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Editor’s note

This tutorial has been lightly edited in
three ways. The original uses a nonstandard
abbreviation for Curried functions of multiple
arguments; this abbreviation has been elimi-
nated. The original uses a pun in which the
continuations for selecting elements from pairs
happen to agree with the classic representa-
tions of the Booleans; this pun has been elim-
inated. Finally, some typography and English
have been lightly adjusted to make the text
conform more closely to American idioms.

Abstract

This paper is a concise and painless introduc-
tion to the A-calculus. This formalism was devel-
oped by Alonzo Church as a tool for studying the
mathematical properties of effectively computable
functions. The formalism became popular and
has provided a strong theoretical foundation for
the family of functional programming languages.
This tutorial shows how to perform arithmetical
and logical computations using the A-calculus and
how to define recursive functions, even though A-
calculus functions are unnamed and thus cannot
refer explicitly to themselves.

*Send corrections or suggestions to rojas@inf.fu-
berlin.de

1 Definition

The A-calculus can be called the smallest univer-
sal programming language in the world. The M-
calculus consists of a single transformation rule
(variable substitution, also called [-conversion)
and a single function definition scheme. It was
introduced in the 1930s by Alonzo Church as a
way of formalizing the concept of effective com-
putability. The A-calculus is universal in the sense
that any computable function can be expressed
and evaluated using this formalism. It is thus
equivalent to Turing machines. However, the A-
calculus emphasizes the use of symbolic transfor-
mation rules and does not care about the actual
machine implementation. It is an approach more
related to software than to hardware.

The central concept in A-calculus is that of “ex-
pression”. A “name” is an identifier which, for our
purposes, can be any of the letters a, b, ¢, etc. An
expression can be just a name or can be a func-
tion. Functions use the Greek letter A to mark the
name of the function’s arguments. The “body” of
the function specifies how the arguments are to be
rearranged. The identity function, for example, is
represented by the string (Az.z). The fragment
“Ax” tell us that the function’s argument is x,
which is returned unchanged as “z” by the func-
tion.

Functions can be applied to other functions. The
function A, for example, applied to the function
B, would be written as AB. In this tutorial, capi-
tal letters are used to represent functions. In fact,



anything of interest in A-calculus is a function.
Even numbers or logical values will be represented
by functions that can act on one another in or-
der to transform a string of symbols into another
string. This A-calculus is untyped: any function
can be applied to any other. The programmer is
responsible for keeping the computations sensible.

An expression is defined recursively as follows:

(expression) := (name) | (function) | (application)
(function) := A(name).(expression)
(application) ::= (expression)(expression)

An expression can be surrounded by parenthesis
for clarity, that is, if E is an expression, (E) is the
same expression. Otherwise, the only keywords
used in the language are A and the dot. In order
to avoid cluttering expressions with parenthesis,
we adopt the convention that function application
associates from the left, that is, the composite ex-
pression
E{E>Es...E,

is evaluated applying the successive expressions as

follows
(. - ((EiE)Es) ... En>

As can be seen from the definition of A-
expressions, a well-formed example of a function
is the previously mentioned string, enclosed or not
in parentheses:

Ar.x = (Ax.x)

We use the equivalence symbol “=” to indicate
that when A = B, A is just a synonym for B. As
explained above, the name right after the X is the
identifier of the argument of this function. The
expression after the point (in this case a single x)
is called the “body” of the function’s definition.

Functions can be applied to expressions. A simple
example of an application is

(A\x.z)y

This is the identity function applied to the vari-
able y. Parentheses help to avoid ambiguity.
A function application is evaluated by substitut-
ing the “value” of the argument z (in this case

the y being processed) in the body of the function
definition. Fig. 1 shows how the variable y is “ab-
sorbed” by the function (red line), and also shows
where it is used as a replacement for z (green line).
The result is a reduction, represented by the right
arrow, with the final result y.

(s

Yy

(AV.V)y
Y

Figure 1: The same reduction shown twice. The
symbol for the function’s argument is just a place
holder.

Since we cannot always have pictures, as in Fig. 1,
the notation [y/z] is used to indicate that all oc-
currences of x are substituted by y in the func-
tion’s body. We write, for example, (Az.x)y —
l[y/z]x — y. The names of the arguments in
function definitions do not carry any meaning by
themselves. They are just “place holders”, that
is, they are used to indicate how to rearrange the
arguments of the function when it is evaluated.
Therefore all the strings below represent the same
function:

(Az.2) = (\y.y) = (\t.t) = (A\u.u)

This kind of purely alphabetical substitution is
also called a-reduction.

1.1 Free and bound variables

If we only had pictures of the plumbing of A-
expressions, we would not have to care about the
names of variables. Since we are using letters as
symbols, we have to be careful if we repeat them,
as shown in this section.

In A-calculus all names are local to definitions (as
in most programming languages). In the function
Ax.x we say that x is “bound” since its occurrence
in the body of the definition is preceded by Az. A
name not preceded by a A\ is called a “free vari-
able”. In the expression

(Ax.x)(\y.yz)



the z in the body of the first expression from the
left is bound to the first A. The y in the body of
the second expression is bound to the second M\,
and the following x is free. Bound variables are
shown in bold face. It is very important to no-
tice that this x in the second expression is totally
independent of the z in the first expression. This
can be more easily seen if we draw the “plumbing”
of the function application and the consequent re-
duction, as shown in Fig. 2.

(Ax.x)(Ay.yx)
(An.m)(A . x)
— (A Xx)

Figure 2: In successive rows: The function appli-
cation, the “plumbing” of the symbolic expression,
and the resulting reduction.

In Fig. 2 we see how the symbolic expression (first
row) can be interpreted as a kind of circuit, where
the bound argument is moved to a new position
inside the body of the function. The first func-
tion (the identity function) “consumes” the sec-
ond one. The symbol z in the second function has
no connections with the rest of the expression, it
is floating free inside the function definition.

Formally, we say that a variable (name) is free in
an expression if one of the following three cases
holds:

e (name) is free in (name).
Example: a is free in a).

(

(

e (name) is free in A(namej).(exp) if the iden-
tifier (name) #(name;) and (name) is free in
(exp).

(

*

Example: y is free in Az.y).

name) is free in Fj Fs if (name) is free in Fy
or if it is free in Fs.
(Example: z is free in (A\z.z)x).

A variable (name) is bound if one of two cases
holds:

e (name) is bound in A (name;).(exp) if the
identifier (name) =(name;) or if (name) is
bound in (exp).

(Example: z is bound in (Ay.(Az.x))).

e (name) is bound in Ej Es if (name) is bound
in Fy or if it is bound in Es.
(Example: x is bound in (Az.x)x).

It should be emphasized that the same identifier
can occur free and bound in the same expression.
In the expression

(Ax.xy)(\y.y)

the first y is free in the parenthesized subexpres-
sion to the left, but it is bound in the subexpres-
sion to the right. Therefore, it occurs free as well
as bound in the whole expression (the bound vari-
ables are shown in bold face).

1.2 Substitutions

The more confusing part of standard A-calculus,
when first approaching it, is the fact that we do
not give names to functions. Any time we want
to apply a function, we just write the complete
function’s definition and then proceed to evalu-
ate it. To simplify the notation, however, we will
use capital letters, digits and other symbols (san
serif) as synonyms for some functions. The iden-
tity function, for example, can be denoted by the
letter I, using it as shorthand for (Az.z).

The identity function applied to itself is the appli-
cation
Il = (A\z.x)(A\z.x).

In this expression, the first z in the body of the
first function in parenthesis is independent of the
x in the body of the second function (remember
that the “plumbing” is local). Just to emphasize
the difference we can in fact rewrite the above
expression as

Il = (A\z.x)(Az.2).



The identity function applied to itself
Il = (A\z.x)(Az.2)
yields therefore

[(A\z.2)/z]x — Az.z = |,

that is, the identity function again.

(Ax.(Ay.xy))y

y bound in the subexpression

danger: a free y should not be mixed with bound y’s

Figure 3: A free variable should not be substituted
in a subexpression where it is bound, otherwise a
new “plumbing”, different to the original, would
be generated.

When performing substitutions, we should be
careful to avoid mixing up free occurrences of an
identifier with bound ones. In the expression

(Ax.(Ay.xy))y

the function on the left contains a bound y,
whereas the y on the right is free. An incorrect
substitution would mix the two identifiers in the
erroneous result

(Ay-yy).
Simply by renaming the bound y to ¢ we obtain
(Az.(At.at))y — (At.yt)

which is a completely different result but never-
theless the correct one.

Therefore, if the function Az.(exp) is applied to
E, we substitute all free occurrences of z in (exp)

with E. If the substitution would bring a free
variable of E in an expression where this variable
occurs bound, we rename the bound variable be-
fore performing the substitution. For example, in
the expression

(Az.(Ay-(z(Az.zy)))) y

we associate the first  with y. In the body
(Ay.(z(Az.zy)))

only the first z is free and can be substituted.
Before substituting though, we have to rename the
variable y to avoid mixing its bound with its free
occurrence:

[y/x] (At.(z(A\x.xt))) = (Mt(y(Az.xt)))

In normal order reduction we reduce always the
left most expression of a series of applications first.
We continue until no further reductions are possi-

ble.

2 Arithmetic

A programming language should be capable of
specifying arithmetical calculations. Numbers can
be represented in the A-calculus starting from
zero and writing “successor of zero”, that is
“suc(zero)”, to represent 1, “suc(suc(zero))” to
represent 2, and so on. Since in A-calculus we
can only define new functions, numbers will be
defined as functions using the following approach:
zero can be defined as

As.(Az.2)

This is a function of two arguments s and z. The
first natural numbers can be defined as

ASAz.2
As.Az.5(2)
As.Az.s(s(z2))
As.Az.5(s(s(2)))

0
1
2
3

and so on.

The big advantage of defining numbers in this way
is that we can now apply a function f to an ar-
gument a any number of times. For example, if



we want to apply f to a three times we apply the
function 3 to the arguments f and a yielding:

3fa — (As.X\z.8(s(s2))) fa — f(f(fa)).

This way of defining numbers provides us with a
language construct similar to an instruction such
as “FOR i=1 to 3” in other languages. The num-
ber zero applied to the arguments f and a yields
Ofa = (As.Az.z)fa — a. That is, applying the
function f to the argument a zero times leaves
the argument a unchanged.

Our first interesting function, after having defined
the natural numbers, is the successor function.
This can be defined as

S = An.Aa.Ab.a(nab).

The definition looks awkward but it works. For
example, the successor function applied to our
representation for zero is the expression:

S0 = (An.Aa.Ab.a(nab))0

In the body of the first expression, we substitute
the occurrence of n with 0, and then in two steps,
0ab reduces to b. This sequence therefore produces
the reduced expression

S0 — Aa.\b.a(0ab) — Aa.Ab.a(b) =1

That is, the result is the representation of the
number 1 (remember that bound variable names
are “dummies” and can be changed).

Successor applied to 1 yields:

S1 = (An.Aa.Ab.a(nab))l — Aa.N\b.a(lab)
— Aa.Ab.a(ab) =2

Notice that the only purpose of applying the num-
ber 1 = (As.Az.s2) to the arguments a and b is to
“rename” the variables used internally in the def-
inition of our number.

2.1 Addition

Addition can be obtained immediately by noting
that the body sz of our definition of the number 1,
for example, can be interpreted as the application

of the function s on z. If we want to add say
2 and 3, we just apply the successor function two
times to 3.

Let us try the following in order to compute 2+3:

2S3 = (As.\z.8(s2)))S3 — S(S3) —» -+ — 5

In general m plus n can be computed by the ex-
pression mSn.

2.2 Multiplication
The multiplication of two numbers x and y can be
computed using the following function:
(Azx. Ay Aa.z(ya))
The product of 3 by 3 is then
(Ax.Ay.Aa.z(ya))33
which reduces to
(Aa.3(3a))

Using the definition of the number 3, we further
reduce the above expression to

(Aa.(As.\b.s(s(sb)))(3a)) = (Aa.\b.(3a)((3a)((3a)d)))

In order to understand why this function really
computes the product of 3 by 3, let us look at some
diagrams. The first application (3a) is computed
on the left of Fig. 4. Notice that the application
of 3 to a has the effect of producing a new func-
tion which applies a three times to the function’s
argument.

Now, applying the function 3 to the result of (3a)
produces three copies of the function obtained in
Fig. 4 , concatenated as shown on the right in
Fig. 4 (where the result has been applied to b for
clarity). Notice that we have a “tower” of three
times the same function, each one absorbing the
lower one as argument for the application of the
function a three times, for a total of nine applica-
tions.



|
(Asz.s(s(s2)))a |

(Aab.(3a)((3a)((3a)b)))

LLRCETIE

three applications of s ‘

—»[aan

a applied three times ‘

At the top of the figure, the
nonstandard  notation
(As.Az.s(s(s2)))a.

The number 3 applied to argu-
ment ¢ produces a new function.

means

TIp

a applied 3 by 3 timesto b
a(a(a(a(a(a(a(a(ab))))))))

At the top, the nonstandard notation
means (Aa.Ab.(3a)((3a)((3a)b))).

The plumbing of the function 3 ap-
plied to 3a, and the result to b.

Figure 4: 3 times 3

3 Conditionals

We introduce the following two functions which
we call the values “true”

T= XM \yx

and “false”
F= Az \yy

The first function takes two arguments and re-
turns the first one. The second function returns
the second of two arguments.

3.1 Logical operations

It is now possible to define logical operations using
this representation of the truth values.

The AND function of two arguments can be de-
fined as

A = Az \y.xyF

This definition works because given that z is true,
the truth value of the AND operation depends on
the truth value of y. If x is false (and selects thus
the second argument in zyF) the complete AND
is false, regardless of the value of y.

The OR function of two arguments can be defined
as

V= Az \y.xTy

Here, if x is true, the OR is true. If x is false, it
picks the second argument y and the value of the
OR function depends now on the value of y.

Negation of one argument can be defined as

- = Ar.xFT



For example, the negation function applied to
“true” is

-T=(Az.aFT)T

which reduces to

TFT = (A\eAd.c)FT > F

that is, the truth value “false”.

Armed with these three logic functions, we can en-
code any other logic function and reproduce any
given circuit without feedback (we look at feed-
back when we deal with recursion).

3.2 A conditional test

It is very convenient in a programming language
to have a function which is true if a number is
zero and false otherwise. The following function
Z fulfills this role:

/= \x.xF=F

To understand how this function works, remember
that

Ofa=(AsAz.z)fa=a

that is, the function f applied zero times to the
argument a yields a. On the other hand, F' applied
to any argument yields the identity function

Fa = (Az.\y.y)a — Ay.y = |

We can now test if the function Z works correctly.
The function applied to zero yields

20 = (\x.zF-F)0 - OF-F — =F — T

because F applied 0 times to — yields =. The func-
tion Z applied to any other number N yields

ZN = (Az.2F-F)N — NF-F

The function F is then applied N times to —. But
F applied to anything is the identity (as shown
before), so that the above expression reduces, for
any number N greater than zero, to

IF—F

3.3 The predecessor function

We can now define the predecessor function com-
bining some of the functions introduced above.
When looking for the predecessor of n, the gen-
eral strategy will be to create a pair (n,n—1) and
then pick the second element of the pair as the
result.

A pair (a, b) can be represented in A-calculus using
the function

(A\z.zab)

We can extract the first element of the pair from
the expression applying this function to the con-
tinuation Az.\y.x:

(Az.zab)(Az.A\y.x) — (Az.Ay.x)ab — (A\y.a)b — a,

and the second applying the function to continu-
ation Az.\y.y:

(Az.zab)(Az.M\y.y) = (Ax.Ay.y)ab — (Ay.y)b — b.

The following function generates from the pair
(n,n—1) (which is the argument p in the function)
the pair (n+ 1,n):

O = (A\pAz.2(S(p(A\z. Ay.x))) (p(Ax. Ay.x)))

The subexpression p(Ax.\y.x) extracts the first el-
ement from the pair p. A new pair is formed using
this element, which is incremented for the first
position of the new pair and just copied for the
second position of the new pair.

The predecessor of a number 7 is obtained by ap-
plying function ® n times to the pair (A.z00) and
then selecting the second member of the new pair:

P = (Mn.(n®(A2.200))(Az. Ay.y))

Notice that using this approach the predecessor
of zero is zero. This property is useful for the
definition of other functions.

3.4 Equality and inequalities

With the predecessor function as the building
block, we can now define a function which tests



if a number x is greater than or equal to a num-
ber y:

G = (\x.\y.Z(zPy))
If the predecessor function applied x times to y
yields zero, then it is true that = > y.

If £ >y and y > z, then x = y. This leads to the
following definition of the function E which tests
if two numbers are equal:

E = (A\z.\y. A (Z(zPy))(Z(yPz)))

In a similar manner we can define functions to test
whether x >y, x < y or z # y.

4 Recursion

Recursive functions can be defined in the A-
calculus using a function which calls a function y
and then regenerates itself. This can be better un-
derstood by considering the following function Y:

Y = (\y-(Azy(zz))(Azy(2z)))
This function applied to a function R yields:
YR = (Az.R(zz))(Az.R(xx))
which further reduced yields

R((Az.R(zz))(A\x.R(zx))

but this means that YR — R(YR), that is, the
function R is evaluated using the recursive call YR
as the first argument.

An infinite loop, for example, can be programmed
as Y, since this reduces to I(Yl), then to Y| and
so ad infinitum.

A more useful function is one which adds the first
n natural numbers. We can use a recursive defi-
nition, since 31" i = n + Y75 i. Let us use the
following definition for R:

R = (Ar.An.Zn0(nS(r(Pn))))

This definition tells us that the number n is tested:
if it is zero the result of the sum is zero. If n is
not zero, then the successor function is applied n

times to the recursive call (the argument r) of the
function applied to the predecessor of n.

How do we know that r in the expression above
is the recursive call to R, since functions in A-
calculus do not have names? We do not know
and that is precisely why we have to use the re-
cursion operator Y. Assume for example that we
want to add the numbers from 0 to 3. The neces-
sary operations are performed by the call:

YR3 — R(YR)3 — Z30(3S(YR(P3)))

Since 3 is not equal to zero, the evaluation is equiv-
alent to
3S(YR(P3))

that is, the sum of the numbers from 0 to 3 is
equal to 3 plus the sum of the numbers from 0
to the predecessor of 3 (that is, two). Successive
recursive evaluations of YR will lead to the correct
final result.

Notice that in the function defined above the re-
cursion will be stopped when the argument be-
comes 0. The final result will be

35(25(150))

that is, the number 6.

5 Projects for the reader

1. Define the functions “less than” and “greater
than” of two numerical arguments.

2. Define the positive and negative integers us-
ing pairs of natural numbers.

3. Define addition and subtraction of integers.

4. Define the division of positive integers recur-
sively.

5. Define the function n! =n-(n —1)---1 re-
cursively.

6. Define the rational numbers as pairs of inte-
gers.

7. Define functions for the addition, subtraction,
multiplication and division of rationals.



8. Define a data structure to represent a list of
numbers.
9. Define a function which extracts the first el-
ement from a list.
10. Define a recursive function which counts the
number of elements in a list.
11. Can you simulate a Turing machine using A-
calculus?
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