving the Church numerals we need
to be able to test for whether a particular numeral represents zero or not. In other words we
should have a combinator that returns T if the argument to it is 0 and F if the argument to it
is a numeral different from zero. This is achieved by the following combinator λv.v(λu.F)T .

To complete the discussion of numbers in the λ-calculus we shall look at the predecessor
function. This function takes a Church numeral as argument and returns the preceding
Church numeral if the original Church numeral is not 0 and returns 0 if the original Church
numeral is 0. A λ-term which does this for the Church numerals is

λx.second(x(λy.D succ((first y)(second y)))(D(λz.0)0))

Fixed Point Combinators

We need a way of expressing recursion within the λ-calculus. Informally, we would express
recursive definitions via equations of the form f = . . . f . . . In the λ-calculus such an equation
does not define a term, the equation merely states a condition that the term must satisfy.
How do we know that we will find any term satisfying the equation? Fortunately it is easy
to find a term satisfying any recursive equation. Furthermore, such terms can be found
by simply applying a particular combinator to a term constructed from the given recursive
equation. Such combinators are called fixed point combinators.

Let us look at the above equation scheme more closely. We are trying to “solve” an
equation of the form f = M where M is a term containing free occurrences of f within it.
This equation can be rewritten f = (λx.M [f 7→ x])f or f = M ′f where M ′ = (λx.M [f 7→
x]). Thus we are looking for a fixed point of M ′. A fixed point combinator does exactly this.

Definition 2.1. A fixed point combinator is a term R such that ∀F,RF = F (RF).

Example 2.1. The most commonly used fixed point combinator is

λf.(λx.f(xx))(λx.f(xx))

often written just Y . The following calculation shows that Y is a fixed point combinator.

10

Let A stand for λx.F (xx)

Y F
= (λf.(λx.f(xx))(λx.f(xx)))F
→ AA
= (λx.F (xx))A using the def of A
→ F (AA)
= F (Y F)

It is important to note that Y F does not β-reduce to F (Y F). We have merely proven
equality of these two terms. A fixed point combinator that when applied to a λ-term actually
β-reduces to the fixed point of the λ-term is ΘΘ where Θ = λxy.y(xxy).

ΘΘF
≡ (λxy.y(xxy))ΘF
→ F (ΘΘF)

With the aid of a fixed point combinator it is easy to solve recursive equations.

Example 2.2. Suppose we wish to solve the equation Fxy = FyxF . It is easy to see
that we can solve this equation if F = λxy.FyxF . To solve the latter equation we need
a fixed point of λfxy.fyxf . Using a fixed point combinator, for example Y , we obtain
F = Y (λfxy.fyxf).

We can define recursively defined numeric functions in the λ-calculus using the combina-
tors defined so far.

Example 2.3. The factorial function satisfies the equation

fact = λx.(iszero x)(1)(mult n (fact(pred n))).

If we define H to be the λ-term

λf.λx.(iszero x)(1)(mult n (f(pred n)))

then the λ-term for fact is just the fixed point of H. So we can write Y H for fact.

We have not formally proven that all the computable functions are definable in the λ-
calculus but we have provided a fairly rich collection of combinators which provide many of
the facilities which one normally sees in programming languages. In fact it can be formally
shown that all the partial recursive functions can be defined in the λ-calculus. An even more
remarkable fact, due to Curry, is that the two combinators K and S, defined by λxy.x and
λxyz.(xz)(yz) respectively, suffice to express all the combinators.

11

