
Programming Languages
Build, Prove, and Compare
(The Supplement)

Norman Ramsey
Tufts University
Medford, Mass

For COMP 105, Tufts University, Fall 2020
August, 2020

Copyright © 2020 by Norman Ramsey
All rights reserved

Preface to the supplement

This volume is the Supplement to Programming Languages: Build, Prove, and Com-
pare.

S3
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

CONTENTS

PREFACE TO THE SUPPLEMENT S3

PART V: SUPPLEMENTAL TOPICS S9
A. EBNF S13
B. ARITHMETIC S15
§B.1. Addition (S17). §B.2. Subtraction (S19). §B.3. Multiplication (S20). §B.4. Short division (S21).
§B.5. Choosing a base of natural numbers (S22). §B.6. Signed-integer arithmetic (S23).

C. EXTENSIONS TO ALGEBRAIC DATA TYPES S27
§C.1. Existentials (S27). §C.2. GADTs (S34). §C.3. Further reading (S39). §C.4. Exercise (S39).

D. PROLOG AND LOGIC PROGRAMMING S45
§D.1. Thinking in the language of logic (S46). §D.2. Using Prolog (S51). §D.3. The language (S56).
§D.4. More small programming examples (S73). §D.5. Implementation (S81). §D.6. Larger example:
The blocks world (S87). §D.7. Larger example: Haskell type classes (S92). §D.8. Prolog as it really
is (S96). §D.9. Summary (S101). §D.10. Exercises (S104).

PART VI: LONG PROGRAMMING EXAMPLES S125
E. EXTENDED PROGRAMMING EXAMPLES S129
§E.1. Large µScheme example: A metacircular evaluator (S129). §E.2. Large µML example: 2D-
trees (S136). §E.3. More examples of Molecule (S148). §E.4. Extended µSmalltalk example: Discrete
event simulation (S151).

PART VII: INTERESTING INFRASTRUCTURE S171
F. CODE FOR WRITING INTERPRETERS IN C S175
§F.1. Streams (S175). §F.2. Buffering characters (S186). §F.3. The extensible buffer printer (S188).
§F.4. Error functions (S193). §F.5. Test processing and reporting (S196). §F.6. Stack-overflow detec-
tion (S197). §F.7. Arithmetic-overflow detection (S198). §F.8. Unicode support (S199).

G. PARSING PARENTHESIZED PHRASES IN C S201
§G.1. Planning an extensible parser (S202). §G.2. Components, reduce functions, and form codes (S204).
§G.3. Parser state and shift functions (S206). §G.4. Representing and parsing tables and rows (S210).
§G.5. Parsing tables and functions (S211). §G.6. Error detection and handling (S215). §G.7. Extending
Impcore with syntactic sugar (S217).

H. SUPPORTING DISCRIMINATED UNIONS IN C S221
§H.1. Lexical analysis (S221). §H.2. Abstract syntax and parsing (S222). §H.3. Interface to a general-
purpose prettyprinter (S224). §H.4. C types (S225). §H.5. Prettyprinting C types (S226). §H.6. Creating
C types from sums and products (S227). §H.7. Creating constructor functions and prototypes (S229).
§H.8. Writing the output (S231). §H.9. Implementation of the prettyprinter (S232). §H.10. Putting
everything together (S234).

I. CODE FOR WRITING INTERPRETERS IN ML S237
§I.1. Reusable utility functions (S237). §I.2. Representing error outcomes as values (S243). §I.3. Unit
testing (S245). §I.4. Polymorphic, effectful streams (S247). §I.5. Tracking and reporting source-code
locations (S254). §I.6. Further reading (S256).

J. LEXICAL ANALYSIS, PARSING, AND READING USING ML S259
§J.1. Stream transformers, which act as parsers (S260). §J.2. Lexical analyzers: transformers of char-
acters (S268). §J.3. Parsers: reading tokens and source-code locations (S271). §J.4. Streams that lex,
parse, and prompt (S278). §J.5. Further reading (S281).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

PART VIII: THE SUPPORTING CAST S283
K. SUPPORTING CODE FOR IMPCORE S287
§K.1. Additional interfaces (S287). §K.2. Running unit tests (S294). §K.3. Printing functions (S297).
§K.4. Printing primitives (S300). §K.5. Implementation of function environments (S300).

L. SUPPORTING CODE FOR µSCHEME S303
§L.1. Excerpts from the interpreter (S303). §L.2. µScheme code not included in Chapter 2 (S310).
§L.3. Implementation ofµScheme environments (S311). §L.4. ParsingµScheme code (S313). §L.5. Im-
plementation of µScheme’s value interface (S318). §L.6. µScheme’s unit tests (S323). §L.7. Parse-time
error checking (S326). §L.8. Support for an exercise: Concatenating names (S326). §L.9. Print functions
for expressions (S327). §L.10. Support for µScheme+ (S329). §L.11. Orphans (S329).

M. SUPPORTING CODE FOR µSCHEME+ S331
§M.1. Bonus exercises (S331). §M.2.Delimited continuations (S332). §M.3. The evaluation stack (S333).
§M.4. Updating lists of expressions within contexts (S337). §M.5. Lowering (S339). §M.6. Options and
diagnostic code (S342). §M.7. Parsing (S342). §M.8. Finding free variables (S344). §M.9. Interpreter
code omitted from the chapter (S345). §M.10. Bureaucracy (S346).

N. SUPPORTING CODE FOR GARBAGE COLLECTION S349
§N.1. Bureaucracy (S349). §N.2. Basic support for the two collectors (S349). §N.3. GC debugging,
with or without Valgrind (S355). §N.4. Code that is changed to support garbage collection (S358).
§N.5. Placeholders for exercises (S362).

O. SUPPORTING CODE FOR µSCHEME IN ML S365
§O.1. Interpreter infrastructure (S365). §O.2. Overall interpreter structure (S368). §O.3. Lexical analy-
sis and parsing (S373). §O.4. Unit tests forµScheme (S377). §O.5. Unspecified values (S378). §O.6. Fur-
ther reading (S379).

P. SUPPORTING CODE FOR TYPED IMPCORE S381
§P.1. Predefined functions (S381). §P.2. Unworthy interpreter code (S381). §P.3. Unit testing (S383).
§P.4. Printing types and values (S385). §P.5. Parsing (S386). §P.6. Evaluation (S388).

Q. SUPPORTING CODE FOR TYPED µSCHEME S393
§Q.1. Master interpreter fragments (S393). §Q.2. Printing types and values (S394). §Q.3. Pars-
ing (S395). §Q.4. Evaluation (S397). §Q.5. Primitives of Typed µScheme (S399). §Q.6. Predefined
functions (S400). §Q.7. Unit testing (S401).

R. SUPPORTING CODE FOR NANO-ML S405
§R.1. Small pieces of the interpreter (S405). §R.2. Printing types and constraints and substitutions (S411).
§R.3. Parsing (S412). §R.4. Unit testing (S414). §R.5. Predefined functions (S417). §R.6. Cases and
code for Chapter 8 (S419).

S. SUPPORTING CODE FOR µML S421
§S.1.Details (S421). §S.2. Existential types (S434). §S.3. Parsing (S437). §S.4. S-expression reader (S442).
§S.5. More predefined functions (S443). §S.6. Useful µML functions (S445). §S.7. Drawing red-black
trees with dot (S447). §S.8. Printing values, patterns, types, and kinds (S448). §S.9. Unit testing (S449).
§S.10. Support for datatype definitions (S450). §S.11. Syntactic sugar for implicit-data (S452).
§S.12. Error cases for elaboration of type syntax (S452).

T. SUPPORTING CODE FOR MOLECULE S455
§T.1. Themost exciting parts of the interpreter (S455). §T.2. Predefinedmodules andmodule types (S473).
§T.3. Implementations of Molecule’s primitive modules (S477). §T.4. Refugees from the chapter (type
checking) (S494). §T.5. Evaluation (S501). §T.6. Type checking (S507). §T.7. Lexical analysis and
parsing (S517). §T.8. Parsing (S519). §T.9. Unit testing (S526). §T.10. Miscellaneous error mes-
sages (S528). §T.11. Printing stuff (S531). §T.12. Primitives (S534).

U. SUPPORTING CODE FOR µSMALLTALK S537
§U.1. Implementations of some predefined classes (S537). §U.2. Interpreter things (S547). §U.3. Lexing
and parsing (S560). §U.4. Support for tracing (S565). §U.5. Unit testing (S568).

V. SUPPORTING CODE FOR µPROLOG S571
§V.1. Substitution (S571). §V.2. Unit testing (S572). §V.3. String conversions (S573). §V.4. Lexical
analysis (S574). §V.5. Parsing (S577). §V.6. Command line (S583).

PART IX: CODE INDEX S585
CODE INDEX S587

Contents

S8

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

V. SUPPLEMENTAL TOPICS

S11

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS

AEBNF

Context-free grammars are a method of describing the syntax of programming lan-
guages. Context-free grammars are most often written in Backus-Naur Form, or
BNF, in honor of the work done by John Backus and Peter Naur in creating the Al-
gol 60 report. In this book, we use extended BNF, or simply EBNF, which makes it
easier to specify optional and repeated items (Wirth 1977).

An EBNF grammar consists of a list of grammar rules. Each rule has the form:

A ::= α

where A is a nonterminal symbol, and α is a collection of alternatives separated by
vertical bars. Each alternative is a sequence, and in the simple case, each element
of the sequence is either a nonterminal symbol or literal text (in typewriter font).

A non-terminal symbol represents all the phrases in a syntactic category. Thus,
toplevel represents all legal top-level inputs, exp all legal expressions, and name all
legal names. Literal text, on the other hand, represents characters that appear as
is in syntactic phrases.

Consider the rule for toplevel in Impcore:

toplevel ::= exp
| (use file-name)
| (val variable-name exp)
| (define function-name (formals) exp)

This rule can be read as asserting that a legal toplevel input is exactly one of the
following:

• A legal exp

• A left parenthesis followed by the word use, then a file name, and then a right
parenthesis

• A left parenthesis followed by the word val, then a variable name, then a
legal exp, and then a right parenthesis

• A left parenthesis followed by the word define, then a function name, a left
parenthesis, whatever is permitted as formals, a right parenthesis, an exp,
and finally a right parenthesis

A set of such rules is called a context-free grammar. It describes how to form the
phrases of each syntactic category, in one or more ways, by combining phrases of
other categories and specific characters in a specified order.

For another example, the phrase

(set x 10)

is a toplevel input by the following reasoning:
S13

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

EBNFA
S14

• An input can be an expression.

• An expression can be a left parenthesis and the word set, followed by a vari-
able and an expression, followed by a right parenthesis.

• A variable is a name, and a name is a sequence of characters which may be
the sequence “x” (we appeal to the English description of this category).

• An expression can be a value, a value is an integer, and 10 is an integer.

The explanation above is not the whole story. In addition to a nonterminal sym-
bol or literal text, a sequence may contain a collection of alternatives in brackets.
EBNF offers three kinds of brackets:

• Parentheses (· · ·) stand for a choice of exactly one of the bracketed alterna-
tives.

• Square brackets
[
· · ·

]
stand for a choice of either nothing (the empty se-

quence), or exactly one of the bracketed alternatives.

• Braces
{
· · ·

}
stand for a sequence of zero or more items, each of which is

one of the bracketed alternatives.

In each case, alternatives within brackets are separated by a vertical bar (
∣∣).

For example, this rule shows that formals stands for a sequence of zero or more
variable names:

formals ::=
{
variable-name

}
Similarily, the EBNF phrase “(function-name

{
exp

}
)” stands for a function name

followed by a sequence of zero or more argument expressions, all in parentheses.
The topic of context-free grammars is an important one in computer science.

It should be covered in depth in almost any introductory theory or compiler-
construction book. Good sources include those from Aho et al. (2007), Barrett et al.
(1986), and Hopcroft and Ullman (1979).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

BArithmetic

In the 21st century, many programmers take numbers for granted. Computer-
science students rarely get more than a week s̓ worth of instruction in the properties
of floating-point numbers, and many programmers are barely aware that machine
integers have limited precision. So many languages provide arbitrary-precision
arithmetic on integers or rational numbers that you donʼt even need to know how
the tricks are done. This supplemental chapter, together with Exercises 49 and 50 in
Chapter 9 and Exercises 37 and 38 in Chapter 10, will teach you. And if you do both
sets of exercises, youʼll see how abstract data types compare with objects: when in-
specting representations of multiple arguments, abstract data types make the ab-
stractions easier to code but less flexible in use.

In programming as in math, numbers start with integers. You may not think
of int as an abstract type, but it is. It is, however, an unsatisfying abstraction.
Values of type int arenʼt true integers; they are machine integers. Although ma-
chine integers get bigger as hardware gets bigger—a typical machine integer occu-
pies a machine word or half a machine word—they are always limited in precision.
A 32-bit or 64-bit integer is good for many purposes, but some computations need
more precision; examples include some cryptographic computations as well as ex-
act rational arithmetic. Arbitrary-precision integer arithmetic is limited only by the
amount of memory available on a machine. It is supported in many languages, and
in highly civilized languages like Scheme, Smalltalk, and Python, arbitrary preci-
sion is the default.

Arbitrary-precision arithmetic makes a fine case study in information hiding.
The concepts and algorithms are explained below, and I encourage you to imple-
ment them using both abstract data types (Chapter 9) and objects (Chapter 10).
The similarities and differences among implementations illuminate what abstract
data types are good at and what objects are good at.

Arbitrary-precision arithmetic begins with natural numbers—the nonnegative
integers. Basic arithmetic includes addition, subtraction, multiplication, and divi-
sion. An interface for natural numbers, written in Molecule, is shown in Figure B.1
on page S16. There are just a couple of subtleties:

• The difference of two natural numbers isnʼt always a natural number; for ex-
ample, 19 − 83 is not a natural number. If - is used to compute such a
difference, it halts the program with a checked run-time error. If you want
such a difference not to halt your program, you can use continuation-passing
style (Section 2.10): calling (cps-minus n1 n2 ks kf) computes the differ-
encen1−n2, and when the difference is a natural number, cps-minuspasses
it to success continuation ks. Otherwise, cps-minus calls failure continua-
tion kf without any arguments.

• For efficiency, we compute quotient and remainder together. (This is true
even in hardware.) Storing quotient and remainder is the purpose of record
type QR.pair.

S15
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

ArithmeticB
S16

S16a. 〈nat.mcl S16a〉≡
(module-type NATURAL
(exports [abstype t]

[of-int : (int -> t)] ; creator
[+ : (t t -> t)] ; producer
[- : (t t -> t)] ; producer
[* : (t t -> t)] ; producer
[module [QR : (exports-record-ops pair

([quotient : t]
[remainder : int]))]]

[sdiv : (t int -> QR.pair)] ; producer
[compare : (t t -> Order.t)] ; observer
[decimal : (t -> (@m ArrayList Int).t)] ; observer

; decimal representation, most significant digit first
[cps-minus : (t t (t -> unit) (-> unit) -> unit)]))

; subtraction, using continuations

Figure B.1: An abstraction of natural numbers

• Long division—that is, division of a natural number by another natural
number—is beyond the scope of this book. Instead, we divide a natural
number only by a (positive) machine integer. This “short division” is im-
plemented by function sdiv.

A natural number can be represented easily and efficiently as a sequence of dig-
its in a given base. The algorithms for basic arithmetic, which you may have learned
in primary school, work digit by digit. In everyday life, we use base b = 10, and
we write the most significant digit xn on the left. In hardware, our computers fa-
mously use base b = 2; the word “bit” is a contraction of “binary digit.” Regardless
of base, a single digitxi is an integer in the range0 ≤ xi < b. In arbitrary-precision
arithmetic, we pick as large a b as possible, subject to the constraint that every arith-
metic operation on digits must be doable in a single machine operation.

As taught to schoolchildren, arithmetic algorithms use base b = 10, but the al-
gorithms are independent of b, as should be your implementation. The algorithms
do depend, however, on the representation of a sequence of digits. I discuss two
representations:

• We can represent a sequence as a list of digits, which is either empty or is a
digit followed by a sequence of digits. If X is a natural number, one of the
following two equations holds:

X = 0

X = x0 +X ′ · b

where x0 is a digit and X ′ is a natural number. (It is possible to begin with
xn instead of x0, but the so-called “little-endian” representation, with the
least-significant digit on the left, simplifies all the computations.) A suitable
representation might use an algebraic data type (Chapters 8 and 9):
S16b. 〈representation of natural numbers as a list of digits S16b〉≡

(data t
[ZERO : t]
[DIGIT-PLUS-NAT-TIMES-b : (int t -> t)])

Another possibility is to use objects: a class NatZero with no instance vari-
ables, and a class NatNonzero with instance variables x0 and X ′.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§B.1. Addition

S17

Notation: Multiplication, visible and invisible

Mathematicians and physicists often multiply quantities simply by placing one
next to another; for example, in the famous equation E = mc2, m and c2

are multiplied. But in a textbook on programming languages, this notational
convention will not do. First, it is better for multiplication to be visible than to
be invisible. And second, when one name is placed next to another, it usually
means function application—at least that s̓ what it means in ML, Haskell, and
the lambda calculus.

Among the conventional infix operators, * is more suited to code than to math-
ematics, and the × symbol is better reserved to denote a Cartesian product
in a type system. In this book, on the rare occasions when we need to multi-
ply numbers, I write an infix ·, so Einsteins̓ famous equation would be written
E = m · c2.

A good invariant, no matter what the representation, is that for either
(DIGIT-PLUS-NAT-TIMES-b x0 X

′) or NatNonzero, x0 and X ′ are not both
zero. The abstraction function is

A(ZERO) = 0

A((DIGIT-PLUS-NAT-TIMES-b x0 X
′)) = x0 +X ′ · b

• Alternatively, we can represent a sequence as an array of digits, that is,
X = x0, . . . , xn. The abstraction function is

A(X) =

n∑
i=0

xi · bi

In both representations, every digit xi satisfies the invariant 0 ≤ xi < b.
Here are the design tradeoffs: Using the list representation, the algorithms are

easy to code, but the representation requires roughly double the space of the array
representation. Using the array representation, not all the algorithms are as easy
to code, but the representation requires half the space of the list representation.
The rest of this section shows algorithms for both representations.

B.1 ADDITION

Adding two digits doesnʼt always produce a digit. For example, if b = 10, the sum
3 + 9 is not a digit. To express the sum, we say that it carries out 1, which we write
3 + 9 = 2 + 1 · 101. The carried 1 is added to the sum of the next digits, at which
time it is called a “carry in,” as in this example:

1

7 3
+8 9
1 6 2

The small 1 over the 7 is the “carry out” from adding 3 and 9, and it is “carried in”
to the sum of 7 and 8, producing 16.

To turn the example into an algorithm, we start with the list representation,
and we consider how to add nonzero natural numbers X = x0 + X ′ · b and

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ArithmeticB
S18

b Base of multiprecision arithmetic
X,Y A natural number that is added, subtracted, subtracted

from, multiplied, or divided by
x0, y0 Least-significant digit (X mod b, Y mod b)
xi, yi Digit i of a natural number
X ′, Y ′ Sequence of most-significant digits (X div b, Y div b)
Z Sum, difference, or product
zi Digit i of Z
ci Carry in at position i
ci+1 Carry out at position i (also carry in at position i+ 1)
d Divisor
Q Quotient
q0 Least-significant digit of quotient (Q mod b)
qi Digit i of quotient, 0 ≤ qi < b
Q′ Most-significant digits of quotients (Q div b)
r Remainder, always 0 ≤ r < d
r′i “Remainder in” at digit i, 0 ≤ r′i < d
ri “Remainder out” at digit i, 0 ≤ ri < d

Table B.2: Metavariables used to describe multiprecision arithmetic

Y = y0 + Y ′ · b. We first add the two least-significant digits x0 + y0, then add
any resulting carry out to X ′ + Y ′. To specify the algorithm precisely, we resort to
algebra.

The sum of X and Y can be expressed as

X + Y = (x0 +X ′ · b) + (y0 + Y ′ · b) = (x0 + y0) + (X ′ + Y ′) · b.

Because sum x0 + y0 might be too big to fit in a digit, this right-hand side does not
immediately determine a valid representation of the sum. To get a valid represen-
tation, we calculate the least-significant digit z0 of the sum and the carry out c1:

z0 = (x0 + y0) mod b

c1 = (x0 + y0) div b

Now x0 + y0 = z0 + c1 · b, and we can rewrite the sum as

X + Y = z0 + (X ′ + Y ′ + c1) · b.

This right-hand side does immediately determine a good representation: z0 can be
represented as a digit, and the sum X ′ + Y ′ + c1 can be represented as a natural
number. The right-hand side also suggests that the general form of addition should
compute sums of the form X + Y + c. Such sums can be expressed using a three-
argument “add with carry” function, adc(X,Y, c). Function adc is specified by
these equations:

adc(0, Y, c0) = Y + c0

adc(X, 0, c0) = X + c0

adc(x0 +X ′ · b, y0 + Y ′ · b, c0) = z0 + (X ′ + Y ′ + c1) · b,
where z0 = (x0 + y0 + c0) mod b

c1 = (x0 + y0 + c0) div b

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§B.2. Subtraction

S19

In the example shown above, where we add 73 and 89,

x0 = 3 X ′ = 7 y0 = 9 Y ′ = 8 c0 = 0 z0 = 2 c1 = 1

Given an X and a Y represented as lists, function adc is most easily implemented
recursively, using case expressions to scrutinize the forms of X and Y . It needs an
auxiliary function to compute Y + c0 and X + c0, the specification of which is left
as Exercise 11.

When X and Y are represented as arrays, function adc is not as easy to imple-
ment. A better approach instead loops on an index i; at each iteration, the loop
computes one digit zi and one carry bit ci+1:

zi = (xi + yi + ci) mod b

ci+1 = (xi + yi + ci) div b

The initial carry in c0 is zero.
If X has n digits and Y has m digits, we require

X + Y = Z =

max(m,n)+1∑
i=0

zi · bi.

The computations of zi and ci+1 are motivated by observing

X + Y =

(n∑
i=0

xi · bi
)
+

(m∑
j=0

yj · bj
)

=

max(m,n)∑
i=0

xi · bi + yi · bi

=

max(m,n)∑
i=0

(xi + yi) · bi

and

xi + yi + ci = zi + ci+1 · b.

In the example shown above, where we add 73 and 89,

z0 + c1 · b = x0 + y0 + c0, where x0 = 3, y0 = 9, c0 = 0, z0 = 2, c1 = 1

z1 + c2 · b = x1 + y1 + c1, where x1 = 7, y1 = 8, c1 = 1, z1 = 6, c2 = 1

z2 + c3 · b = x2 + y2 + c2, where x2 = 0, y2 = 0, c2 = 1, z2 = 1, c2 = 0

B.2 SUBTRACTION

The algorithm for subtraction resembles the algorithm for addition, but the carry
bit is called a “borrow,” and it works a little differently. If Z = X −Y , then digit zi
is computed from the difference xi − yi − ci, where ci is a borrow bit. If this
difference is negative, you must borrow b from a more significant digit, exploiting
the identity

zi+1 · bi+1 + zi · bi = (zi+1 − 1) · bi+1 + (zi + b) · bi.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ArithmeticB
S20

If no more significant digit is available to borrow from, the difference is negative
and therefore is not representable as a natural number—and the subtraction func-
tion must transfer control to a failure continuation (or halt with a checked run-time
error).

An algorithm that uses the array representation can loop on i, just as for addi-
tion, and it can keep track of the borrow bit ci at each iteration. An algorithm that
uses the list representation can use a recursive function sbb (subtract with borrow),
which is specified by these equations for sbb(X,Y, c) = X − Y − c:

sbb(X, 0, 0) = X

sbb(X, 0, 1) = X − 1

sbb(0, y0 + Y ′ · b, c) = 0, if y0 = 0 and Y ′ = 0 and c = 0

sbb(0, y0 + Y ′ · b, c) = error, if y0 6= 0 or Y ′ 6= 0 or c 6= 0

sbb(x0 +X ′ · b, y0 + Y ′ · b, c) = x0 − y0 − c+ sbb(X ′, Y ′, 0) · b,
if x0 − y0 − c ≥ 0

sbb(x0 +X ′ · b, y0 + Y ′ · b, c) = b+ x0 − y0 − c+ sbb(X ′, Y ′, 1) · b,
if x0 − y0 − c < 0

The specification of an algorithm for computing X − 1 is left as Exercise 11 in
Chapter 9.

B.3 MULTIPLICATION

To compute the product of two natural numbers X and Y , we compute the partial
products of all the pairs of digits, then add the partial products. Here s̓ an example:

7 3
8 9
2 7

2 4
1 6 3
5 6
6 4 9 7

As in the case of addition, the product of two digitsxi ·yi might not be representable
as a digit, so we compute

zhi = (xi · yi) div b
zlo = (xi · yi) mod b

xi · yi = zlo + zhi · b,

and both zhi and zlo are representable as digits.
To multiply two natural numbers represented as lists, we use these equations:

X · 0 = 0

0 · Y = 0

(x0 +X ′ · b) · (y0 + Y ′ · b) = zlo + (zhi + x0 · Y ′ +X ′ · y0)) · b+ (X ′ · Y ′) · b2,
where zhi = (x0 · y0) div b

zlo = (x0 · y0) mod b

That last equation unpacks into these steps:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§B.4
Short division

S21

1. Turn each single digit zlo , zhi , x0, or y0 into a natural number, by forming
zlo = zlo + 0 · b, and so on.

2. Use recursive calls to multiply natural numbers x0 ·Y ′, X ′ · y0, and X ′ ·Y ′.
3. Add up natural numbers zhi , x0 · Y ′, and X ′ · y0 into an intermediate

sum S, then multiply S · b by forming the natural number 0 + S · b.
4. Compute (X ′ · Y ′) · b2 by forming the natural number

0 + (0 + (X ′ · Y ′) · b) · b.
5. Add the three natural-number terms of the right-hand side.

To multiply two natural numbers represented as arrays, we compute

X · Y =

(∑
i

xib
i

)
·
(∑

j

yjb
j

)
=

∑
i

∑
j

(xi · yj) · bi+j

Again, to satisfy the representation invariant, each partial product (xi · yj) · bi+j

has to be split into two digits ((xi · yj) mod b) · bi+j + ((xi · yj) div b) · bi+j+1.
Then all the partial products are added.

B.4 SHORT DIVISION

Long division, in which you divide one natural number by another, is beyond the
scope of this book. Consult Hanson (1996) or Brinch Hansen (1994). But short divi-
sion, in which you divide a big number by a digit, is within the scope of the book,
and it is used to implement print: to convert a large integer to a sequence of dec-
imal digits, we divide it by 10 to get its least significant digit (the remainder), then
recursively convert the quotient.

Here is an example of short division in decimal. When 1528 is divided by 7, the
result is 218, with remainder 2:

0 2 1 8

7
)
1 15 12 58 remainder 2

Short division works from the most-significant digit of the dividend down to the
least-significant digit:

1. We start off dividing 1 by 7, getting 0 with remainder 1. Quotient 0 goes above
the line (producing the most-significant digit of the overall quotient), and the
remainder is multiplied by 10 and added to the next digit of the dividend (5)
to produce 15.

2. When 15 is divided by 7, quotient 2 goes above the line (producing the next
digit of the overall quotient), and remainder 1 is combined with the next digit
of the dividend (2) to produce 12.

3. When 12 is divided by 7, quotient 1 goes above the line (producing the next
digit of the overall quotient), and remainder 5 is combined with the next digit
of the dividend (8) to produce 58.

4. When 58 is divided by 7, quotient 8 goes above the line (producing the final
digit of the overall quotient), and remainder 2 is the overall remainder.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ArithmeticB
S22

To turn the example into an algorithm, we consider large-integer dividendX di-
vided by small-integer divisor d, from which we compute large-integer quotient Q
and small-integer remainder r, satisfying

X = Q · d+ r 0 ≤ r < d.

The algorithm is easiest to specify when X is represented as a list of digits.
If X is zero, both Q and r are also zero. If X is nonzero, then it has the form

x0+X ′·b, and we start with the most-significant digitsX ′. We recursively divideX ′

by d, giving quotient Q′ and remainder r′. To get the final quotient Q = q0+Q′ · b
and remainder r, we divide machine integer x0 + r′ · b by d:

X = x0 +X ′ · b = (q0 +Q′ · b) · d+ r

where q0 = (x0 + r′ · b) div d
r = (x0 + r′ · b) mod d

In our example above,

X = 1528 d = 7 q0 = 8

x0 = 8 Q′ = 21 Q = 218

X ′ = 152 r′ = 5 r = 2

When X is represented as an array, the algorithm loops down over index i,
starting with i = n and going down to i = 0. At each iteration, the algorithm com-
putes a digit qi of the quotient, and it computes an intermediate remainder ri. That
remainder is then named r′i−1, where it is combined with digit xi−1 to be divided
by d. Here are the equations:

qi = (r′i · b+ xi) div d r = r0

ri = (r′i · b+ xi) mod d r′i−1 = ri

r′n = 0

In the example on page S21,

x3 = 1

x2 = 5

x1 = 2

x0 = 8

d = 7

r′3 = 0

q3 = (0 · 10 + 1) div 7 = 0
r3 = (0 · 10 + 1) mod 7 = 1
q2 = (1 · 10 + 5) div 7 = 2
r2 = (1 · 10 + 5) mod 7 = 1
q1 = (1 · 10 + 2) div 7 = 1
r1 = (1 · 10 + 2) mod 7 = 5
q0 = (5 · 10 + 8) div 7 = 8
r0 = (5 · 10 + 8) mod 7 = 2

B.5 CHOOSING A BASE OF NATURAL NUMBERS

The algorithms above are independent of the base b. This base should be hidden
from client code, so you can choose any base that you want. What base should you
choose? For best performance, choose the largest b such that every intermediate
value of every computation can be represented as an atomic value.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§B.6
Signed-integer
arithmetic

S23

S23. 〈Molecule’s predefined module types S23〉≡
(module-type INT
(exports [abstype t] [< : (t t -> Bool.t)]

[+ : (t t -> t)] [<= : (t t -> Bool.t)]
[- : (t t -> t)] [> : (t t -> Bool.t)]
[* : (t t -> t)] [>= : (t t -> Bool.t)]
[/ : (t t -> t)] [= : (t t -> Bool.t)]
[negated : (t -> t)] [!= : (t t -> Bool.t)]
[print : (t -> Unit.t)]
[println : (t -> Unit.t)]))

Figure B.3: An interface to integer arithmetic

Should you find yourself working with assembly code or with machine instruc-
tions, your atomic value would be a machine word. You would have access to a
hardware “flag” or other register that could hold a carry bit or borrow bit, and also
to an “extended multiply” instruction that would provide the full two-word prod-
uct of two one-word multiplicands. The result of every intermediate computation
would be right there in the hardware, and you would choose b = 2k, where k would
be the number of bits in a machine word.

When youʼre working with a high-level language, your atomic value is a value
of type int. But you probably don’t have access to an add-with-carry instruction or
an extended-multiply instruction. More likely, you are stuck with an int that has
only 32 or 64 bits—or in some cases, even fewer bits. You have to choose b small
enough so that an int can represent any possible intermediate result:

• To implement addition and subtraction, you must be able to represent a sum
which may be as large as 2 · b− 1.

• To implement multiplication, you must be able to represent a partial product
which may be as large as (b− 1)2.

• To implement division, you must be able to represent the combination of a
remainder with a digit, which may be as large as (d−1) ·b+(b−1). If d ≤ b,
this combination may be as large as b2 − 1.

Depending on niceties of signed versus unsigned arithmetic, and whether values
of type int occupy 32 bits or 64, you can usually get good results with b = 215 or
b = 231. (Using a power of 2 makes computations mod b and div b easy and fast.)

B.6 SIGNED-INTEGER ARITHMETIC

Arithmetic on natural numbers can be leveraged to implement arithmetic on full,
signed integers. One possible interface, written in Molecule, is shown in Fig-
ure B.3. While machine arithmetic typically uses a twos̓-complement representa-
tion of integers, for arbitrary-precision arithmetic, I recommend a representation
that tracks the sign and magnitude of an integer. If youʼre using Molecule, here are
three good representations:

• Represent the magnitude and sign independently.

• Define an algebraic data type that encodes the sign in a value constructor,
and apply the value constructor to the magnitude, as in (NEGATIVE mag).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ArithmeticB
S24

• Define an algebraic data type with three value constructors: one each for posi-
tive numbers, negative numbers, and zero. A value constructor for a positive
or negative number is applied to a magnitude. The value constructor for zero
is an integer all by itself.

If youʼre using µSmalltalk, there s̓ only one sensible choice: as described in Sec-
tion 10.7, use classes LargePositiveInteger and LargeNegativeInteger.

Sign and magnitude can also be used to specify the abstraction, and if you do so,
you can specify most operations using algebraic laws. Some examples:

+N ++M = +(N +M) +N < +M = N < M

+N +−M = +(N −M), when N ≥M +N < −M = #f
+N +−M = −(M −N), when N < M negated(+N) = −N

+N + 0 = +N negated(0) = 0

The implementation of these laws depends on the programming language. If
weʼre using abstract data types in Molecule, our code can inspect the represen-
tations of two integers at once, and the signed-integer operations can be imple-
mented by pattern matching on pairs. If weʼre using objects inµSmalltalk, our code
will have to identify some representations using double dispatch (Section 10.7.3).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§B.6
Signed-integer
arithmetic

S25

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
F.1 STREAMS S175

F.1.1 Streams of lines S178
F.1.2 Streams of parenthe-

sized phrases S181
F.1.3 Streams of extended

definitions S185

F.2 BUFFERING CHARAC-
TERS S186

F.2.1 Implementation of a
print buffer S187

F.3 THE EXTENSIBLE BUFFER
PRINTER S188

F.3.1 Building variadic func-
tions on top of vbprint S190

F.3.2 Implementations of
vbprint andinstallprinter S191

F.3.3 Printing functions S191

F.4 ERROR FUNCTIONS S193
F.4.1 Implementation of er-

ror signaling S193
F.4.2 Implementations of er-

ror helpers S195

F.5 TEST PROCESSING AND
REPORTING S196

F.6 STACK-OVERFLOW DE-
TECTION S197

F.7 ARITHMETIC-OVERFLOW
DETECTION S198

F.8 UNICODE SUPPORT S199

CExtensions to algebraic data types

As I write this chapter, one of the most interesting frontiers in programming lan-
guages is the design of advanced type systems. People want type systems that do
more, ideally without giving up type inference. It s̓ possible to get algebraic data
types to do more, and in this section I describe two extensions that are now well
established.

The first extension is existential quantification. Existential quantification en-
ables us to hide information about representation, which in turn enables us to cre-
ate mixed representations that support an “open world.” Existential quantification
provides a nice type-theoretic model for object-oriented programming: an object s̓
private representation is existentially quantified. As evidence, I present an imple-
mentation of shapes; you can compare the examples below with the examples in
Chapter 10, which use objects.

The second extension is generalized algebraic data types, usually abbreviated to
GADTs. GADTs help refine information about type variables. Normally, all we know
about a type variable is that it stands for information about an unknown type. But
by using GADTs, we can look at a value constructor and get additional information,
limited in scope, about a type parameter to a datatype constructor.

To implement the first extension, existentials, requires minimal changes to
type inference and no changes to constraint solving. The type theory appears
below, and the code is in the Supplement. To implement the second extension,
GADTs, requires too much change to my interpreter: a more general representa-
tion of types, many changes to type inference, and a much more sophisticated con-
straint solver. Sadly, these changes are beyond the scope of this book.

C.1 EXISTENTIALS

Existential types enable us to hide what is usually known. They provide a great
model for object-oriented languages, in which what is hidden is the representation
of an object. And like objects, existential types enable new ways of thinking about
data structures and their evolution. I present a simple example on page S29 below,
which you can compare with the opening example of Chapter 10. But before we
look the example, we had better see how existential types work.

Trivial example: transparent and opaque boxes

As you know, a value of algebraic data type is constructed by applying a value con-
structor to arguments. What do we know about the arguments? If we know the type
of the result value, and we know what value constructor was applied, then we know
everything there is to know about the types of the arguments. Formally, when we

S27
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S28

know τ , we know each τi:

Γ ` K : τ1 × · · · × τm → τ

Γ,Γ′
i ` pi : τi, 1 ≤ i ≤ m

Γ′ = Γ′
1] · · ·] Γ′

m

Γ,Γ′ ` (K p1 · · · pm) : τ
(PATVCON)

Existentials let us hide information about τi s̓.
Before we start hiding things, let s̓ start with an ordinary algebraic data type in

which nothing is hidden: a transparent box.
S28a. 〈existential transcript S28a〉≡ S28b ▷

-> (data (* => *) transparent-box
[TBOX : (forall ['a] ('a -> (transparent-box 'a)))])

transparent-box :: (* => *)
TBOX : (forall ['a] ('a -> (transparent-box 'a)))

We can put a value in a box, then take it again, and we never lose track of its type:
S28b.

put-in : (forall ['a] ('a -> (transparent-box 'a)))
take-out : (forall ['a] ((transparent-box 'a) -> 'a))

〈existential transcript S28a〉+≡ ◁ S28a S28c ▷

-> (val put-in TBOX)
-> (define take-out (box) (case box [(TBOX a) a]))

Transparent boxes are polymorphic; a transparent box can hold a value of any type
we like.
S28c. 〈existential transcript S28a〉+≡ ◁ S28b S28d ▷

-> (val box1 (put-in 'answer))
(TBOX answer) : (transparent-box sym)
-> (val box2 (put-in 42))
(TBOX 42) : (transparent-box int)

But we canʼt make a list of box1 and box2—they have different types:
S28d. 〈existential transcript S28a〉+≡ ◁ S28c S28e ▷

-> (list2 box1 box2)
type error: cannot make int equal to sym

If box1 and box2 could somehow hide the types of their contents, then we could
put them on a list. To make an opaque box that hides the type of its contents, I use
an existential:1

S28e. 〈existential transcript S28a〉+≡ ◁ S28d S28f ▷
-> (data * opaque-box

[OBOX : (forall ['a] ('a -> opaque-box))])
opaque-box :: *
OBOX : (forall ['a] ('a -> opaque-box))

The opaque box doesn’t take a type parameter. If I put something in an opaque box,
its type is hidden:
S28f.

hide : (forall ['a] ('a -> opaque-box))
〈existential transcript S28a〉+≡ ◁ S28e S29a ▷

-> (val hide OBOX)
-> (val box3 (hide 'the-body))
(OBOX the-body) : opaque-box
-> (val box4 (hide (lambda (n) (+ (* 2 n) 1))))
(OBOX <function>) : opaque-box
-> (val hidden-answer (hide 42))
(OBOX 42) : opaque-box

1Please tolerate, for the moment, the lunacy of calling something “existential” when it is written
forall.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.1. Existentials

S29

And once something is hidden, there s̓ no way to reveal it. The definition of reveal
here is exactly the same as the definition of take-out above, except it uses value
constructor OBOX instead of TBOX:
S29a. 〈existential transcript S28a〉+≡ ◁ S28f S29b ▷

-> (define reveal (box) (case box [(OBOX a) a]))
type error: in choice [(OBOX a) a], right-hand side has type skolem type 23, ...

The error message complains that “skolem type 21” is an “escaping skolem type.”
The skolem type (page S33, named for Norwegian mathematician Thoralf Skolem) is
a proxy for the unknown type of the value inside the box. Even if we know, as pro-
grammers, what the value is, the type system wonʼt let us compute with it. For ex-
ample, even though I know the result of applying the function in box4 should be an
integer—there are no mysterious “escaping” skolem types—the type system wonʼt
let me do it.
S29b. 〈existential transcript S28a〉+≡ ◁ S29a S29c ▷

-> (case box4 [(OBOX f) (f 7)])
type error: cannot make skolem type 24 equal to (int -> 'a)

The type system will not let me know that f is a function. It will, however, let me
make a list of opaque boxes whose contents have different types:
S29c. 〈existential transcript S28a〉+≡ ◁ S29b S29d ▷

-> (list2 box3 box4)
((OBOX the-body) (OBOX <function>)) : (list opaque-box)

Because you canʼt do anything with the contents, the opaque box is useless. But it
illustrates the mechanism, which I now deploy in a more compelling example.

Using existentials to create an open-world representation: shapes

Here I use existentials to develop a library for creating two-dimensional images
from shapes. The library is based on ideas from object-oriented programming, in
which the representation of each shape is private, but the operations available to per-
form on shapes are public (Chapter 10). I begin by using algebraic data types, in
the standard way, to define an abstraction with multiple representations: I define
a type with one value constructor per representation.
S29d. 〈existential transcript S28a〉+≡ ◁ S29c S29e ▷

-> (record pt ([x : int] [y : int])) ;; a point on the plane
-> (implicit-data closed-shape

[CIRCLE of pt int] ;; center and radius
[RECTANGLE of pt pt]) ;; lower-left and upper-right corners

The type is called closed-shape because it embodies a closed-world assumption:
once the type is defined, no new shapes can be added.

I want to implement three operations on shapes: scale a shape, translate a
shape, and draw a shape. To scale something, I define a multiplier that says by
how many thousandths the size of a shape should be multiplied.
S29e. 〈existential transcript S28a〉+≡ ◁ S29d S29f ▷

I start by scaling points and integers.
S29f.

scale-int : (int int -> int)
scale-pt : (int pt -> pt)

〈existential transcript S28a〉+≡ ◁ S29e S30a ▷
-> (define scale-int (thousandths n)

(/ (+ (* thousandths n) 500) 1000))
-> (define scale-pt (mult p)

(make-pt (scale-int mult (pt-x p)) (scale-int mult (pt-y p))))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S30

Now I can scale shapes by doing a case analysis.
S30a.

scale-closed-shape : (int closed-shape -> closed-shape)
〈existential transcript S28a〉+≡ ◁ S29f S30b ▷

-> (define scale-closed-shape (f shape)
(case shape
[(CIRCLE center radius) (CIRCLE (scale-pt f center) (scale-int f radius))]
[(RECTANGLE ll ur) (RECTANGLE (scale-pt f ll) (scale-pt f ur))]))

I can implement translation and drawing in the same way. But the library isnʼt
very useful, because it canʼt be extended with new shapes. What if I want an ellipse?
Or a line? Or an arrow? Or a triangle? Or a list of shapes, one atop the next? Not one
of these shapes can be represented using closed-shape. If youʼre limited to plain,
ordinary algebraic data types, there s̓ not much you can do. The usual technique is:

1. Extend the definition of closed-shape with new value constructors.
2. Extend the scale-closed-shape function with new cases.
3. Extend the translate-closed-shape function with new cases.
4. Extend the draw-closed-shape function with new cases.

Not only is this technique tedious, but if every program that uses shapes has to
change the source code, there is no way to put the code into a library that many
programs can share.

The damage can be mitigated by using type parameters and higher-order func-
tions, but there is a better way: suppose we use existentials to hide the exact rep-
resentations of shapes, and instead focus on the three operations of scaling, trans-
lation, and drawing. If we have those operations, for any shape, we can put them
into a record, which is a central idea of object-oriented programming:
S30b.

make-shapely :
(forall ['a] ((int 'a -> 'a) (pt 'a -> 'a) ('a -> unit) -> (shapely 'a)))
shapely-scale : (forall ['a] ((shapely 'a) -> (int 'a -> 'a)))
shapely-translate : (forall ['a] ((shapely 'a) -> (pt 'a -> 'a)))
shapely-draw : (forall ['a] ((shapely 'a) -> ('a -> unit)))

〈existential transcript S28a〉+≡ ◁ S30a S30c ▷

-> (record ('a) shapely
([scale : (int 'a -> 'a)]
[translate : (pt 'a -> 'a)]
[draw : ('a -> unit)]))

Now we can represent a shape as an opaque package containing a representation
of type β—Iʼm not going to let you see what it is—and a record of operations of type
(shapely β).
S30c. 〈existential transcript S28a〉+≡ ◁ S30b S30d ▷

-> (data * shape
[SHAPE : (forall ['b] ('b (shapely 'b) -> shape))]) ;; existential 'b

shape :: *
SHAPE : (forall ['b] ('b (shapely 'b) -> shape))

Here s̓ how we can scale a shape without knowing its representation:
S30d.

scale-shape : (int shape -> shape)
〈existential transcript S28a〉+≡ ◁ S30c S31a ▷

-> (define scale-shape (mult s)
(case s
[(SHAPE b operations)

(SHAPE ((shapely-scale operations) mult b) operations)]))
scale-shape : (int shape -> shape)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.1. Existentials

S31

And translate:
S31a.

translate-shape : (pt shape -> shape)
〈existential transcript S28a〉+≡ ◁ S30d S31b ▷

-> (define translate-shape (vector s)
(case s
[(SHAPE b operations)

(SHAPE ((shapely-translate operations) vector b) operations)]))
-> (define translate-pt (vector pt)

(case (PAIR vector pt)
[(PAIR (make-pt x1 y1) (make-pt x2 y2))
(make-pt (+ x1 x2) (+ y1 y2))]))

And draw:
S31b.

draw-shape : (shape -> unit)
〈existential transcript S28a〉+≡ ◁ S31a S31c ▷

-> (define draw-shape (s)
(case s
[(SHAPE b operations)

((shapely-draw operations) b)]))

Now if we had a shape, we would know what to do with it. How do we make
a shape? Choose a representation, and supply the relevant operations. Here s̓ a
circle:
S31c.

circle : (pt int -> shape)
〈existential transcript S28a〉+≡ ◁ S31b S31d ▷

-> (implicit-data circle [C of pt int])
; (C center radius)

-> (use postscript.uml) ;; load PostScript drawing library from Supplement
-> (val circle-ops

(make-shapely
(lambda (mult c)

(case c [(C center radius)
(C (scale-pt mult center) (scale-int mult radius))]))

(lambda (vec c)
(case c [(C center radius) (C (translate-pt vec center) radius)]))

(lambda (c)
(case c [(C (make-pt x y) r) (ps-draw-circle x y r)]))))

-> (define circle (center radius)
(SHAPE (C center radius) circle-ops))

I can make a disk using the same representation, changing only the drawing
function.
S31d.

disk : (pt int -> shape)
〈existential transcript S28a〉+≡ ◁ S31c S31e ▷

-> (val disk
(let* ([draw (lambda (c)

(case c ((C (make-pt x y) r) (ps-draw-disk x y r))))])
(case circle-ops
[(make-shapely scale translate _)

(lambda (center radius)
(SHAPE (C center radius) (make-shapely scale translate draw)))])))

Here is a line, which I represent as a list containing two points. I build the operator
record, then return a function that makes shapes using that record.
S31e.

line : (pt pt -> shape)
〈existential transcript S28a〉+≡ ◁ S31d S32a ▷

-> (val line
(let* ([scale (lambda (mult pts) (map ((curry scale-pt) mult) pts))]

[trans (lambda (vec pts) (map ((curry translate-pt) vec) pts))]
[draw (lambda (pts) (ps-draw-polyline '1.5 pt-x pt-y pts))]
[ops (make-shapely scale trans draw)])

(lambda (p1 p2) (SHAPE (list2 p1 p2) ops))))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S32

As my final shape, I define a list of shapes, drawn in order, to be a shape. Again
I build the record and return a function.
S32a.

shapes : ((list shape) -> shape)
〈existential transcript S28a〉+≡ ◁ S31e S32b ▷

-> (val shapes
(let* ([scale (lambda (mult shapes) (map ((curry scale-shape) mult) shapes))]

[trans (lambda (vec shapes) (map ((curry translate-shape) vec) shapes))]
[draw ((curry app) draw-shape)]
[ops (make-shapely scale trans draw)])

(lambda (shapes) (SHAPE shapes ops))))

Now I can define a target shape:
S32b.

target : shape
〈existential transcript S28a〉+≡ ◁ S32a S32c ▷

-> (val target
(let* ([origin (make-pt 0 0)]

[center (disk origin 9)]
[ring (circle origin 15)]
[tick (lambda (x1 x2 y1 y2) (line (make-pt x1 x2) (make-pt y1 y2)))]
[tick1 (tick 15 0 18 0)]
[tick2 (tick -15 0 -18 0)]
[tick3 (tick 0 15 0 18)]
[tick4 (tick 0 -15 0 -18)])

(shapes (list6 center ring tick1 tick2 tick3 tick4))))

And convert it to a PostScript file:
S32c. 〈existential transcript S28a〉+≡ ◁ S32b

-> (define psfile (shape)
(begin (println '%!PS-Adobe-1.0)

(draw-shape shape)))
-> (psfile (translate-shape (make-pt 300 600) (scale-shape 2000 target)))
%!PS-Adobe-1.0
300 600 18 0 360 arc closepath 0.0 setgray fill
300 600 30 0 360 arc closepath stroke
1.5 setlinewidth newpath 330 600 moveto 336 600 lineto 0.0 setgray stroke
1.5 setlinewidth newpath 270 600 moveto 264 600 lineto 0.0 setgray stroke
1.5 setlinewidth newpath 300 630 moveto 300 636 lineto 0.0 setgray stroke
1.5 setlinewidth newpath 300 570 moveto 300 564 lineto 0.0 setgray stroke
UNIT : unit

If the output is placed in a file target.ps, most document viewers can display it:

Explanation and theory of existentials

To understand how existential types work and how they are implemented, let s̓ try
to build intuition by relating types to logical formulas. A logical formula ∀x.P says
that proposition P holds for any value of x—you can choose any x you like. But the
logical formula ∃x.P says that proposition P holds for one particular value of x—
you donʼt get to choose x. In the existential formula, somebody else has chosen the
value of x, and you donʼt know what value theyʼve chosen.

Types work the same way. The type ∀α.τ is a quantified type that can be instan-
tiated by choosing any type τ ′ that you like, and substituting τ ′ for α in τ . The type
∃α.τ is a quantified type that can’t be instantiated any way you like. Somebody else
has already chosen a τ ′, and the type you have access to is τ with the unknown τ ′

substituted for α.
Existential types have many honorable uses in programming languages, usually

to formalize language constructs that hide information. But the use of existential
types to describe value constructors is a bit startling: the type of a value constructor

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.1. Existentials

S33

can be either universally quantified or existentially quantified, depending on the
context in which it occurs. This context-dependent typing can be understood most
easily in a very simple example: the opaque box (page S28). When it s̓ used as a
value, the value constructor OBOX has type ∀α.α → opaque-box. That is, you can
choose a value of any type you like and put it in the box. But when it s̓ used as
a pattern, the value constructor OBOX has type (∃α.α) → opaque-box. That is,
somebody else has put a value in the box, and you donʼt know what its type is.

If a value constructor can have two different types depending on context, which
one are we supposed to write? Historically, we write the universally quantified ver-
sion, which gives the type in the value context. This convention arose most prob-
ably because it can be implemented without changing any of the syntax used to
define algebraic data types: if there is a type variable that s̓ not a parameter to the
result type, that type variable is considered existentially quantified. That rule is
expressed informally as function asX , which is short for “as existential.” Here s̓
a simplified specification with just one universally quantified variable α1 and one
existentially quantified variable β1:

asX 1(∀α1, β1.τ1 → α1 τ) = ∀α1.(∃β1.τ1)→ α1 τ .

The full version asX handles any number of αi s̓ and βi s̓.
Now that we know about these two different types, what do we do with them?

When we have a type like∀α.α→ opaque-box, we know just what to do: substitute
any type we like for α. In nondeterministic rules, we nondeterministically substi-
tute exactly the right type; in type inference, we substitute a fresh type variable.
Either way, the substitution eliminates the universal quantifier. What about a type
like (∃β.β) → opaque-box? We would like to do the same thing: eliminate the
quantifier and substitute for β. But we canʼt substitute an arbitrary type, and so we
canʼt substitute a fresh type variable, which, via type inference, might be equated
to an arbitrary type. We have to substitute a type that is not only unknown but truly
undiscoverable: the hidden type that somebody else put in the box. The name for
such a type is a skolem type, and the process of substituting skolem types for exis-
tentially quantified variables is called skolemization.2

A skolem type acts a lot like a type constructor: it is equivalent only to itself,
and you canʼt substitute for it during constraint solving. But because a skolem type
does not behave in exactly the same way as a type constructor, I use notation that
suggests “type constructor” but is not exactly the same: I write a skolem type as µ̃.

Now I can give typing rules for a value constructor that may appear in two con-
texts: in an expression or in a pattern. For the expression context, I continue to
use the judgment form Γ ` K : τ , with the same rule as above:

Γ(K) = σ τ ′ ⩽ σ

Γ ` K : τ ′
(VCON)

For the pattern context, I define a new judgment form Γ `p K : τ , with a rule that
performs these steps:

1. Look up K in Γ to get σ, which is the universally quantified version of K s̓
type.

2. Convert σ to its existentially quantified version.

3. Choose fresh skolem types µ̃1, . . . , µ̃m.

4. Skolemize the existentially quantified type, producing a new type schemeσ′.
2Elsewhere you may see the term skolem variable; it means the same thing as a skolem type.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S34

5. Instantiate σ′ to get τ ′, the type of K in the pattern context.

Here s̓ the rule:

Γ(K) = σ asX (σ) = ∀α1, . . . , αn.(∃β1, . . . , βm.τ1 × · · · × τm)→ τ

{µ̃1, . . . , µ̃m} ∩ ftc(Γ) = ∅
σ′ = (∀α1, . . . , αm.τ1 × · · · × τm → τ)[β1 7→ µ̃1, . . . , βm 7→ µ̃m] τ ′ ⩽ σ′

Γ `p K : τ ′

(VCONINPATTERN)
Function ftc finds all the type constructors, including skolem types, used in Γ.

Weʼre not quite done with skolem types. Skolem types donʼt just look different
from ordinary type constructors; they are also semantically different. An ordinary
type constructor like int or bool always means the same set of values at run time.
But a skolem type that appears in a case expression can mean something different on
each evaluation of the case expression. Just think about the shape functions above.
In scale-shape, for example, sometimes the hidden type is circle, but other times
it is (list pt). But within the scope of the case expression, both of these hidden
representations are given the same skolem type, say µ̃17. It is absolutely crucial
that µ̃17 not escape the case expression. That s̓ because the equivalence µ̃17 ≡ µ̃17

is sound only for duration of a single evaluation. We must prevent all the following
means of escape:

• A skolem type appears in the type of the result.

• A skolem type appears in the type of the scrutinee.

• A skolem type appears in a constraint in such a way that it wants to be sub-
stituted for a type variable that appears free in the environment.

So the skolem types that are introduced by a pattern match must not appear in
either the argument type or the result type of that pattern match.

C,Γ,Γ′ ` p : τ C ′,Γ + Γ′ ` e : τ ′

θ(C ∧ C ′) ≡ T

fs(θΓ′) ∩ fs(θΓ) = ∅ fs(θΓ′) ∩ fs(θ(τ → τ ′)) = ∅
C ∧ C ′,Γ ` [p e] : τ → τ ′

(EXISTENTIALCHOICE)

Function fs finds the (free) skolem types that appear in an environment.
This book ships with two versions of the µML interpreter: interpreter uml

runs plain µML, and interpreter umlx runs µML extended with existential types.
The code for the extensions appears in Appendix S.

C.2 GADTS

GADTs, which are short for generalized algebraic data types, allow you to attach extra
type information to constructed values. The extra type information can help the
compiler remove run-time overhead and rule out certain run-time errors. It can
also help you build functions that effectively dispatch on the type. GADTs are an ad-
vanced language feature, and type inference for GADTs is very involved—too much
for me to implement in a bridge language. But in this section I show one example
of GADTs, written in the popular functional language Haskell. At the end of the
section I mention several other applications.

My main example is a simple evaluator with tagged values, which works just like
the eval functions in this book. In deference to common Haskell style, I write value

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.2. GADTs

S35

constructors with only an initial capital letter, not in all capitals as Standard ML
programmers do.
S35a. 〈transcript S35a〉≡ S35b ▷

-> (data * value
[Bool : (bool -> value)]
[Int : (int -> value)])

value :: *
Bool : (bool -> value)
Int : (int -> value)
-> (Bool #t)
(Bool #t) : value
-> (Int 7)
(Int 7) : value

The values I can represent include integers and Booleans, and they are distin-
guished by the value constructors Int and Bool, which act as tags.

Now I can design a little language of expressions, which contains literals, addi-
tion, comparison, and conditional:
S35b. 〈transcript S35a〉+≡ ◁ S35a S35c ▷

-> (data * exp
[Lit : (value -> exp)] ;; bool or int
[Plus : (exp exp -> exp)] ;; add two ints to make an int
[Less : (exp exp -> exp)] ;; compare two ints to make a bool
[If : (exp exp exp -> exp)]) ;; look at a bool and choose an 'a

This representation is like the representations used throughout this book, and
when we use it to write an evaluator, here are some of the things that cost extra
or can go wrong:

• Each literal-value expression pays the cost of two tags: one from exp that
marks it as a literal, and one from value that marks it as int or bool.

• Evaluating Plus will fail if either argument is a Boolean. Even if the child
of a Plus node is a Plus or a literal Int, I still have to check at run time.
Similar checks are implemented in interpreters for µScheme and µML,
for example, and if the check fails, an interpreter raises RuntimeError or
BugInTypeInference.

• I know that evaluating Plus produces an int and evaluating Less produces
a bool, but I have no way to tell the compiler. And nothing stops me from
creating terms that I know can’t be evaluated:
S35c. 〈transcript S35a〉+≡ ◁ S35b

-> (val ill-typed (Plus (Less (Lit (Int 2)) (Lit (Int 9))) (Lit (Int 1))))
(Plus (Less (Lit (Int 2)) (Lit (Int 9))) (Lit (Int 1))) : exp

For this very simple language, I could work around the problem by defining two
forms of expression, say int-exp and bool-exp, which evaluate to integers and
Booleans respectively. Value constructors Plus and Less belong only to int-exp,
but constructors Lit and If are polymorphic and have to be duplicated. If I want
to add more types, and if I want more polymorphic language constructs, such as
let expressions and function calls, this trick doesnʼt scale.

What I d̓ like to do is use the type system of the implementation language (µML,
Standard ML, or Haskell) to accomplish two goals:

• Prevent anyone from constructing a term like ill-typed, which causes a
run-time error if evaluated.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S36

• Explain to the compiler that when deconstructing a term, errors are not pos-
sible.

The first goal can be addressed using phantom types. The second requires GADTs.

Ruling out ill-typed expressions using phantom types

A phantom type is a type parameter that is used to enforce some invariant, but
that does not actually appear in a representation. Enforcing the invariant requires
type constraints on functions, and often these functions are “smart constructors.”
Unfortunately I canʼt express type constraints in µML—adding them is Exercise 1
on page S39. I could do the examples in Standard ML, but for coherence with the
rest of the section, I switch to Haskell, which supports not only type constraints but
also GADTs.

In Haskell, a type constructor is written with a capital letter, and a type variable
is written with a lower-case letter. The same rules apply to value constructors and
value variables; the design is very consistent, but it is sometimes difficult to distin-
guish the type language from the term language. Here again are the definitions of
types value and exp from above, written in in Haskell:3

S36a. 〈Haskell definitions for GADT example S36a〉≡ S36b ▷

data Value :: * where
Int :: (Int -> Value)
Bool :: (Bool -> Value)

data Exp :: * where
Lit :: (Value -> Exp)
Plus :: (Exp -> Exp -> Exp)
Less :: (Exp -> Exp -> Exp)
If :: (Exp -> Exp -> Exp -> Exp)

Notice the double colons. They are used in the term language to say that a value has
a given type, and they are used in the type language to say that a type has a given
kind. Also, Haskell has no multi-argument functions or value constructors, so the
value constructors are Curried.

As in µML, I can make nonsensical values of type Exp. To rule them out, I take
two additional steps: First, I define TypedExp, which takes a phantom type param-
eter. A TypedExp wraps an Exp; the newtype definition guarantees that Exp and
TypedExp have the same representation, and that applying or matching on value
constructor TE costs nothing at run time.

S36b. 〈Haskell definitions for GADT example S36a〉+≡ ◁ S36a S36c ▷
newtype TypedExp :: * -> * where
TE :: forall a . Exp -> (TypedExp a) -- XXX fix me

Second, I define smart constructors for TypedExp. These constructors are con-
strained by type signatures, so any value made using them represents a well-typed
expression. A type signature acts like a check-type, only stronger: it permits the
function to be used only at instances of the specified type. (In Exercise 1, you can
add a similar form, type-is, to µML.)
S36c. 〈Haskell definitions for GADT example S36a〉+≡ ◁ S36b S37b ▷

int :: (Int -> (TypedExp Int))
bool :: (Bool -> (TypedExp Bool))
plus :: ((TypedExp Int) -> (TypedExp Int) -> (TypedExp Int))
less :: ((TypedExp Int) -> (TypedExp Int) -> (TypedExp Bool))

3If you have experience with Haskell, you should be horrified by all the parentheses. The parentheses
are for inexperienced readers; they make the Haskell code look more like µML code.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.2. GADTs

S37

ifx :: (forall a . ((TypedExp Bool) -> (TypedExp a) -> (TypedExp a) -> (TypedExp a)))

int n = (TE (Lit (Int n)))
bool b = (TE (Lit (Bool b)))
plus (TE e1) (TE e2) = (TE (Plus e1 e2))
less (TE e1) (TE e2) = (TE (Less e1 e2))
ifx (TE e1) (TE e2) (TE e3) = (TE (If e1 e2 e3))

Now I can revisit the ill-typed example above. With the smart constructors,
the type checker wonʼt let me add a Boolean expression to an integer expression.
S37a. 〈GHCI transcript S37a〉≡ S38b ▷

*Bookgadt> (plus (less (int 2) (int 9)) (int 1))

<interactive>:3:8:
Couldn't match type ʻBool’ with ʻInt’
Expected type: TypedExp Int
Actual type: TypedExp Bool

In the first argument of ʻplus’, namely ʻ(less (int 2) (int 9))’
In the expression: (plus (less (int 2) (int 9)) (int 1))

*Bookgadt>

Unfortunately, the eval function still has to account for the possibility of error
at run time:
S37b. 〈Haskell definitions for GADT example S36a〉+≡ ◁ S36c S37c ▷

eval :: TypedExp a -> Value
eval (TE e) =
let ev e =

case e of
{ (Lit v) -> v
; (Plus e1 e2) -> case (ev e1, ev e2) of

{ (Int n, Int m) -> (Int (m + n))
; _ -> (error "expected integers")
}

; (Less e1 e2) -> case (ev e1, ev e2) of
{ (Int n, Int m) -> (Bool (m < n))
; _ -> (error "expected integers")
}

; (If e1 e2 e3) -> case (ev e1) of
{ (Bool b) -> (ev (if b then e2 else e3))
; _ -> (error "expected Boolean")
}

}
in ev e

Smart constructors buy you a lot, and if youʼre stuck programming in µML,
Standard ML, or standard Haskell, keep them in mind. But if youʼre lucky enough
to be programming in OCaml, extended Haskell, Agda, or Idris, you can use GADTs
instead.

Eliminating tags using GADTs

A GADT is a generalized algebraic data type. What s̓ generalized? The types of the
value constructors. In particular, GADTs lift the restriction that the type parameters
passed to the result type must be type variables. In a GADT, you can use any type as
a type parameter. In our running example, instead of wrapping Exp in TypedExp,
I just define TExp, with these value constructors:
S37c. 〈Haskell definitions for GADT example S36a〉+≡ ◁ S37b S38a ▷

data TExp :: * -> * where

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S38

TLit :: forall a . (a -> (TExp a)) -- XXX fix me
TPlus :: ((TExp Int) -> (TExp Int) -> (TExp Int))
TLess :: ((TExp Int) -> (TExp Int) -> (TExp Bool))
TIf :: forall a . ((TExp Bool) -> (TExp a) -> (TExp a) -> (TExp a)) -- XXX fix me

The TLit and TIf constructors pass type variable a to TExp, but TPlus and TLess
pass type parameters Int and Bool, respectively.

The definition of TExp displays a number of pleasing properties:

• The Value type is gone. The TLit constructor is polymorphic, which means
we can take a value of any type a and turn it into an expression.

• We know that TPlus expects integer expressions and returns an integer ex-
pression. TLess expects integer expressions and returns a Boolean expres-
sion.

• TIf is polymorphic: the condition has to be a Boolean expression, but the
true and false branches can be expressions of any type, as long as theyʼre the
same.

We can also write a new evaluator without Value. If we evaluate a typed expres-
sion of type (TExp a), what we get back is just an a. No tags, and no possibility of
run-time error:
S38a. 〈Haskell definitions for GADT example S36a〉+≡ ◁ S37c

teval :: (forall a . ((TExp a) -> a))
teval e = case e of

{ (TLit a) -> a
; (TPlus e1 e2) -> ((teval e1) + (teval e2))
; (TLess e1 e2) -> ((teval e1) < (teval e2))
; (TIf e1 e2 e3) -> (teval (if (teval e1) then e2 else e3))
}

In this evaluator, results are untagged. Depending on context, function teval re-
turns an integer, a Boolean, or a value of unknown type, and we never need a run-
time case expression to figure out which is which. For example, the result of eval-
uating a TPlus expression can be passed directly to + without any run-time checks.
The code is simpler, cleaner, and just works. Here s̓ some evidence:
S38b. 〈GHCI transcript S37a〉+≡ ◁ S37a

*Bookgadt> (teval (TPlus (TPlus (TLit 2) (TLit 9)) (TLit 1)))
12
*Bookgadt> (teval (TIf (TLess (TLit 2) (TLit 9)) (TLit "smaller") (TLit "??")))
"smaller"

Getting these great results requires some sophisticated type inference, which
is well beyond the scope of this book. As of early 2015, the Glasgow Haskell Com-
piler uses the “OutsideIn” algorithm, which works type information from the sig-
nature of teval (the “outside”) to the right-hand sides of the choices in the case
expression. If you want to try similar examples yourself, remember that to make
OutsideIn work, the top-level type signature on teval is required.

More GADTs

GADTs are a powerful tool for encoding dynamic properties in static types. In my
own work, for example, we use GADTs to represent control-flow graphs in an opti-
mization library; the GADTs govern exactly what code fragments can be composed
in sequence, and they guarantee that a finished control-flow graph never contains
a dangling edge.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.3
Further reading

S39

GADTs are used in many contexts to eliminate tags on inputs or outputs. Two of
my favorite examples are using GADTs to implement a type-safe version of printf,
without tags, and using GADTs to represent the stack in an LR parser, which is much
like the ParserState in Section G.3 on page S206.

GADTs have also been used to encode permissions, and they have been used in
many kinds of type-directed computation, including converting values to bit strings
and back.

C.3 FURTHER READING

Algebraic data types were first extended to include existentially quantified value
constructors by Perry (1991), and the underlying type theory was perfected by
Läufer and Odersky (1994). Läufer and Odersky crafted their language to minimize
the number of syntactic forms and the number of rules in the type theory, which
makes it look very different from the case expressions and patterns we use to-
day. Also, they explain type inference using explicit substitutions, not constraints.
If you want additional context for the use of existential types to hide representa-
tions, Mitchell and Plotkin (1988) go deep into the type theory, and they also present
many programming examples.

GADTs exploded onto the programming-language scene in the early 2000s.
My favorite introduction is the book chapter by Hinze (2003), who presents GADTs
as an extension of phantom types. Pottier and Régis-Gianas (2006) present an excel-
lent application: they use GADTs to replace an unsafe parsing stack—used by Yacc,
Bison, and other parser generators—with a safe, typed data structure. The unsafe
stack is essentially the same as the sequence of components used in the C parsers
described in Appendix G. My own application of GADTs to a dataflow-optimization
library is described by Ramsey, Dias, and Peyton Jones (2010).

Type inference for GADTS has proven challenging; using a GADT s̓ value con-
structor brings additional type-equality constraints into play, but those constraints
apply only on the right-hand side of a choice in a case expression, not more broadly
as we are used to. Some good inference algorithms have been proposed, but truly
simple, clear explanations of the best algorithms have yet to be written. To get
started, I recommend the OutsideIn paper by Schrijvers et al. (2009), but with
caveats: the paper describes several different languages and type systems, and
you may have trouble understanding the distinctions and relations among them.
You may also be overwhelmed by the sheer detail required. A later, less dense ver-
sion of this paper appeared in a journal (Vytiniotis et al. 2011), but the later treat-
ment is much more abstract. If you already understand the algorithms, you will
like the abstraction, but if not, you will find the abstract treatment hard to learn
from.

C.4 EXERCISE

1. Type constraints. If you want to define smart constructors that use phantom
types, you need a way to constrain a function to be used at a less general type
than its implementation permits. Extend µML with a new definition form

def ::= (type-is value-variable-name type-exp)

The form is typically used with a function f ; you write (type-is f σ), and
thereafter, f may be used only at the given type scheme, which may be
strictly less general than its given type scheme. You check that the claimed

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S40

type scheme is an instance of f s̓ current type scheme, then update the type
environment:

∆ ` t ; σ :: ∗ Γ(f) = σ′ σ ⩽ σ′

〈(type-is f t),Γ〉 → Γ{f 7→ σ}
(TYPEIS)

You will reuse the txTyScheme function from chunk S427b, and you will find
code for σ ⩽ σ′ as part of the implementation of check-type.

A type-is definition must follow the definition of the name it constraints.
It s̓ not as convenient as check-type or a Haskell type signature, but it s̓ more
convenient than anything you can write in Standard ML.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§C.4. Exercise

S41

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
D.1 THINKING IN THE LAN-

GUAGE OF LOGIC S46
D.2 USING PROLOG S51
D.3 THE LANGUAGE S56

D.3.1 Concrete syntax S56
D.3.2 Unit tests S57
D.3.3 Abstract syntax (and no

values) S57
D.3.4 Semantics S58
D.3.5 Primitive predicates S72

D.4 MORE SMALL PROGRAM-
MING EXAMPLES S73

D.4.1 Lists S73
D.4.2 Arithmetic S77
D.4.3 Sorting S78
D.4.4 Difference lists S79

D.5 IMPLEMENTATION S81
D.5.1 The database of clauses S81
D.5.2 Substitution, free vari-

ables, and unification S82
D.5.3 Backtracking search S83
D.5.4 Processing clauses and

queries S84
D.5.5 Primitives S85

D.5.6 Putting the pieces to-
gether S87

D.6 LARGER EXAMPLE: THE
BLOCKS WORLD S87

D.7 LARGER EXAMPLE: HASKELL
TYPE CLASSES S92

D.8 PROLOG AS IT REALLY IS S96
D.8.1 Syntax S96
D.8.2 Logical interpretation

as a single first-order
formula S96

D.8.3 Semantics S97

D.9 SUMMARY S101
D.9.1 Key words and phrases S101
D.9.2 Further Reading S104

D.10 EXERCISES S104
D.10.1 Digging into the lan-

guage S106
D.10.2 Puzzles and games S113
D.10.3 Digging into the seman-

tics S117
D.10.4 Digging into the inter-

preter S118

§C.4. Exercise

S43

C.4.1 Bonus features

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extensions to
algebraic data

typesC
S44

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

DProlog and logic programming

The validity of the processes of analysis does not depend
upon the interpretation of the symbols which are employed,

but solely upon the laws of their combination… We
might justly assign it as the definitive character of a true

Calculus, that it is a method resting upon the employment
of Symbols, whose laws of combination are known and

general, and whose results admit of a consistent
interpretation… It is upon the foundation of this general

principle, that I purpose to establish the Calculus of Logic.

George Boole (1847), The Mathematical Analysis of
Logic

The problem that led to the creation of Prolog was the problem of creating machine
intelligence. Alan Turing s̓ famous test deems a machine intelligent if it can con-
verse in a way that is indistinguishable from human. And any such machine must
show some ability to reason about facts. Such reasoning was central to research
that produced the first computer programs you could converse with, which were
written in the late 1960s and early 1970s.

Reasoning itself has been a topic of study since ancient Greece. The best-known
ancient work is probably Aristotle s̓ Organon. You may have seen this example of
“syllogism”:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

The important thing is the form of the argument, not the meanings of the nouns
and adjectives. It is equally valid to say,

All rabbits are mammals. Bugs Bunny is a rabbit. Therefore, Bugs
Bunny is a mammal.

The content is not so convincing, but the form is the same. Today we would express
only the form, using mathematical abstraction:

I claim ∀X : p(X) =⇒ q(X). I claim p(a). Therefore, I conclude
q(a).

All these examples embody the same reasoning. The formal study of such
reasoning—mathematical logic—is about form (syntax), not content (“models” or
“interpretations”).

Mathematical logic took on its modern form in the 19th century. Logical rea-
soning was formulated algebraically by George Boole in 1847, whom we honor with
our “Booleans.” But the most important single advance in the study of rigorous rea-
soning was Gottlob Frege s̓ Begriffsschrift, or “concept notation,” published in 1879.

S45
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S46

Frege not only put prior notations into a satisfying uniform framework; he also in-
vented quantifiers and bound variables. His notation is strangely two-dimensional,
and it involves a bewildering variety of fonts, but it is modern logic.

Mathematical logic is used throughout the theory of programming languages.
Judgments, syntactic proofs, inference rules, and valid derivations—in other
words, all of our operational semantics and type theory—are from mathematical
logic. Problems in logic inspired Alonzo Church to invent the lambda calculus,
as a way of studying free and bound variables. And lambda calculus led to Lisp,
Scheme, and to other functional languages.

Using logic to reason about programming languages is great, but this chapter
presents a different development: logic itself can be a programming language. The
foundations for this idea were laid in the late 1960s and early 1970s, as first-order
logic was being applied to many problems whose solutions might lead to machines
that could be called intelligent. The foremost such problems lay in automated the-
orem proving and in man-machine communication. And by the early 1970s, simple
communication in natural language was no longer the sole province of science-
fiction writers. As an example, here is my translation of a dialog with an early
system developed by Alain Colmerauer (1973) and his colleagues at the university
of Aix-Marseille. The user s̓ entries are in Roman type and the systems̓ responses
are in italics:

Every psychiatrist is a person.
Each person he analyzes is sick.
Jacques is a psychiatrist in Marseille.
Is Jacques a person?

Yes.
Where is Jacques?

In Marseille.
Is Jacques sick?

I don’t know.

A key part of this system was a new programming language designed to simplify
the programming of logical inference based on predicates. This language, Prolog,
was invented by Colmerauer and his team. Prolog, which stands for “programming
in logic,” remains the best-known and most popular logic-programming language.

In Prolog, you solve a problem not by giving a computational procedure, but
by stating a predicate that must be true of any correct answer, along with logical
axioms and inference rules that can be used to prove such a predicate. If you under-
stand how the proof engine works, you can craft your logic in such a way that when
you ask about a predicate, out pop values that make it provable—and those values
solve your problem. The programming techniques you need and the workings of
the proof engine are described below.

D.1 THINKING IN THE LANGUAGE OF LOGIC

In functional programming, we define functions: a functions̓ behavior is specified
by a body we write. In logic programming, we donʼt define functions; functions
are unspecified. Instead we define predicates that give properties of the results of
applying functions, or properties of mathematical objects, or relationships among
any of these.

In functional programming, we get values by applying functions to other val-
ues. In logic programming, we get values by asking if there are any values that make
a given proposition provable. This computational model is so different from the
model found in most programming languages that unless you are already trained

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.1
Thinking in the
language of logic

S47

in mathematical logic, you are likely to find it strange. The notation looks like it is
applying functions to variables or to the results of applying other functions, but the
names that look like functions and variables donʼt behave the way we expect func-
tions and variables to behave. To write logic programs that work, you need to keep
in mind what kinds of things the names in a program are actually standing for. To
begin, let s̓ look at names in the language of logic.

Atoms and objects

Prolog refers to mathematical objects by name; an object is named by an atom. Ex-
amples of atoms includejacques, marseille, elizabeth, charles, stephen_hawking,
z, table, and smallmouth. These atoms are also Scheme atoms. Prolog uses the
same word as Scheme for the same reason: an atom canʼt be taken apart. All Pro-
log knows about an atom is that an atom is identical to itself—plus whatever facts
about the atom we choose to share. What Prolog knows about an atom is exactly
what mathematical logic knows about an unspecified object.

Prolog also treats numbers as objects. It can even do a little arithmetic.

Functors

Where mathematical logic works with “unspecified function symbols,” Prolog
works with functors.1 The opening dialog about Jacques the psychiatrist is so sim-
ple that there are no functors, but in the theory of lists, cons is a functor, and in
Peanos̓ theory of the natural numbers, s (successor) is a functor. As further exam-
ples, Section D.6 below talks about moving blocks on a table, and it uses functors
on and move. And Section D.7 uses Prolog data to represent Scheme programs, and
in that setting, lambda and apply are functors.

In mathematical logic, functors and atoms are the same kind of thing: unspec-
ified functions. An atom is just an unspecified function of zero arguments: a con-
stant.

Terms

If the idea is to prove facts about properties and relations, what sorts of things have
properties? What sorts of things can be related? Terms. All Prolog data (and in full
Prolog, also Prolog code) can be represented as terms. “Term” is a recursive data
type that is analogous to S-expression in Scheme, and like S-expressions, terms can
be defined inductively. A term is one of the following:

• An atom

• A number

• A functor applied to one or more terms

• A logical variable (discussed below)

Here are some examples of terms:

• Term cons(0, cons(1, cons(2, nil))) represents a list containing the first
three natural numbers.

1“Functor” is regrettable word. It is important in Prolog, in Standard ML, in Haskell, and in category
theory—and in each context, it means something different. At least there is an analogy between the
Haskell meaning and the category-theoretic meaning.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S48

• Term s(s(s(z))) represents the natural number 3, as it is axiomatized in
Peanos̓ system.

• Term move(b, table) represents the action of moving block b onto a table.

• Term lambda(cons(x, nil), x) represents Scheme code for the identity
function.

In simple examples, most terms are atoms or lists.
If these ideas seem new or confusing, you canʼt go wrong with an analogy: the

world of Prolog data is like one big algebraic data type.

• An atom is like a nullary value constructor, just like nil or NONE in ML.

• A functor is like a value constructor that takes one or more arguments, like
SOME or cons in µML.

• A Prolog term is like a value of algebraic data type.

Prolog terms even participate in a form of pattern matching, just like ML values
of algebraic data type. Only the concrete syntax is different. (And if you ever use
the functional language Erlang, which is an excellent choice for parallel and dis-
tributed computing, youʼll encounter exactly the same form of data, using Prolog
syntax.)

Properties and propositions

A property is a thing that can be true of one object, or of one term. In logic, it s̓
a “one-place relation.” The properties in the opening dialog are psychiatrist,
person, and sick. Example mathematical properties include natural_number and
nonzero. An example property of a list is null, and an example property of an
ML type (from Section D.7) is admits_equality. A property is a thing we can ap-
ply to an object or term to get a fact, or to get a proposition that might be a fact.
Example propositions include psychiatrist(jacques), person(jacques), and
sick(stephen_hawking). Mathematical examples include natural_number(z)
and nonzero(s(s(s(z)))). Prolog has no type system, so you can also write
bizarre propositions like natural_number(jacques), null(table), and sick(3).
I hope you define your logical systems so that these propositions are not provable.
In µProlog, but not in full Prolog, this sort of thing can be checked:
S48. 〈transcript S48〉≡ S49a ▷

?- check_unsatisfiable(natural_number(jacques)).
?- check_unsatisfiable(null(table)).
?- check_unsatisfiable(sick(3)).

Relations and predicates (and more propositions)

A relation is a thing that can be true of two or more objects. In logic, it s̓ just a “re-
lation.” The relations in the opening dialog are analyzes, and is_in. The only fact
given about these relations is is_in(jacques, marseille). Other relations lead to
such propositions as mother(elizabeth, charles), eats(smallmouth, fly), and
relatively_prime(12, 35).

The distinction between “property” and “relation” may help us think about
problems, but Prolog sees properties and relations as the same kind of thing:
both are predicates. A property is a one-place predicate—that is, a predicate that
takes one argument—and a relation is a predicate that takes two or more argu-
ments. We can even imagine zero-place predicates, like the predicates imokay and

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.1
Thinking in the
language of logic

S49

youreokay (Iʼm OK, youʼre OK) in Section D.3.4. This kind of generalization, where
things that appear different are revealed as instances of one kind of more general
thing, also happens in mathematical logic.

Syntactically, propositions and terms look exactly the same. So do functors and
predicates. The distinctions are a matter of symbolism and intent. A functor sym-
bolizes a way of making a thing from other things; a predicate symbolizes a prop-
erty of a thing or a relation among things. A term represents a thing you intend to
use as data; a proposition represents a statement you intend either to try to prove
or to assert as a fact.

These distinctions will help you think, but they are artificial. In practice, propo-
sitions are also perfectly good Prolog data. Full implementations of Prolog use the
“programs as data” paradigm (Section E.1 on page S129 of Appendix E) just as often
and just as effectively as full implementations of Scheme. Two examples of this use,
the special primitive predicates assert and retract, are described in Section D.8.3
below.

Facts, rules, variables, and clauses

Given a proposition, a Prolog programmer can do three things: assert it as a fact,
assert that it follows from other propositions (a rule), or ask if there is a way to
prove it (a query). Here are some facts that are asserted in the opening dialog:
S49a. 〈transcript S48〉+≡ ◁ S48 S49b ▷

?- [fact]. /* makes the interpreter ready to receive facts */
-> psychiatrist(jacques).
-> is_in(jacques, marseille).

The opening dialog also asserts some rules, such as “every psychiatrist is a per-
son.” To express this rule in the language of logic, we need a logical variable. I useP .
To write the rule in logic, we say “for every P , if P is a psychiatrist, then P is a per-
son.” To write it formally, we say

∀P : psychiatrist(P) =⇒ person(P).

This mathematical expression is a “formula” of first-order logic. The idea of “for-
mula” is not so important here, but “first-order” is crucial, because it describes a
limitation built into Prolog. In first-order logic, a logical variable may stand for any
object or term, but it may not stand for a functor or a predicate. When you work with
Prolog, remember what kind of thing a variable can stand for—just as when you
work with Impcore, you remember that a variable can hold a value but not a func-
tion.

When we assert a rule to Prolog, we donʼt simply present a formula in first-
order logic. Prolog is limited a particular form of formula called the “Horn clause.”
Fortunately, you donʼt need to know what a Horn clause is, because the syntax of
Prolog is set up so that you donʼt write a Horn clause as a formula, you write it as
an inference rule. A Prolog inference rule is guaranteed to be logically equivalent to
a Horn clause, and vice versa (Exercise 11 on page S109). In language of inference
rules, the rule “every psychiatrist is person” is written

psychiatrist(P)

person(P)
.

(The universal quantifier ∀ has disappeared; it is implicit.) In Prolog, this rule is
written as follows:
S49b. 〈transcript S48〉+≡ ◁ S49a S50a ▷

-> person(P) :- psychiatrist(P).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S50

The conclusion is written on the left, and the premises (here, just one premise) on
the right.

As another example, let s̓ formalize the rule “each person [a psychiatrist] ana-
lyzes is sick.” We should think like logicians:

• What objects are in the problem? A person who is a psychiatrist, and another
person who analyzed by the psychiatrist. We donʼt know the identity of either
object, so we use a logical variable to stand for each one. How about Doctor
and Patient? (In Prolog, the name of an atom, functor, or predicate begins
with a lowercase letter, and the name of a logical variable begins with an
uppercase letter.)

• What properties and relations—that is, what predicates—are in the problem?
The property sick and the relation analyzes, both of which are mentioned
above.

At this point I hope you could write the rule yourself:
S50a. 〈transcript S48〉+≡ ◁ S49b S50b ▷

-> sick(Patient) :- psychiatrist(Doctor), analyzes(Doctor, Patient).

The facts about psychiatrist and is_in and the rules about person and sick
capture the knowledge of the first three lines of the opening dialog. Before we go
on to the queries, let s̓ observe that facts and rules are similar: both are assertions
about the world. And just as Prolog considers properties and relations to be special
cases of one kind of thing—predicates—so does it also consider facts and rules to be
special cases of one kind of thing: clauses. (A fact is sometimes also called an axiom,
especially if the fact includes logical variables, but such a fact is just another form of
clause.) A Prolog “program” is just a sequence of clauses, each one of which is either
a fact or a rule. In an implementation of Prolog, the sequence can be represented
in a more sophisticated way, called a database.

Queries

Once we have a database, we can ask questions about it. A question, called a query,
is a proposition that might or might not be provable using the facts and rules we
have at hand. Prolog will try to find out. Is Jacques a person?
S50b. 〈transcript S48〉+≡ ◁ S50a S50c ▷

-> [query]. /* makes the interpreter ready to answer queries */
?- person(jacques).
yes

A more interesting query is one that includes logical variables. In Prolog, we
cannot ask “where is Jacques?” What we ask instead is “is there a location L such
that Jacques is in L?”
S50c. 〈transcript S48〉+≡ ◁ S50b S50d ▷

?- is_in(jacques, L). /* where is Jacques? (as close as Prolog comes) */
L = marseille
yes

When we present a query like is_in(jacques, L), what we are really asking
if there is any term we can substitute for the logical variables such that the result-
ing proposition is provable. (Just like mathematical logic, logic programming deals
in provability, not truth.) A Prolog system is not as sophisticated as the language-
processing system shown in the open dialog. When asked if Jacques is sick, Prolog
canʼt prove it, so it answers “no.”
S50d. 〈transcript S48〉+≡ ◁ S50c S51 ▷

?- sick(jacques).
no

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.2. Using Prolog

S51

En
Wa

Sc

NI

Ie

Atl

Fr

Be

Ne
De

Ch

It

At

Lu

(a) The British Isles (b) Part of Western Europe

Figure D.1: Maps

D.2 USING PROLOG

A Prolog program can involve atoms, objects, functors, terms, properties, relations,
predicates, facts, rules, and clauses. To illustrate these words and the ideas behind
them, this section uses Prolog to solve two small problems.

Small example: Map coloring

It is an old problem to ask how many colors are needed to color a map of political
jurisdictions in such a way that when two jurisdictions are adjacent, they get dif-
ferent colors. The fact that four colors always suffice is one of the first interesting
theorems to be proved with the aid of a computer. In this section, I color a map with
three colors. A coloring is expressed by substituting colors for logical variables.

In my model, the mathematical objects are colors; I use yellow, blue, and red.
To express the key constraint, the colors of adjacent jurisdictions must be differ-
ent, I introduce the notion of “difference,” which is a relation between two colors.
The predicate different may be proved by any of the following facts:
S51. 〈transcript S48〉+≡ ◁ S50d S52a ▷

-> [fact]. /* makes the interpreter ready to receive facts */
-> different(yellow, blue).
-> different(blue, yellow).
-> different(yellow, red).
-> different(red, yellow).
-> different(blue, red).
-> different(red, blue).

I have to say not only blue is different from red but also that red is different from
yellow; Prolog canʼt tell that I intend different to be a symmetric relation.

Now let s̓ use the differentpredicate to color the map of the British Isles shown
in Figure D.1 (a) on the current page. To convert the map-coloring problem into a
problem in formal logic, I state what relations must hold among the colors of a
properly colored map. I obtain the relations by looking at each country and seeing

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S52

what countries both adjoin it and follow it in the list. For purposes of this problem,
the Atlantic Ocean is a country, so map (a) is properly colored by colors Atl, En, Ie,
NI, Sc, and Wa if and only if the following predicates hold:

• Color Atl is different from En, Ie, NI, Sc, and Wa.

• Color En is different from Sc and Wa

• Color Ie is different from NI

There are an awful lot of predicates, so I want to abstract them away into a single
predicate britmap_coloring(Atl, En, Ie, NI, Sc, Wa), which means that colors
Atl through Wa constitute a proper coloring of map (a). I do so by giving Prolog an
inference rule:
S52a. 〈transcript S48〉+≡ ◁ S51 S52b ▷

-> britmap_coloring(Atl, En, Ie, NI, Sc, Wa) :-
different(Atl, En), different(Atl, Ie), different(Atl, NI),
different(Atl, Sc), different(Atl, Wa),
different(En, Sc), different(En, Wa),
different(Ie, NI).

This rule should be read as saying

The colors Atl to Wa constitute a proper coloring of map D.1 (a) if Atl
is different fromEn, Atl is different from Ie, Atl is different fromNI ,
and so on.

If it were a rule of type theory or operational semantics, we would write it this way:

different(Atl ,En) different(Atl , Ie)
different(Atl ,NI) different(Atl ,Sc) different(Atl ,Wa)
different(En,Sc) different(En,Wa) different(Ie,NI)

britmap_coloring(Atl ,En, Ie,NI ,Sc,Wa)

Here is the corresponding rule for a fragment of map (b), which is itself a fragment
of a map of Europe:
S52b. 〈transcript S48〉+≡ ◁ S52a S52c ▷

-> fragment_coloring(Be, De, Fr, Lu) :-
different(Be, De), different(Be, Fr), different(Be, Lu),
different(De, Fr), different(De, Lu),
different(Fr, Lu).

The clauses in the database model the two map-coloring problems. To find out
what propositions Prolog can prove from these clauses, we issue queries. For exam-
ple, we can ask if simply rotating colors results in a valid coloring of map (a):
S52c. 〈transcript S48〉+≡ ◁ S52b S53a ▷

-> [query]. /* makes the interpreter ready to answer queries */
?- britmap_coloring(yellow, blue, red, yellow, blue, red).
no

The query is a proposition, and the interpreter responds that no, it canʼt prove this
proposition.

So far, so good. But not very useful. What we would really like to know is do there
exist colorsA toF such that map (a) is properly colored? In Scheme, we would have
to write a function that takes a map as argument and returns the colors as results.
But logic programming is not about functions; it s̓ about relations. And we can ask
if colors exist by posing a query that asks about a relation among logical variables.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.2. Using Prolog

S53

In Prolog, any identifier beginning with a capital letter is a logical variable, and
when given a query that relates logical variables, the Prolog engine searches for
values of the logical variables such that the query can be proved. Such a query is
called a goal. Here s̓ how we ask for a coloring of map (a):
S53a. 〈transcript S48〉+≡ ◁ S52c S53b ▷

?- britmap_coloring(Atl, En, Ie, NI, Sc, Wa).
Atl = yellow
En = blue
Ie = blue
NI = red
Sc = red
Wa = red
yes

Prolog found a coloring. It not only reports back that the query can be satisfied;
it also provides a satisfying assignment to the logical variables. When there is no
satisfying assignment, Prolog reports as follows:
S53b. 〈transcript S48〉+≡ ◁ S53a S53c ▷

?- fragment_coloring(Be, De, Fr, Lu).
no

Interacting with the interpreter

The example above shows an unusual property of our µProlog interpreter: it has
two modes. In rule mode, the prompt is ->, and the interpreter silently accepts facts
or rules. In querymode, the prompt is ?-, and the interpreter answers queries based
on the facts known to it. Entering “[query].” puts the µProlog interpreter into
query mode. Entering “[rule].” or “[fact].”2 puts it into rule mode.

This odd style of interaction is necessary because Prolog uses the same con-
crete syntax for both queries and facts. Other implementations of Prolog also use
modes. We could get rid of the modes by using nonstandard syntax, but then you
wouldnʼt be able to use the example code with other Prolog interpreters. And for
some problems, you need another Prolog interpreter—µProlog can be too slow.

Naming predicates

Unlike a function name in ML, Impcore, or µScheme, a predicate symbol in Prolog
can be used with any number of arguments. A predicate is identified with a com-
bination of its symbol and an arity, which is the number of arguments used with
the symbol. The predicates used in the map-coloring example are different/2,
britmap_coloring/6, and fragment_coloring/4. The same symbol may be used
at more than one arity; two predicates with the same symbol but different arities
are different predicates.

To illustrate the importance of arity in defining predicates, Wolf (2005) points
out that in English, “married” can be either a one-place predicate or a two-place
predicate. The two-place predicate says that two people are married to each other.
The one-place predicate says that a person is married to some other person, the
identity of whom is not stated. Each person an a marriage is individually married,
and we can say so in Prolog:
S53c. 〈transcript S48〉+≡ ◁ S53b S54 ▷

?- [fact].
-> married(X) :- married(X, Y).
-> married(Y) :- married(X, Y).

2Or “[user].” or “[clause].” Donʼt ask.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S54

Wolf (2005) tells a story about an adulterous couple who check into a motel.
The clerk is a bluenose who asks, “are you two married?” The clerk means to ask

married(adulterer1, adulterer2)

which, in Wolf s̓ story at least, isnʼt true. But the informal English can also mean

married(adulterer1), married(adulterer2)

which, in Wolf s̓ story, is true. The couple check in successfully, but the sequel
involves an indictment for perjury. That s̓ the difference between married/1 and
married/2.

Second small example: Lists and list membership

As a second example of programming in Prolog, let s̓ see how Prolog computes with
lists. Just as inµScheme andµML, a list is either empty or is made by applying cons
to an element and a list. In µProlog, the empty list is represented by the atom nil.
Symbols cons and nil are respectively a functor and an atom, but think of them as
unspecified function symbols (nil is a function of zero arguments). They act like
value constructors.

Other implementations of Prolog may use symbols other than nil and cons, but
fortunately, Prolog s̓ lists are normally written using syntactic sugar. The empty
list is “[],” a cons cell is [x|xs], and the list of elements a to z is [a,b,. . .,z].
There is also a more rarely used form; [a,b,. . .,y|zs] stands for cons(a, cons(b,
cons(. . ., cons(y, zs)))). This sweet, sugary syntax is compatible with any im-
plementation.

Now that we know how to write a list, how do we test for membership?
In µScheme or µML, we would write a function. But in Prolog, membership is a
predicate, not a function. Predicate member(x, xs) should be provable if and only
if value x is a member of list xs . What do we know about membership? That x is
not a member of the empty list, and x is a member of a nonempty list if it is the
head or if it is a member of the tail. In the language of evidence and proof,

• If xs has the form [x|ys], for any list ys , then that s̓ sufficient evidence to
prove member(x, xs).

• If xs has the form [y|ys], for any y and ys , and if member(x, ys) is prov-
able, then that s̓ sufficient evidence to prove member(x, xs).

• No other evidence would justify a claim of member(x, xs).

This reasoning can be captured in a tiny proof system:

member(x, [x|ys])
member(x, ys)

member(x, [y|ys])

Each rule of this system can be expressed as a Prolog clause:
S54. 〈transcript S48〉+≡ ◁ S53c S55a ▷

?- [rule].
-> member(X, [X|XS]).
-> member(X, [Y|YS]) :- member(X, YS).

These clauses, like all Prolog clauses, can be used only to prove goals. That is, they
show only where the member predicate holds. When no clause applies, Prolog al-
ways considers the goal to be unprovable. Like other forms of logic, Prolog doesnʼt
deal in truth or falsehood; it deals only in provability. And Prolog rules are just like
rules of operational semantics; they say only when a judgment is provable.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.2. Using Prolog

S55

clause-or-query ::= clause
∣∣ query ∣∣mode-change

∣∣ use ∣∣ unit-test
clause ::= goal

[
:- goals

]
.

query ::= goals.
goals ::= goal

{
, goal

}
goal ::= term is term

| term binary-predicate term
| predicate

[
(term

{
, term

}
)
]

term ::= atom
| functor (term

{
, term

}
)

| term binary-functor term
| (term :- term

{
, term

}
)

| [term
{
, term

} [
|term

]
]

| []
| integer
| variable

mode-change ::= [query].
∣∣ [rule]. ∣∣ [fact]. ∣∣ [clause]. ∣∣ [user].

use ::= [filename].
unit-test ::= check_satisfiable(goals)

| check_unsatisfiable(goals)
| check_satisfied(goals

{
, variable = term

}
)

predicate ::= !
∣∣ name beginning with lower-case letter

binary-predicate ::= name formed from symbols |%^&*-+:=~<>/?`$\
atom, functor ::= name beginning with lower-case letter
binary-functor ::= name formed from symbols |%^&*-+:=~<>/?`$\
variable ::= name beginning with upper-case letter

Figure D.2: Concrete syntax of µProlog

As above, we can use these clauses by making a query involving member:
S55a. 〈transcript S48〉+≡ ◁ S54 S55b ▷

-> [query].
?- member(3, [2, 3]).
yes
?- member(3, [2, 4]).
no

We can even use a logical variable to ask for a member of a list, or a member
satisfying a given predicate:
S55b. 〈transcript S48〉+≡ ◁ S55a S57a ▷

?- member(X, [1, 2, 3, 4]).
X = 1
yes
?- member(X, [1, 2, 3, 4]), X > 2.
X = 3
yes
?- member(X, [1, 2, 3, 4]), X > 20.
no

This is the idea behind Prolog: you describe a logical predicate that captures the
properties of the values you want, and the interpreter searches for values having
those properties.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S56

D.3 THE LANGUAGE

D.3.1 Concrete syntax

The examples above show most of Prolog. Data structures are like the algebraic
data types of µML, except there are no types and no type definitions; imagine one
big algebraic data type, called term. Names like yellow, red, cons, and nil act like
ML value constructors, and they make terms. But they arenʼt called value construc-
tors; theyʼre called atoms and functors. Prolog also includes integer data, and full
Prolog includes many primitive predicates. The full concrete syntax of µProlog is
shown in Figure D.2.

As the figure shows, µProlog is organized differently from the other bridge lan-
guages. There are no definitions—µProlog s̓ database is extended by adding clauses.
A clause doesnʼt define anything, and µProlog s̓ basis does not include a global
environment—the only state maintained at top level is the database of clauses.

When it has no right-hand side, a clause can be called a fact or an axiom. When
a clause does have a right-hand side, it can be called a rule. The parts of a rule also
have their own names: the left-hand side is the head of the rule, sometimes also
called the conclusion or even the left-hand side. The list of phrases following :- is
the body; the individual elements may be called the premises or the subgoals.

Clauses and queries are formed from goals, which are themselves formed from
terms. Terms would be analogous to expressions in other languages, provided
those expressions were formed using only value constructors, literals, and appli-
cation. Here are some examples:

[14, 7] mktree(1, nil, nil)
ratnum(17, 5) on(a, table)

These structures are called “terms” rather than “expressions” because Prolog
doesnʼt “evaluate” them. In Prolog, terms do duty as both abstract syntax and val-
ues. Functors like cons, mktree, and ratnum arenʼt functions, and they donʼt code for
computation; they construct data. Terms can also contain logical variables, which
are identifiable as such because a variable starts with a capital letter, as in [X|XS]
or on(Block, table). If a term or a clause contains no logical variables, it is called
ground.

µProlog includes some primitive predicates: <, >, >=, and =< for comparing
numbers,3 atom for identifying atoms, print for printing terms, and is for com-
puting with numbers. The primitive predicates are explained in Section D.3.5 on
page S72.

It s̓ not just the abstract syntax of µProlog that s̓ different; the concrete syntax
is different, too. Why doesnʼt µProlog use the same parenthesized-prefix syntax as
the other bridge languages?

• Lots of interesting Prolog programs require extensive search, and our sim-
ple interpreter canʼt compete with Prolog systems built by specialists. Good
systems are freely available, and if we want to write interesting µProlog pro-
grams, the programs should run on such systems.

• Prolog really is different: there are no functions, no assignment, no mutable
variables, no control, no types, no methods, and no evaluation. Prolog has
almost no parallels with other languages, so there is almost no reason to use
the same syntax.

3Prolog is intended primarily for symbolic computation, not for numeric computation, so the left-
arrow symbol <= is considered too valuable to use for “less than or equal,” which is written =<.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S57

There is one exception: Prolog data is almost exactly the same as µML s̓ al-
gebraic data. It would be pleasant to construct it using the same function-
application syntax as in µML. But the ability to run µProlog programs on
real Prolog systems is more valuable.

The cost of using a different syntax is not too great. The syntax of µProlog is based
on the “Edinburgh syntax,” which is also the basis for ISO Standard Prolog. The
Edinburgh syntax is simple, easy to learn, and easy to parse. At the abstract level,
the Edinburgh syntax is a subset of S-expressions. So it s̓ not as big a departure as
it may look.

D.3.2 Unit tests

Like the unit tests in other untyped languages, µProlog s̓ unit tests can check that
something works and can also check that something doesnʼt work. But the details
are a little different.

• Test check_satisfiable(g1, . . . , gn) passes if there is a substitution that si-
multaneously satisfies query g1, . . . , gn.

• Test check_unsatisfiable(g1, . . . , gn) passes if there is no substitution that
simultaneously satisfies query g1, . . . , gn.

• Testcheck_satisfied(g1, . . . , gn,X1 = t1, . . . , Xm = tm)gives both a query
and a substitution that is supposed to satisfy it. The test passes if the query
is satisfied by the particular substitution given, which is θ = {X1 7→
t1, . . . , Xm 7→ tn}. That is, query θ(g1), . . . , θ(gn) must be satisfiable. Fur-
thermore, unless one of the ti s̓ contains a logical variable, each θ(gi) must
be a ground term, and no additional substitutions should be required to sat-
isfy the query.

A unit test may be entered in either query mode or rule mode—but if you want to
use another implementation of Prolog, enter your unit tests in rule mode, where
they will be taken for clauses.

Here are some example unit tests about list membership:
S57a. 〈transcript S48〉+≡ ◁ S55b S57b ▷

?- check_satisfied(member(X, [2, 3]), X = 2).
?- check_satisfied(member(X, [2, 3]), X = 3).
?- check_unsatisfiable(member(X, [2, 3]), X < 2).
?- check_unsatisfiable(member(X, [2, 3]), X > 3).

And here are some more about sick persons and numbers.
S57b. 〈transcript S48〉+≡ ◁ S57a S60a ▷

?- check_satisfied(person(jacques)).
?- check_unsatisfiable(sick(jacques)).
?- check_unsatisfiable(sick(3)).

D.3.3 Abstract syntax (and no values)

Of all the languages in this book, Prolog has the simplest structure. Unusually,
Prolog does not distinguish “values” from “abstract syntax”; both are represented

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S58

as terms. A term is a logical variable, a literal number, or an application of a func-
tor to a list of terms. (An atom is represented as the application of a functor to an
empty list of terms.)
S58a. 〈definitions of term, goal, and clause for µProlog S58a〉≡ (S58f) S58b ▷

datatype term = VAR of name
| LITERAL of int
| APPLY of name * term list

A term can be a functor applied to a list of terms; a goal is a predicate applied
to a list of terms. Goals and applications have identical structure.
S58b. 〈definitions of term, goal, and clause for µProlog S58a〉+≡ (S58f) ◁ S58a S58c ▷

type goal = name * term list

A clause is a conclusion and a list of premises, all of which are goals. If the list
of premises is empty, the clause is a “fact”; otherwise it is a “rule,” but these distinc-
tions are useful only for thinking about and organizing programs—the underlying
meanings are the same. Writing our implementation in ML enables us to use the
identifier :- as a value constructor for clauses.
S58c. 〈definitions of term, goal, and clause for µProlog S58a〉+≡ (S58f) ◁ S58b

datatype clause = :- of goal * goal list
infix 3 :-

At the read-eval-print loop, where a normal language can present a true defi-
nition, a µProlog program can either ask a query or add a clause to the database.
(The switch between query mode and rule mode is hidden from the code in this
chapter; the details are buried in Section V.5.3.) I group these actions into a syn-
tactic category called cq, which is short for clause-or-query. It is the Prolog analog
of a true definition def.
S58d. 〈definitions of def and unit_test for µProlog S58d〉≡ (S58f) S58e ▷

datatype cq
= ADD_CLAUSE of clause
| QUERY of goal list

type def = cq

µProlog includes three unit-test forms.
S58e. 〈definitions of def and unit_test for µProlog S58d〉+≡ (S58f) ◁ S58d

datatype unit_test
= CHECK_SATISFIABLE of goal list
| CHECK_UNSATISFIABLE of goal list
| CHECK_SATISFIED of goal list * (name * term) list

Finally, µProlog shares extended definitions with the other bridge languages.
S58f. 〈abstract syntax for µProlog S58f〉≡ (S87a)

〈definitions of term, goal, and clause for µProlog S58a〉
〈definitions of def and unit_test for µProlog S58d〉
〈definition of xdef (shared) generated automatically〉
〈definitions of termString, goalString, and clauseString S573c〉

D.3.4 Semantics

For semantic purposes, a Prolog “program” is a list of clauses C1, . . . , Cn followed
by a query gs , where gs is a list of goals. Both clauses and query may include logical
variables. The program is “run” by posing the query, and we hope for one of two
outcomes:

• Prolog finds an assignment to the query s̓ logical variables such that the re-
sulting instance of the query is provable.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S59

• Prolog finds that no assignment to the query s̓ logical variables makes the
query provable.

These outcomes are accounted for by the logical interpretation of Prolog. But the
logical interpretation doesnʼt explain everything: it doesnʼt say what assignment
is found, and it doesnʼt account for the possibility that the query might not termi-
nate. To explain Prolog completely, we need a procedural interpretation. The logical
interpretation, however, is simpler, more intuitive, and a more helpful guide to
designing programs. That s̓ where we begin.

The logical interpretation, informally

In the logical interpretation of Prolog, each clause in the database represents a rule
of inference, and Prolog uses the rules to prove goals. (An alternative logical inter-
pretation, which views clauses as logical formulas, not as rules of inference, is pre-
sented in Section D.8.2 on page S96.) Each clause has the form G :- H1, . . . , Hm,
and it is interpreted as a claim about proof: if we can prove H1, . . . , Hm, we can
prove G. When the clause contains logical variables, then if an assignment values
to those variables makes every Hi provable, that assignment also makes G prov-
able. In other words, the clause can be read as a rule of inference:

H1 · · · Hm

G
.

In the special casem = 0, the clause “G.” means that for every possible assignment
of values to G s̓ variables, the resulting instance of G is provable.

In the logical interpretation, a goal has a predicate that might be satisfied, or in
the language of semantics, a judgment that might be provable. To satisfy a goal g,
we find values of g s̓ logical variables such that the resulting instance of g can be
proven using the inference rules given as clauses. In other words, we find a deriva-
tion.

For example, the goal member(3, [4, 3]) can be proven using the derivation

member(3, [3])
member(3, [4, 3])

The upper inference is an instance of the axiom member(X, [X|XS]), and the lower
inference is an instance of the rule member(X, [Y|YS]) :- member(X, YS). These
two clauses define what we mean by the member predicate, or if you prefer, the
member judgment.

In logic, rules are independent, and order doesnʼt matter. Rules can appear in
any order, and in each rule, premises can appear in any order. Each rule is sound
on its own, and each is independent of the other and of any other rules. Likewise,
in the logical interpretation of Prolog, it doesnʼt matter where clauses occur or in
what order, and within a clause, it doesnʼt matter in what order the subgoals appear.
Logically, these two Prolog clauses describe the same rule of inference:

sick(Patient) :- psychiatrist(Doctor), analyzes(Doctor, Patient).
sick(Patient) :- analyzes(Doctor, Patient), psychiatrist(Doctor).

In logic, there s̓ no preferred direction of computation. It s̓ not like operational
semantics; if you write an evaluation judgment 〈e, ρ〉 ⇓ v, logic doesnʼt know
you mean e and ρ to be inputs and v to be an output. Logic cares only about prov-
ability and substitutions.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S60

To illustrate the lack of a preferred direction, let s̓ return to list membership.
If youʼre programming in Scheme and you write a function call (member? x xs),
x and xs are inputs, and the result is a Boolean. But in Prolog, you write a query,
and you can provide xs as an input and ask for x as an output: “give me a member
of this list.”
S60a. 〈transcript S48〉+≡ ◁ S57b S60b ▷

-> [query].
?- member(X, [4, 3]).
X = 4
yes

Logically, the question weʼre asking is “does there exist anX such thatmember(X, [4, 3])?”
The answer is “yes,” and Prolog exhibits such an X.

According to the logical interpretation of Prolog, you can choose any parts of
a predicate as inputs and any parts as outputs. For each input, you write a term,
and for each output, you write a logical variable. Unconventional uses of input and
output are sometimes called “running programs backward.” For example, we can
use the same member relation to issue the query “is there a list XS that contains both
3 and 4 as members?”
S60b. 〈transcript S48〉+≡ ◁ S60a S61a ▷

?- member(3, XS), member(4, XS).
XS = [3, 4|_XS354]
yes

The resulting list contains an internal variable, _XS354, which indicates that the
rest of the list is undetermined. In effect, Prolog says “yes, any list that begins
with 3 and 4 will do.” Such a result might surprise you, but it enables queries like
member(3, XS) and member(4, XS) to interact with other queries or with subgoals
that may determine _XS354. Sharing a logical variable is a powerful form of com-
munication, because information can flow in multiple directions.

To summarize, the logical interpretation of Prolog answers a query by find-
ing a substitution that makes the query is provable. Importantly, the logi-
cal interpretation doesnʼt say what substitution is found; in the example query
member(X, [4, 3]), Prolog finds X = 4, but according to the logical interpretation,
X = 3 is just as good. The next step in our analysis of Prolog s̓ semantics is to make
the logical interpretation precise.

Making the logical interpretation precise

The logical interpretation of Prolog can be formalized using a simple, elegant, non-
deterministic proof system. The formalization involves substitutions, which are pre-
sented in Chapter 7 as a means of implementing ML type inference, and which we
revisit here.

Definition D.1 A substitution θ is a function θ from terms to terms that preserves
structure, which is to say it satisfies these two equations:

θ(APPLY(f, t1, . . . , tn)) = APPLY(f, θ(t1), . . . , θ(tn))
θ(LITERAL(n)) = LITERAL(n)

Also, a substitution has a finite domain: for all but finitely many X, θ(VAR(X)) =
VAR(X).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S61

Substitutions have the following properties, which you might like to confirm
(Exercise 36 on page S117):

• Any substitution can be written as θ = {X1 7→ t1, . . . , Xn 7→ tn}.
For any X that is not one of the Xi, θ leaves X unchanged; otherwise
θ(VAR(Xi)) = ti. The set {X1, . . . , Xn} is the domain of θ. We sometimes
say that θ binds Xi to ti, or that Xi is bound in θ.

• If functions θ1 and θ2 are substitutions, the composition θ2 ◦ θ1 is also a
substitution.

Since a goal has the form of a term, a substitution θ can be applied to a goal.
A similar law applies: θ(p(t1, . . . , tn)) = p(θ(t1), . . . , θ(tn)). For example, if

g = member(X, [Y|YS]) and θ = {X 7→ 3, YS 7→ [4|ZS]},
then θ(g) = member(3, [Y,4|ZS]).

Substitutions answer queries. That is, a query in Prolog is not simply satisfied—
its satisfaction produces a substitution. Given query gs , the interpreter finds a sub-
stitution θ that makes θ(gs) provable. Examples are found throughout the chapter;
the substitution is printed right after the query.
S61a. 〈transcript S48〉+≡ ◁ S60b S61b ▷

-> [query].
?- britmap_coloring(Atl, En, Ie, NI, Sc, Wa).
Atl = yellow
En = blue
Ie = blue
NI = red
Sc = red
Wa = red
yes

Using substitutions, we can formalize Prolog s̓ notion of query. To say “goal g
is satisfiable using database D and substitution θ,” we write the judgment D ` θg.
In general, a query has more than one goal, so the general form of the judgment is

D ` θg1, . . . , θgn.

In the logical interpretation, the satisfaction of the different goals is independent;
the only requirement is that the same substitution satisfy them all. Formally,

D ` θgi, 1 ≤ i ≤ n

D ` θg1, . . . , θgn
(LOGICALQUERIES)

A single goal is satisfied if it can be “made the same” as the left-hand side of
some clause whose right-hand side we can prove. Here, a crucial fact comes into
play. The variables used in a clause are arbitrary, bearing no relationship to variables of
the same name that may appear in a query or in a subgoal from another clause (or even
another instance of the same clause). In other words, a variable in a Prolog clause
is like a formal parameter of a function in another language; just as different ac-
tivations of a function can bind different values to the “same” formal parameter,
different uses of a clause can substitute different terms for the “same” logical vari-
able.

Here s̓ a contrived example. Suppose we want to find out if the variable XS is a
member of the list [1|nil]. Variable XS is a strange name for an integer, but the
answer is yes, provided XS = 1.
S61b. 〈transcript S48〉+≡ ◁ S61a S65 ▷

?- member(XS, [1|nil]).
XS = 1
yes

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S62

D ` θ(gs)

EMPTYQUERY

D ` I([])

NONEMPTYQUERY
C ∈ D C = G :- H1, . . . , Hn

θα renames the free variables of C
θ(θα(G)) = θ(g) D ` θ([θα(H1), . . . , θα(Hn)])

D ` θ(gs)

D ` θ(g :: gs)

Figure D.3: The logical interpretation of Prolog

How do we prove that this query is satisfied? By appealing to one of the clauses in
the database: member(X, [X|XS]). The XS in the clause must be independent of
the XS in the query, because XS cannot be both 1 and nil at the same time.

In Impcore, µScheme, and other languages, this kind of independence is
achieved by using an environment to keep track of the values of formal parame-
ters; each time a function is called, the activation gets its own private environment.
In Prolog, this kind of independence is achieved by renaming the variables of each
clause; each time a clause is used in a proof, the use gets its own private renaming.

Definition D.2 A renaming of variables is a substitution θα which is one-to-one and
which maps every variable to a (possibly identical) variable, not to an application
or an integer.

When considered as a function from terms to terms, a renaming of variables has
an inverse function, which is also a substitution; we write that substitution θ−1

α .
Using substitutions and renamings, Figure D.3 presents a precise, induc-

tive definition of the semantics of Prolog according to the logical interpretation.
The judgment form D ` θ(gs) says that when substitution θ is applied to the list
of goals gs , the conjunction of the goals is provable from clauses in database D.
We say goals gs are satisfied by θ.

Formally, a list of goals is either an empty list [] or a nonempty list g ::gs . A sub-
stitution is applied to a list by applying it to each element:

θ([]) = [] θ(g :: gs) = θ(g) :: θ(gs)

Judgment D ` θ(gs) is used with D and gs as inputs and θ as the output.
There is one rule for each form of query. The empty list of goals is satisfied by
any database and the identity substitution I. A nonempty list is satisfied by tack-
ling the goals one at a time, inductively; the key rule is NONEMPTYQUERY in Fig-
ure D.3. A single goal g is satisfied by θ if there is some clause C in the database
such three conditions hold: C has head G; when variables in C are renamed, the
renamed head θα(G) unifies with g; and substitution θ also satisfies the (renamed)
premises of C. And a nonempty list of goals g :: gs is satisfied by a substitution θ if
θ satisfies every goal in the list.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S63

The NONEMPTYQUERY rule is wildly nondeterministic. There are three sources
of nondeterminism, of which only one makes a real difference to the answer.

• The renaming θα can map the free variables of C to any set of variables that
donʼt appear anywhere else. This nondeterminism makes no real difference
to the answer; it affects θ only up to renaming.4

• The substitution θ must simultaneously satisfy three criteria: it must unify
θα(G) and g; it must satisfy the remaining goals gs , and it must satisfy the
(renamed) premisesH1, . . . , Hn. Even these three criteria donʼt determine θ
completely; in Prolog, we expect to get a most general substitution satisfies
these criteria (sidebar, page S64).

This nondeterminism looks challenging, but in practice each of the criteria
above corresponds to a subproblem, and it is not difficult to design an algo-
rithm that computes a most general θ as the composition of lesser substitu-
tions that solve each subproblem. The idea is exactly the same idea used to
solve conjunctions in the constraint solver. And as in the constraint solver,
changing the order in which the subproblems are solved may affect the an-
swer, but only up to renaming.

• Clause C may be any clause in the database, or more precisely, it may be any
clause whose head unifies with g. Unlike the other two forms of nondeter-
minism, this one really matters: which C is chosen makes a big difference
to the answer θ.

In the logical interpretation of Prolog, a query gs is satisfied if there exists a deriva-
tion of D ` θ(gs). But unless D has only very boring inference rules, the number
of potential derivations is unbounded, and the real questions are whether Prolog
can find a derivation, and if so, which ones does it find? To answer these questions,
we turn to the procedural interpretation.

The procedural interpretation

Logic may be nondeterministic, but a logic program runs on a deterministic ma-
chine. The machine takes deterministic actions, like choosing a clause or trying
to unify a goal with the clause s̓ head. The procedural interpretation of Prolog
says what actions are taken in what order. In particular, it tells us how the inter-
preter searches for clauses and how the interpreter computes and composes sub-
stitutions. Informally, the procedural interpretation of Prolog is just this: given
database D and query gs , Prolog uses depth-first search to try to find a substitution θ
and derivation of D ` θ(gs) using the rules in Figure D.3 on page S62. The search
considers each C ∈ D in the order in which the C s̓ appear.

Depth-first search is simple in concept, but there are many details. To use Pro-
log effectively, you must understand how search works. You should know enough
to estimate how your Prolog programs will perform, and you must know enough
to avoid sending the search algorithm into an infinite loop. And to be at your must
effective, you must know how to use the “cut” (Section D.8.3 on page S97) to control
the scope of Prolog s̓ depth-first search.

4Two substitutions θ and θ′ are equivalent up to renaming if there exists a renaming θβ such that
θ = θβ ◦ θ′ (and therefore also θ′ = θ−1

β ◦ θ).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S64

Unification, most general substitutions, and the occurs check

Definition D.3 A substitution θ1 is more general than a substitution θ2 if there
exists a θ3 such that θ2 = θ3 ◦ θ1. That is, we can make θ2 by composing some-
thing else with θ1.

The more general a substitution is, the fewer things it changes.

Definition D.4 Unification is an algorithm for solving equality constraints.
Given constraint g1 ∼ g2, unification finds a substitution θ such that θ(g1) =
θ(g2). Furthermore, unification finds a θ that is a most general substitution
satisfying this equation. Substitution θ is most general if for any θ′ such that
θ′(g1) = θ′(g2), there is a substitution θ′′ such that θ′ = θ′′ ◦ θ. In the examples
below, I donʼt verify that the substitutions are most general substitutions.

Here are examples of unification problems and their solutions:

1. g1 = member(3, [3|nil])
g2 = member(X, [X|XS])
θ = {X 7→ 3, XS 7→ nil}

2. g1 = member(Y, [3|nil])
g2 = member(X, [X|XS])
θ = {Y 7→ 3, X 7→ 3, XS 7→ nil}

3. g1 = member(3, [4|nil])
g2 = member(X, [X|XS])

do not unify, since no substitution can map X to both 3 and 4.

4. g1 = length([3|nil], N)
g2 = member(X, [X|XS])

do not unify, since no substitution can make length equal member.

5. g1 = member(X, [X|XS])
g2 = member(Y, cons(mkTree(Y, nil, nil), M))

do not unify. Since the X in g1 and the Y in g2 must be replaced by the
same term, say t, we end up with goals

θ(g1) = member(t, [t|XS])
θ(g2) = member(t, [mkTree(t, nil, nil)|XS])

which cannot be unified: No substitution can make t equal
mkTree(t, nil, nil), because no matter what you substitute for t,
the number of appearances of mkTree will differ.

Example 5 illustrates a tricky aspect of implementing Prolog. Even if t is a logical
variable, it does not unify with the term mkTree(t, nil, nil). It is natural to
try to unify a variable X with a term t using the substitution {X 7→ t}, but this
substitution works only if X does not occur in t. Unification of a variable with a
term therefore requires an occurs check, which although expensive is an essential
part of the semantics.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S65

Because the cut is a control operator, a formal semantics of the procedural in-
terpretation is most easily expressed using a small-step semantics with an explicit
evaluation context, like the one in Chapter 3. But such a semantics is unlikely to
convey much understanding. If we omit the cut, then writing a big-step seman-
tics is not so difficult, but it s̓ best if you work it out for yourself (Exercise 37 on
page S117). Here, the procedural interpretation is presented informally, with ex-
amples. And because it involves so many details, it is presented in stages. The first
stage explains how Prolog searches for clauses, without involving substitutions.
The second stage explains how the search for clauses may backtrack, again without
involving substitutions. The final stage adds substitutions.

Simple search for a matching clause

Given database D = C1, . . . , Cn and query g, we wish to know whether g is sat-
isfied, i.e. D ` g. To explain search without having to worry about substitutions,
I assume that all clauses and goals are ground, that is, they have no variables. I also
simplify the explanation by limiting my query to a single goal g. The simple search
algorithm works in three steps:

1. Examine the clauses Ci in the order in which they appear in D. If no clause
exists whose left-hand side is g, g is unsatisfied.

2. Otherwise, take thefirst clause whose left-hand side isg, sayg :- H1, . . . , Hm.
Now recursively try to satisfy subgoals H1, . . . , Hm, in that order, using the
same simple search algorithm.

3. If each Hj is satisfied, g is satisfied; if any Hj is unsatisfied, so is g.

You might feel uneasy that only the first clause is used in step 2, but this interpre-
tation, although oversimplified, does explain the behavior of some variable-free
programs. Here s̓ an example:
S65. 〈transcript S48〉+≡ ◁ S61b S66 ▷

-> [rule].
-> imokay :- youreokay, hesokay. /* clause C1 */
-> youreokay :- theyreokay. /* clause C2 */
-> hesokay. /* clause C3 */
-> theyreokay. /* clause C4 */
-> [query].
?- imokay.
yes

The successful outcome is explained by the simple search algorithm:

• The goal is imokay. The first matching clause isC1. Step 2 of the algorithm re-
cursively tries to satisfy new goals youreokay and hesokay, which are called
subgoals.

• Subgoal youreokay comes first. Clause C2 matches and spawns subgoal
theyreokay.

• Step 2 recursively tries to satisfy subgoal theyreokay. The subgoal is
matched by clause C4, which spawns no new subgoals. So theyreokay is
satisfied, and therefore so is youreokay.

• The recursive call returns, and the earlier step 2 continues by trying to solve
the next subgoal: hesokay. This subgoal is matched by C3, which spawns no
subgoals. So hesokay is satisfied, and therefore so is imokay.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S66

In this example, the search algorithm and the logical interpretation produce the
same result. But some cases, the logical interpretation can answer a query when
the simple search algorithm does not. To construct such a case, I add three clauses
to our database:
S66. 〈transcript S48〉+≡ ◁ S65 S67a ▷

?- [rule].
-> hesnotokay :- imnotokay. /* clause C5 */
-> shesokay :- hesnotokay. /* clause C6 */
-> shesokay :- theyreokay. /* clause C7 */
-> [query].
?- shesokay.
yes

According to the logical interpretation, theyreokay is a fact (clause C4), and
shesokay is provable from theyreokay by clause C7. But the simple search al-
gorithm does not prove shesokay. Rather, it tries to prove shesokay by apply-
ing C6, which spawns subgoal hesnotokay, for which the algorithm tries to ap-
ply C5, which spawns subgoal imnotokay, which cannot be proven.

What s̓ wrong? More than one clause applies to the goal shesokay, and the first
such clause doesnʼt lead to a solution. To fix this problem, we refine our view of the
procedural interpretation by adding backtracking.

Backtracking search for matching clauses

As before, we have D = C1, . . . , Cn and query g, and we wish to know whether
g is satisfied. The backtracking search algorithm builds on the simple search algo-
rithm, and the first two steps are identical:

1. Examine the clauses Ci in the order in which they appear in D. If no clause
exists whose left-hand side is g, g is unsatisfied.

2. Otherwise, find a clause whose left-hand side is g, say Ci = g :-
H1, . . . , Hm. Now recursively try to satisfy subgoals H1, . . . , Hm, in that
order, using the same algorithm.

3. If each Hj is satisfied, g is satisfied; if any Hj is unsatisfied, donʼt give up—
instead, repeat step 2 with the next clause in the database whose left-hand
side is g, starting the search from clause Ci+1. Iteration continues until g is
satisfied, or until there is no clause remaining whose left-hand side is g.

This backtracking algorithm is powerful enough to prove shesokay:

• Clause C6 is the first clause that matches shesokay, and it spawns subgoal
hesnotokay.

• Clause C5 matches, and it spawns subgoal imnotokay.

• No clause matches subgoal imnotokay, so it is unsatisfied.

• The algorithm backtracks and continues trying to satisfy hesnotokay, start-
ing from clause C6. Clauses C6 and C7 donʼt match, so hesnotokay is unsat-
isfied.

• One level up in the recursion, the algorithm backtracks and continues trying
to satisfy shesokay, starting from clause C7. Clause C7 matches and spawns
subgoal theyreokay.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S67

• Clause C4 matches goal theyreokay, and there are no more subgoals. Goal
shesokay is satisfied.

Backtracking gets us closer to the logical interpretation, but the two interpretations
still donʼt agree. To show how they disagree, I add two more clauses:
S67a. 〈transcript S48〉+≡ ◁ S66 S68 ▷

?- [rule].
-> hesnotokay :- shesokay. /* clause C8 */
-> hesnotokay :- imokay. /* clause C9 */

Now my depth-first search goes into an infinite loop:
S67b. 〈bad transcript S67b〉≡

-> [query].
?- shesokay.
... never returns ...

In logic, if a conclusion can be inferred from some set of facts, it can still be inferred
when new facts are added. Therefore, in the logical interpretation, shesokay is still
provable after adding C8 and C9. But the backtracking search algorithm doesnʼt
discover a proof; instead, it fails to terminate:

• Clause C6 matches goal shesokay and spawns subgoal hesnotokay.

• Clause C5 matches hesnotokay, spawning subgoal imnotokay, which still
cannot be satisfied. The algorithm backtracks and continues trying to sat-
isfy hesnotokay.

• Clause C8 matches hesnotokay and spawns subgoal shesokay.

• Clause C6 matches shesokay and spawns subgoal hesnotokay.

• And so on…

There may be a proof, but the algorithm doesnʼt find it, and even under the full
procedural interpretation, the search algorithm loops forever. The logical interpre-
tation does not reflect the actual semantics of Prolog. The procedural interpretation,
which prescribes exactly how Prolog searches for clauses, is the accurate one.5

In logic, inference rules are unordered, or to put it another way, the order of
clauses doesnʼt matter. But to Prolog s̓ search algorithm, the order of clauses in
the database is critically important. For example, if C8 and C9 are reversed, the
search algorithm finds a proof of shesokay. While we might prefer a programming
language based on pure logic, which always finds a solution when one exists, this
is not how Prolog works.

Backtracking search for matching clauses, with variables

To get to the full algorithm that constitutes the procedural interpretation of Prolog,
we have to say what happens to goals and clauses that include logical variables.
In the general case, we are given a database D and a query g1, . . . , gk. Each gi
may contain logical variables, and so may each clause. We want a θ such that D `
θ(g1), . . . , θ(gk). When k = 0, the empty query is trivially satisfied by the identity
substitution. When k = 1, Prolog s̓ search algorithm works as follows:

1. To satisfy a single goal g, examine the clauses Ci in the order in which they
appear in D. If there is no clause with left-hand side G such that equality
constraint g ∼ θαG can be solved, where θα is a renaming, g is unsatisfied.

5There are other algorithms for logic programming, like answer-set programming, which are guar-
anteed to terminate. Such algorithms can even be applied to some Prolog programs, but they remain
nonstandard interpretations of Prolog. Details are beyond the scope of this book.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S68

2. Otherwise, find a clause Ci = G :- H1, . . . , Hm, choose a renaming θα,
and find a substitution θ such that θ(g) = θ(θα(G)). Letting θ′ = θ ◦ θα,
recursively try to satisfy subgoals θ′(H1), . . . θ

′(Hm), in that order, using the
general search algorithm that solves queries with multiple goals.

3. If each θ′(Hj) is satisfied, g is satisfied by substitution θ. If any Hj is un-
satisfied, donʼt give up—instead, repeat step 2 with the next clause in the
database whose left-hand side can be unified with g, starting the search from
clauseCi+1. Iteration continues until g is satisfied, or until there is no clause
remaining whose left-hand side is g.

When k > 1, that is when the query comprises multiple goals, such as might be
produced from θ′(H1), . . . θ

′(Hm), Prolog composes substitutions:

D ` θ1(g1) D ` θ′(θ1(g2)), . . . , θ
′(θ1(gk))

D ` (θ′ ◦ θ)(g1), . . . , (θ′ ◦ θ)(gk)
(PROCEDURALQUERIES)

Informally, Prolog searches for a substitution θ1 that satisfies goal g1. If successful,
it then tries to satisfy query θ1(g2), . . . , θ1(gk), an attempt which yields substitu-
tion θ′. The attempt to satisfy g1, . . . , gk has now succeeded, yielding the substitu-
tion θ′ ◦ θ. Or if you prefer, it solves goals g1, . . . , gk one at a time, accumulating
substitution θk ◦ · · · ◦ θ1.

When Prolog solves queries with multiple goals in the presence of variables and
substitutions, it needs a second kind of backtracking. To see why, let s̓ return to an
earlier example:
S68. 〈transcript S48〉+≡ ◁ S67a S73 ▷

-> [query].
?- member(X, [1, 2, 3, 4]), X > 2.
X = 3
yes

Goal g1 is member(X, [1, 2, 3, 4]), and it is solved by substitution θ1 = {X 7→ 1}.
But when θ1 is applied to goal g2, which is 1 > 2, the resulting subgoal is 1 > 2, which
is not solvable. But before giving up, Prolog asks if there is another substitution that
solves g1. Eventually it hits on {X 7→ 3}, and 3 > 2 is solvable.

In the general case, here s̓ what this part of the algorithm looks like. The prob-
lem is to solve query g1, . . . , gk.

1. If k = 0, the query is solved by the identity substitution.

2. Otherwise, find substitution θ1 that solves goal g1. If there is no such θ1,
goal g1 canʼt be solved.

3. Recursively find substitution θ′ that solves θ1(g2), . . . , θ1(gk). If you find it,
the entire query g1, . . . , gk is solved by substitution θ′◦θ1. If you donʼt find it,
backtrack and ask if there is a different substitution θ1bis that also solves g1,
and then try solving θ1bis(g2), . . . , θ1bis(gk). (There could be a different sub-
stitution θ1bis because g1 could unify with the head of a different clause.)

The search fails to solve the whole query only when all substitutions that solve g1
have been exhausted.

The procedural interpretation illustrated using continuations

The full search algorithm that defines the procedural interpretation of Prolog can
be hard to understand. Luckily there is a conceptual tool, the Byrd box (Byrd 1980),
which not only makes it easier to understand how Prolog works, but which leads to a

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S69

very simple implementation in continuation-passing style. You know the Byrd box
already, from Section 2.10.2 on page 140, where it is used to solve Boolean formulas.
In Prolog, the Byrd box is a “solver” for a single goal, with this structure:

solve g
start

κfail

κsucc

κresume

The idea is simple:

1. We create a Byrd box for every goal g. The Byrd box searches for substitu-
tions θ such that D ` θ(g).

2. There might be more than one such substitution, and we donʼt want to com-
pute any more than necessary, so instead of simply having the Byrd box re-
turn a substitution, we pass it a success continuation κsucc. The continuation
takes θ as a parameter.

3. Whether backtracking is needed depends on the goals that follow g; these
are exactly the goals that κsucc tries to satisfy. If they canʼt be satisfied, we
go back to our original Byrd box and ask for another substitution. For this
purpose, the Byrd box provides another continuation κresume.

4. Finally, if the Byrd box fails, or if it simply runs out of substitutions, what do
we do? We canʼt simply give up, because it s̓ possible that backtracking might
lead to another solution. So we pass the Byrd box a failure continuation κfail,
which it calls if it canʼt find a substitution, or if it has to backtrack.

A Byrd box is implemented by a call to functionsolveOne in 〈search [[prototype]] S84a〉.
Byrd boxes are illustrated below by three examples: two based on member and one
based on map coloring.

The member relation has two proof rules:

member(X, [X|XS]). /* C1 */
member(X, [Y|XS]) :- member(X, XS). /* C2 */

To answer the query g = member(3, [4, 3])), the search algorithm takes these
steps:

1. It creates a Byrd box that is prepared to consider clauses C1 and C2.6

solve g
⇒C1

C2

start

fail

κsucc = succeed

The goal does not unify with C1 s̓ head, so the Byrd box changes state to look
at C2:

solve g
C1

⇒C2

start

fail

κsucc = succeed

6The semantics actually require that we consider all clauses, but these are the only clauses whose
heads could possibly unify with query g.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S70

The goal g does unify with C2 s̓ head. Variables in C2 are renamed so the
head is member(X1, [Y1|XS1]), which unifies with g via substitution

θ = {X1 7→ 3, Y1 7→ 4, XS1 7→ [3]}.

The Byrd box spawns a new subgoal, θ(H1), which is member(3, [3]).

2. The search algorithm now recursively tries to satisfy θ(H1), which ismember(3,
[3]). It creates a new Byrd box. The new Byrd box gets the same success con-
tinuation as the current Byrd box. If the new goal fails, the search algorithm
will continue looking for clauses after C2.

solve g
C1

⇒C2

start

fail

solve θ(H1)
⇒C1

C2resume

κsucc = succeed

Clause C1 matches, via {X2 7→ 3, XS2 7→ nil} (renaming X and XS in C1 to
X2 and XS2). As C1 has no subgoals, goal θ(H1) is satisfied. Control passes
to the success continuation, and query g is also satisfied.

Because query g has no variables, this example does not produce a substitution.
Our next example involves “running the program backward”:

member(3, YS), member(4, YS).

1. To try to satisfy member(3, YS), the search algorithm creates a Byrd box.
If the attempt succeeds, the Byrd box s̓ success continuation tries to solve
member(4, YS).

member(3,YS)
⇒C1

C2

start

fail

κsucc(θ) = solve θ(member(4, YS))

Clause C1 matches with equality constraint X1∼ 3 ∧ YS∼ [X1|XS1], where
X and XS in C1 are renamed to X1 and XS1. The constraint is solved by

θ0 = {X1 7→ 3, YS 7→ [3|XS1]}

We pass θ0 to κsucc.

2. The search algorithm creates a new Byrd box to solve θ0(member(4, YS)),
which is member(4, [3|YS1]). If that fails, control will pass to the resume
continuation, search will resume in the previous Byrd box at C2.

member(3,YS)
C1

⇒C2

start

fail

member(4,[3|YS1])
⇒C1

C2

κsucc(θ) = succeed

Clause C1 does not apply, because its head member(X, [X|XS]) does not
match the goal member(4,[3|YS1]). The current box moves to C2.

member(3,YS)
C1

⇒C2

start

fail

member(4,[3|YS1])
C1

⇒C2

κsucc(θ) = succeed

This example illustrates a general property of Byrd boxes: at any one time,
only the rightmost box is active.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.3
The language

S71

Continuing, the head of C2 does match the goal: renaming X, Y, and XS in C2

to X2, Y2, and XS2 produces the equality constraint member(X2, [Y2|XS2])∼
member(4, [3|XS1]). The constraint is satisfied by

θ′0 = {X2 7→ 4, Y2 7→ 3, XS2 7→ XS1}.

3. The search doesnʼt simply pass θ′0 toκsucc; it first tackles the subgoal spawned
by clause C2, which, applying the substitution, is:

θ′0(member(X2, XS2)) = member(4, YS1).

Again, the algorithm creates a new box.

member(3,YS)
C1

⇒C2

start

fail

member(4,[3|YS1])
C1

C2

⇒

member(4,YS1)
⇒C1

C2

κsucc(θ)=succeed

Clause C1 matches, yielding7 θ′1 = {X3 7→ 4, YS1 7→ [4|YS3]}.

4. Subgoal member(4, [3|YS1]) (step 2) is now satisfied by substitution

θ1 = θ′1◦θ′0 = {X3 7→ 4, YS1 7→ [4|YS3], X2 7→ 4, Y2 7→ 3, XS2 7→ [4|YS3]}.

5. The original goal is satisfied by

θ1 ◦ θ1 = {X1 7→ 3, X3 7→ 4, YS1 7→ [4|YS3], YS 7→ [3,4|YS3], . . .}.

Our third example of Prolog search uses the britmap_coloring query, which
allows us to explore backtracking within right-hand sides while avoiding equality
constraints, unification, and renaming of variables. The computation that solves
the query britmap_coloring(Atl, En, Ie, NI, Sc, Wa) is long, so I show only the
first dozen steps or so. Fortunately, only one clause matches this goal, but it spawns
a lot of subgoals (ignoring the renaming of variables):

different(Atl, En), different(Atl, Ie), different(Atl, NI), ...

The search algorithm follows these steps:

1. Goal different(Atl, En) unifies with the first different clause in the
database: different(yellow, blue).The result is θ1 = {Atl 7→ yellow, En 7→ blue}.

2. Goal θ1(different(Atl, Ie)) = different(yellow, Ie) is satisfied by sub-
stitution θ2 = {Ie 7→ blue}.

3. Goal θ2(θ1(different(Atl, NI))) = different(yellow, NI) is satisfied by
substitution θ3 = {NI 7→ blue}.

4. Goal θ3(θ2(θ1(different(Atl, Sc)))) = different(yellow, Sc) is satis-
fied by substitution θ4 = {Sc 7→ blue}.

7From here, I donʼt explain each individual renaming of variables. Each time I need to rename a
variable, I append the next higher integer to its original name.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S72

5. Goal θ4(θ3(θ2(θ1(different(Atl, Wa))))) = different(yellow, Wa) is
satisfied by substitution θ5 = {Wa 7→ blue}.

6. Goal θ5(θ4(θ3(θ2(θ1(different(En, Sc)))))) = different(blue, blue)
cannot be satisfied.

7. Backtracking to the previous subgoal, goal different(yellow, Wa) is resat-
isfied, yielding θ′5 = {Wa 7→ red}.

8. Goal θ′5(θ4(θ3(θ2(θ1(different(En, Sc))))) is stilldifferent(blue, blue)
and still cannot be satisfied.

9. Backtracking, there are no more substitutions that satisfydifferent(yellow,
Wa). The algorithm backtracks to the previous subgoal, different(yellow,
Sc), and it satisfies the subgoal with a new substitution θ′4 = {Sc 7→ red}.

10. Like step 5.

11. Like step 6, but this time the goal is θ5(θ′4(θ3(θ2(θ1(different(En, Sc)))))) =
different(blue, red), and the goal is satisfied. Substitution θ6 is the iden-
tity substitution, which I ignore.

12. Goal θ5(θ
′
4(θ3(θ2(θ1(different(En, Wa)))))) = different(blue, red),

and the goal is satisfied.

13. Goal θ5(θ′4(θ3(θ2(θ1(different(Ie, NI)))))) = different(blue, blue),
which cannot be satisfied.

More backtracking is needed, but finishing this computation is up to you (Exercise 8
on page S108).

D.3.5 Primitive predicates

The primitive predicates of µProlog are true, atom, print, not, is, <, >, =<, and >=.

true: Always succeeds, with the identity substitution, provided it is not given any
arguments. Has no side effects.

atom: Takes one argument, which is a term. If the term is an atom, atom succeeds.
If the term is an application, a number, or a logical variable, atom fails.

print: Takes any number of terms as arguments, prints each of them, and suc-
ceeds.

not: Takes one argument, which is interpreted as a goal g. Prolog tries to satisfy g.
If g is satisfiable, not fails; otherwise, not succeeds (with the identity substi-
tution). Regrettably, the predicate not is not simple logical negation; to un-
derstand not, you have to understand the procedural interpretation (see Sec-
tion D.8.3).

is: Takes two arguments, the second of which must be a term that stands for an
arithmetic expression. Such a term can be

• A literal integer

• A variable that is instantiated to an integer

• e1⊕e2, where e1 and e2 are terms that stand for arithmetic expressions,
and⊕ is one of these operators: +, *, -, or /.

To use is with any other term is a checked run-time error.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.4
More small

programming
examples

S73

The predicate is works as follows: it computes the value of the expression,
then looks at the first argument. If the first argument is an integer, then is
succeeds if and only if the first argument is equal to the value denoted by the
second. If the first argument is a variable, then is succeeds and produces the
substitution mapping that variable to value denoted by the second argument.
If the first argument is neither an integer nor a variable, is fails.
S73. 〈transcript S48〉+≡ ◁ S68 S75b ▷

-> [query].
?- 12 is 10 + 2.
yes
?- X is 2 - 5.
X = -3
yes
?- X is 10 * 10, Y is (X + 1) / 2.
X = 100
Y = 50
yes

<, =<, >, >=: The primitive comparisons take two arguments, both of which must
be instantiated to integers. They succeed or fail according to the way the
integers compare.

The restrictions on the arguments of numeric predicates prevent infinite back-
tracking. If the restrictions were lifted, we could present a goal like X is Y + 10. But
this goal is satisfied by an infinite number of substitutions! For every integer m,
there is an integer n = m+10, and the substitution {X 7→ n, Y 7→ n} satisfies the
goal. Therefore there are an infinite number of ways to attack any goal that would
follow X is Y + 10, and if the following goal were not satisfiable, the result would
be an infinite loop. To avoid such loops, Prolog disallows logical variables on the
right-hand side of is.

D.4 MORE SMALL PROGRAMMING EXAMPLES

D.4.1 Lists

Prolog supports programming idioms that are impossible in Scheme or ML. To ex-
plore these idioms, let s̓ look at lists again. Both Prolog and ML build lists using
cons and nil (or '()), and both support pattern matching.

As a first example, here is list membership written as a (recursive) µML func-
tion:

(define member? (x xs)
(case xs
['() #f]
[(cons y ys) (if (= x y) #t (member? x ys))]))

For comparison, here is list membership defined as a (recursive) predicate:

-> member(X, [X|XS]).
-> member(X, [Y|YS]) :- member(X, YS).

The nonessential differences conceal some underlying similarities:

• Both languages use pattern matching—the µML pattern (cons y ys) is the
same as the Prolog pattern [Y|YS].

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S74

• Both languages distinguish a variable, which may be bound in a pattern, from
a nonvariable, which may only be matched in a pattern. In µML, the non-
variable is called a “value constructor”; in Prolog, the nonvariable is called a
“functor.”

• To distinguish variables from nonvariables, each language has a spelling
convention—but they use opposite conventions. In Prolog, a name begin-
ning with a capital letter refers to a variable, and a name beginning with a
lower-case letter refers to a functor. InµML, it s̓ the other way round: a name
beginning with a capital letter refers to a value constructor, and a name be-
ginning with a lower-case letter refers to a variable. (Muddying the waters
is the name cons; for consistency with Scheme, cons is grandfathered as a
value constructor in µML as well as in µProlog.)

Prolog was the first widely used language to provide pattern matching, and Pro-
log s̓ pattern matching is strictly more expressive than the pattern matching found
in functional languages like Erlang, Haskell, and ML. In the functional languages,
only one of the two terms to be matched may contain variables, and no variable may
appear more than once. These restrictions enable a pattern match in a functional
language to be compiled into machine code that is significantly more efficient than
the code for Prolog s̓ unification.

The essential differences are more interesting:

• Prolog doesnʼt have an equality predicate! Equality is tested by using the
same variable multiple times in a rule—a variable is always equal to itself.

-> member (X, [X|XS]). /* repeats X; correct idiom */
-> member (X, [Y|YS]) :- X = Y. /* wrong! there is no = */

• µProlog doesnʼt use conditionals. Instead, for each condition under which a
predicate can be shown to hold, we write a rule.

• Because nothing is a member of the empty list, there is no rule for mem-
bership of an empty list! This example highlights a big difference between
functional programming and logic programming. If you write a function,
that function has to return a value, even if the value represents falsehood.
In logic programming, you write down only things that are true—or rather,
that can be proved. If Prolog canʼt prove a fact or canʼt satisfy a predicate,
it just assumes that the fact is false or the predicate is unsatisfiable. This as-
sumption is called the closed-world assumption. The closed-world assumption
can mislead you into thinking something isnʼt true when it really is. That s̓ be-
cause Prolog doesnʼt deal in truth or falsehood; it deals in provability. If your
inference rules arenʼt good enough to prove a fact, then to Prolog, that fact
is as good as dead.

Now let s̓ investigate some logic-programming idioms. At first I present logical
predicates not only in Prolog but also in informal English and in inference rules;
later I leave informal English and inference rules to you. As you read, I encourage
you to think primarily about the logical interpretation of Prolog; where you need
to be aware of the procedural interpretation, I point it out.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.4
More small

programming
examples

S75

Our first example predicate, snocced(XS,X, YS), holds if YS is the list ob-
tained by adding X to the end of XS . Why “snocced”? To add an element to the
beginning of a list, we use cons. And to add an element to the end of a list, we tra-
ditionally define snoc, which is cons spelled backward. The past participle of snoc
is snocced.
S75a. 〈example queries of snocced S75a〉≡ (S75b) S75c ▷

?- snocced([3], 4, [3,4]).
yes

A claim of snocced can be justified by the following rules:

• The list obtained by adding X to the end of the empty list is [X], a list of one
element.

• The list obtained by adding X to the end of [Y |YS] is [Y |ZS], where ZS is
the list obtained by of adding X to the end of YS .

In the notation of mathematical logic, these rules are written as follows:

snocced([], X, [X])

snocced(YS , X,ZS)

snocced([Y |YS], X, [Y |ZS])

And in Prolog, the rules are written as follows:
S75b. 〈transcript S48〉+≡ ◁ S73 S75e ▷

?- [rule].
-> snocced([], X, [X]).
-> snocced([Y|YS], X, [Y|ZS]) :- snocced(YS, X, ZS).
-> [query].
〈example queries of snocced S75a〉

To simulate a snoc function, we write queries of the form snocced(XS , X,YS),
where X and XS are terms and YS is a logical variable:
S75c. 〈example queries of snocced S75a〉+≡ (S75b) ◁ S75a S75d ▷

?- snocced([3], 4, YS).
YS = [3, 4]
yes

But the snoccedpredicate can be used for other queries. For example, what listXS ,
when 4 is added to the end, produces the list [3, 4]?
S75d. 〈example queries of snocced S75a〉+≡ (S75b) ◁ S75c

-> snocced(XS, 4, [3, 4]).
XS = [3]
yes

Next let s̓ look at list reversal. Predicate reversed(XS, YS) holds when YS
is the reverse of XS . Here are a couple of rules:
S75e. 〈transcript S48〉+≡ ◁ S75b S75f ▷

?- [rule].
-> reversed([], []).
-> reversed([X|XS], YS) :- reversed(XS, ZS), snocced(ZS, X, YS).

The code can be run in both directions:
S75f. 〈transcript S48〉+≡ ◁ S75e S76b ▷

-> [query].
?- reversed([1, 2], XS).
XS = [2, 1]
yes
?- reversed(XS, [1, 2]).
XS = [2, 1]
yes

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S76

Another popular example is list append; in Prolog it works out especially neatly.
Predicate appended(XS, YS, ZS) holds if ZS is the result of appending YS to
XS , as in
S76a. 〈example queries of appended S76a〉≡ (S76b) S76d ▷

?- appended([3, 4], [5], [3, 4, 5]).
yes

In the forward direction, appended is used to find ZS given XS and YS ; in the
backward direction, appended splits ZS into two pieces—in every possible way.

The rules that define the predicate appended are almost identical to what you
would see in a clausal definition of function append in µML:
S76b. 〈transcript S48〉+≡ ◁ S75f S76f ▷

?- [rule].
-> appended([], YS, YS).
-> appended([X|XS], YS, [X|ZS]) :- appended(XS, YS, ZS).
-> [query].
〈example queries of appended S76a〉

The µML function has the same structure:
S76c. 〈µML clausal definition of append S76c〉≡

(define* [(append '() ys) ys]
[(append (cons x xs) ys) (cons x (append xs ys))])

Back to Prolog, here are a forward and a backward example of appended.
S76d. 〈example queries of appended S76a〉+≡ (S76b) ◁ S76a S76e ▷

?- appended([3, 4], [5, 6], ZS).
ZS = [3, 4, 5, 6]
yes
?- appended(XS, YS, [5, 6, 7]).
XS = []
YS = [5, 6, 7]
yes

Here is a more sophisticated example in which I split [5, 6, 7] into two nonempty
lists. The singleton list [99] cannot be so split:
S76e. 〈example queries of appended S76a〉+≡ (S76b) ◁ S76d

?- [rule].
-> nonempty([X|XS]).
-> [query].
?- appended(XS, YS, [5, 6, 7]), nonempty(XS), nonempty(YS).
XS = [5]
YS = [6, 7]
yes
?- appended(XS, YS, [99]), nonempty(XS), nonempty(YS).
no

As another example of using appended in the backward direction, I use
appended to define list membership:
S76f. 〈transcript S48〉+≡ ◁ S76b S77a ▷

?- [rule].
-> member_variant(X, XS) :- appended(YS, [X|ZS], XS).

Only one clause is needed! Predicate member_variant means the same as member,
whose definition uses two clauses.

Our last list example uses member to define the equivalent of find from
µScheme. We represent an association list as a list whose elements have the form
pair(key, attribute), e.g.,

[pair(chile, santiago), pair(peru, lima), pair(brazil, brasilia)]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.4
More small

programming
examples

S77

The predicate found(K, A, L) holds when association listLmaps attributeA to
key K. The found predicate can be defined in a single clause:
S77a. 〈transcript S48〉+≡ ◁ S76f S77b ▷

-> found(K, A, L) :- member(pair(K, A), L).

This example also shows how to use a predicate to name a term, which is a bit
like a LET binding; in this case, we associate the name capitalswith the list above:
S77b. 〈transcript S48〉+≡ ◁ S77a S77c ▷

-> capitals([pair(chile, santiago), pair(peru, lima), pair(brazil, brasilia)]).

To query the list of capitals, we begin the query with capitals(CS), then use CS in
the remaining goals.
S77c. 〈transcript S48〉+≡ ◁ S77b S77d ▷

-> [query].
?- capitals(CS), found(peru, CapitalOfPeru, CS).
CS = [pair(chile, santiago), pair(peru, lima), pair(brazil, brasilia)]
CapitalOfPeru = lima
yes

D.4.2 Arithmetic

Arithmetic predicates, as you might suspect from the restrictions on the primitive
is predicate, are used primarily to code functions. A function that takes k param-
eters can be turned into a predicate of k+1 values; the final place of the predicate
typically stands for the result of the function you originally had in mind. I present
two examples: power and factorial.

A function to raise a number to an integer power takes two arguments, so when
expressed as a predicate, it becomes a three-place predicate. The predicate
power(X,N,Z) holds when Z = XN . The rules for power rely on two proper-
ties of exponentiation, which amount to a definition that is inductive in N :

• X0 = 1, for any X.

• XN = X ·XN−1, for any N and X.

Each property can be expressed as a Prolog clause:
S77d. 〈transcript S48〉+≡ ◁ S77c S77e ▷

?- [rule].
-> power(X, 0, 1).
-> power(X, N, Z) :- N > 0, N1 is N - 1, power(X, N1, Z1), Z is Z1 * X.

The subgoal N > 0 prevents infinite recursion during backtracking.
We can use power in the forward direction:

S77e. 〈transcript S48〉+≡ ◁ S77d S77f ▷
-> [query].
?- power(3, 5, Z).
Z = 243
yes
?- power(5, 3, Z).
Z = 125
yes

In logic, nothing prevents us from asking about the power predicate in other
ways, but the results donʼt make anyone happy:
S77f. 〈transcript S48〉+≡ ◁ S77e S78b ▷

?- power(3, N, 27).
Run-time error: Used comparison > on non-integer term

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S78

What happened? To understand this failure, we must appeal to the search al-
gorithm that defines the procedural interpretation of Prolog. The second power
clause matches, yielding subgoals N > 0, N1 is N - 1, and so on. But the pre-
defined predicates > and is N - 1 may be used only when N is instantiated to an
integer. Because N is a logical variable, we get a checked run-time error.

Another consequence of the procedural interpretation (and of the definition
of is) is that to make power work, its second clause must be written in the right
way. Here is a wrong way to do it:
S78a. 〈bad version of power S78a〉≡

-> power(X, N, Z) :- N > 0, N1 is N - 1, Z is Z1 * X, power(X, N1, Z1).

This version is bad for reasons I ask you to figure out for yourself (Exercise 18 on
page S111).

Our other example definition, of a factorial predicate, looks a lot like power.
It too is based on an inductive definition of a function.
S78b. 〈transcript S48〉+≡ ◁ S77f S78c ▷

?- [rule].
-> fac(0, 1).
-> fac(N, R) :- N1 is N - 1, fac(N1, R1), R is N * R1.

Like power, fac runs only in the forward direction, and it works only because the
subgoals in the second clause are written in the right order. And fac exhibits an-
other subtle problem, which you can investigate in Exercise 19 on page S111.

D.4.3 Sorting

It is a theorem of arithmetic that any list of integers can be sorted. The theorem
can be summarized in one clause:
S78c. 〈transcript S48〉+≡ ◁ S78b S78d ▷

?- [rule].
-> sorted(XS, YS) :- permutation(XS, YS), ordered(YS).

Given definitions of permutation and ordered, sorted can be used to sort—but
not very quickly.
S78d. 〈transcript S48〉+≡ ◁ S78c S78e ▷

-> ordered([]).
-> ordered([N]).
-> ordered([N, M|NS]) :- N =< M, ordered([M|NS]).
-> permutation([], []).
-> permutation(XS, [Y|YS]) :-

appended(WS, [Y|US], XS), appended(WS, US, ZS), permutation(ZS, YS).

The definition of ordered is simple. In permutation, I generate permutations
by running appended in the backward direction, which splits list XS in all possible
ways. The clauses say that:

• [] is a permutation of [].

• [Y |YS] is a permutation of XS if Y is an element of XS and YS is a per-
mutation of the remaining elements. That is, [Y |YS] is a permutation of
XS if XS can be split into two parts, WS and [Y |US], such that YS is a
permutation of ZS , where ZS is the list we get by appending US to WS .

A query on sorted tries all permutations of its argument—as many as n! for a list
of length n—until it finds a sorted one.
S78e. 〈transcript S48〉+≡ ◁ S78d S79a ▷

-> [query].

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.4
More small

programming
examples

S79

?- sorted([4, 2, 3], NS).
NS = [2, 3, 4]
yes

What an awful sorting algorithm! To define a better one, we once again turn a func-
tion into a predicate. As an example, here is Quicksort.

The key to Quicksort is the predicate partitioned(Pivot, XS, YS, ZS),
which holds whenYS andZS form a partition ofXS in whichYS contains the ele-
ments less than or equal to Pivot andZS contains the elements greater than Pivot.
When we use partitioned in the forward direction, we supply a Pivot andXS that
are instantiated to a specific value and list, respectively; but YS and ZS are logical
variables. Satisfying a partitioned goal binds resulting lists to both YS and ZS .
S79a. 〈transcript S48〉+≡ ◁ S78e S79b ▷

?- [rule].
-> partitioned(Pivot, [A|XS], [A|YS], ZS) :- A =< Pivot, partitioned(Pivot, XS, YS, ZS).
-> partitioned(Pivot, [A|XS], YS, [A|ZS]) :- Pivot < A, partitioned(Pivot, XS, YS, ZS).
-> partitioned(Pivot, [], [], []).
-> quicksorted([], []).
-> quicksorted([X|XS], Sorted) :-

partitioned(X, XS, Lows, Highs),
quicksorted(Lows, Lows1), quicksorted(Highs, Highs1),
appended(Lows1, [X|Highs1], Sorted).

One advantage of programming with logic is that important preconditions, in-
variants, and postconditions can be expressed as named predicates. When you un-
derstand what “sorted” and “partitioned” mean, the quicksorted clauses express
the algorithm clearly.

Another advantage of logic programming is that compared with functional
programming, it is easy to code “functions” that want to return multiple re-
sults. In other languages, like C, Scheme, ML, and Smalltalk, a partition
function has to return some sort of pair, record, or object containing the two
halves of the partition. In Prolog, we could do the same—writing something
like partitioned(X, XS, pair(Lows, Highs)), for example—but it is more id-
iomatic simply to make a place in the predicate for each result. We just think of
partitioned as a 4-place predicate that expects two inputs and produces two out-
puts. In Prolog, using a single predicate to compute multiple values comes natu-
rally.

Here is an example use of quicksorted, in the forward direction:
S79b. 〈transcript S48〉+≡ ◁ S79a S80a ▷

-> [query].
?- quicksorted([8, 2, 3, 7, 1], S).
S = [1, 2, 3, 7, 8]
yes

To explain why quicksorted canʼt be used in the backward direction is the task of
Exercise 20 on page S111.

D.4.4 Difference lists

In the examples above, data is represented by ground terms. A ground term is one
with no logical variables, or to define it inductively, a ground term is one of the
following:

• An integer

• A nullary functor

• A functor applied to one or more ground terms

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S80

This is a fine way to represent data—it is essentially the same way data is repre-
sented in ML—but it doesnʼt take advantage of the full power of logic programming.
It is also possible to represent data in a way that involves logical variables. An ex-
ample that is both interesting and widely used is the difference list.

A difference list represents a list XS as the difference between two others lists
YS and ZS . More precisely, a difference list is a term of the form diff(YS, ZS),
where ZS is a logical variable YS is a sequence of elements cons e̓d onto ZS . For
example, the term

diff([3,4|ZS], ZS)

represents the list containing the two elements 3 and 4, i.e. the ordinary list [3, 4].
As another example, the term diff(ZS, ZS) represents the empty list. The inter-
esting property of the difference list is that it can be refined by substituting for ZS.

A difference list can easily be transformed to an ordinary list, and vice versa.
The predicate canonical(D, XS) is true if XS is the canonical, ordinary repre-
sentation of the list represented by D.
S80a. 〈transcript S48〉+≡ ◁ S79b S80b ▷

?- [rule].
-> canonical(diff(ZS, ZS), []).
-> canonical(diff([X|YS], ZS), [X|XS]) :- canonical(diff(YS, ZS), XS).

The definition is based on these facts:

• The difference between any listZS and itself, diff(ZS, ZS), represents the
empty list.

• If the difference between YS and ZS is XS, then the difference between [X|YS]
and ZS is [X|XS].

The rules are easier to motivate if I write diff using a − sign and cons using a
+ sign:

ZS − ZS = []

YS − ZS = XS

(X +YS)− ZS = X +XS

Substitute for XS in the conclusion of the second rule, and you get the equation

(X +YS)− ZS = X + (YS − ZS).

The canonical predicate can transform lists in either direction.
S80b. 〈transcript S48〉+≡ ◁ S80a S80c ▷

-> [query].
?- canonical(diff([3, 4|YS], YS), XS).
YS = _ZS6748
XS = [3, 4]
yes
?- canonical(D, [3, 4]).
D = diff([3, 4|_ZS6990], _ZS6990)
yes

One of the neat things about difference lists is that you can append them with-
out any induction or recursion:
S80c. 〈transcript S48〉+≡ ◁ S80b S81 ▷

?- [rule].
-> diffappended(diff(XS, YS), diff(YS, ZS), diff(XS, ZS)).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.5
Implementation

S81

To get some intuition for this rule, look at this algebraic law:

(XS −YS) + (YS − ZS) = (XS − ZS).

We can use diffappended in the forward direction to append [1, 2] to [3, 4]:
S81. 〈transcript S48〉+≡ ◁ S80c S88 ▷

-> [query].
?- diffappended(diff([1, 2|YS], YS), diff([3, 4|ZS], ZS), D).
YS = [3, 4|_ZS7075]
ZS = _ZS7075
D = diff([1, 2, 3, 4|_ZS7075], _ZS7075)
yes

In this example, Prolog needs to make the goal equal to the head of the single clause
for diffappended. Once the variables in the clause are renamed, the interpreter
must unify these terms:

diffappended(diff([1,2|YS], YS), diff([3,4|ZS], ZS), D)
diffappended(diff(XS1, YS1), diff(YS1, ZS1), diff(XS1, ZS1))

These terms are made equal by the substitution

θ = { ZS 7→ ZS1
, YS 7→ [3,4|ZS1]
, YS1 7→ [3,4|ZS1]
, XS1 7→ [1,2,3,4|ZS1]
, D 7→ diff([1,2,3,4|ZS1], ZS1)
}.

In the Prolog interpreter, renaming produces _ZS7075 instead of ZS1, and with that
change, substitution θ gives the answer.

Some other predicates on difference lists can also be coded without induction
or recursion, and some other predicates, like quicksorted, are simpler when using
difference lists (Exercise 17 on page S110).

D.5 IMPLEMENTATION

The implementation of µProlog differs most obviously from our other implemen-
tations in two ways:

• There are no “values” as distinct from “abstract syntax”; terms do duty as
both.

• There is no “evaluation.”8 Instead, we have queries.

The main features of the implementation are the database, substitution, unifica-
tion, and the backtracking query engine. They are presented below.

D.5.1 The database of clauses

I treat the database of clauses as an abstraction, which I characterize by its opera-
tions.

• We can add a clause to the database.

• Given a goal, we can search for clauses whose conclusions may match that
goal.

8Well, hardly any. The primitive is does a tiny amount of evaluation.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S82

Searching for potentially matching clauses is an important part of Prolog, and it can
be worth choosing a representation of the database to make this operation fast (Ex-
ercise 43). If we do so, we have to preserve the order of the clauses in the database.

My representation is a list. As a result, I treat every clause as a potential match.
S82a.

type database
emptyDatabase : database
addClause : clause * database -> database
potentialMatches : goal * database -> clause list

〈µProlog’s database of clauses S82a〉≡ (S87b)

type database = clause list
val emptyDatabase = []
fun addClause (r, rs) = rs @ [r] (* must maintain order *)
fun potentialMatches (_, rs) = rs

D.5.2 Substitution, free variables, and unification

As part of type inference, Chapter 7 develops a representation of substitutions, as
well as utility functions that apply substitutions to types. Prolog uses the same rep-
resentation, but instead of substituting types for type variables, Prolog substitutes
terms for logical variables. The code, which closely resembles the code in Chap-
ter 7, is in Section V.1. Substitutions are discovered by solving equality constraints,
which are defined here:
S82b.

type subst
idsubst : subst
|--> : name * term -> subst
varsubst : subst -> (name -> term)
termsubst : subst -> (term -> term)
goalsubst : subst -> (goal -> goal)
clausesubst : subst -> (clause -> clause)
type con
consubst : subst -> (con -> con)

〈substitution and unification S82b〉≡ (S87a) S83c ▷
datatype con = ~ of term * term

| /\ of con * con
| TRIVIAL

infix 4 ~
infix 3 /\
〈free variables of terms, goals, clauses S82c〉
〈substitutions for µProlog S571a〉

Free variables

The function termFreevars computes the free variables of a term. For readability,
those free variables are ordered by their first appearance in the term, when reading
from left to right. Similar functions compute the free variables of goals and clauses.
S82c.

termFreevars : term -> name set
goalFreevars : goal -> name set
clauseFreevars : clause -> name set

〈free variables of terms, goals, clauses S82c〉≡ (S82b)

fun termFreevars t =
let fun f (VAR x, xs) = insert (x, xs)

| f (LITERAL _, xs) = xs
| f (APPLY(_, args), xs) = foldl f xs args

in reverse (f (t, []))
end

fun goalFreevars goal = termFreevars (APPLY goal)
fun union' (s1, s2) = s1 @ diff (s2, s1) (* preserves order *)
fun clauseFreevars (c :- ps) =
foldl (fn (p, f) => union' (goalFreevars p, f)) (goalFreevars c) ps

Renaming variables in clauses: “Freshening”

Every time a clause is used, its variables are renamed. To rename a variable, I put
an underscore in front of its name and a unique integer after it. Because the parser
in Section V.5 does not accept variables whose names begin with an underscore,

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.5
Implementation

S83

these names cannot possibly conflict with the names of variables that appear in
source code.
S83a.

freshVar : string -> term
〈renaming µProlog variables S83a〉≡ (S87a) S83b ▷

local
val n = ref 1

in
fun freshVar s = VAR ("_" ^ s ^ intString (!n) before n := !n + 1)

end

Function freshen replaces free variables with fresh variables. Value renaming
represents a renaming θα, as in Section D.3.4.
S83b.

freshen : clause -> clause
〈renaming µProlog variables S83a〉+≡ (S87a) ◁ S83a

fun freshen c =
let val renamings = map (fn x => x |--> freshVar x) (clauseFreevars c)

val renaming = foldl compose idsubst renamings
in clausesubst renaming c
end

Unification by solving equality constraints

To unify a goal with the head of a clause, we solve an equality constraint.
S83c.

unify : goal * goal -> subst
〈substitution and unification S82b〉+≡ (S87a) ◁ S82b

exception Unsatisfiable
〈constraint solving (left as exercise)〉
fun unify ((f, ts), (f', ts')) =
solve (APPLY (f, ts) ~ APPLY (f', ts'))

As in Chapter 7, you implement the solver. Prolog uses the same kind of equality
constraints as ML type inference, and it uses the same algorithm for the solver.
If a constraint cannot be solved, solve must raise the Unsatisfiable exception.
S83d.

solve : con -> subst
〈constraint solving [[prototype]] S83d〉≡

fun solve c = raise LeftAsExercise "solve"

D.5.3 Backtracking search

I implement Prolog search using Byrd boxes (Section D.3.4 on page S68), which are
implemented in continuation-passing style. Given a goal g and continuations κsucc
and κfail, solveOne g κsucc κfail builds and runs a Byrd box for g. As expected
for continuation-passing style, the result of the call to solveOne is the result of the
entire computation.

Unless the predicate is built in, solveOne uses internal function search to man-
age the state of the Byrd box. Think of the argument to search as the list of clauses
to be considered; the⇒ arrow in Section D.3.4 points to the head of this list.9

To solve a single goal g using clause G :- H1, . . . , Hm, I rename variables,
unify the renamed G with g to get θ, then solve θ(H1), . . . , θ(Hm). Eventually, the
entire composed substitution gets passed to κsucc. In the code, G = conclusion
and H1, . . . , Hm = premises (both after renaming), and g = goal.

To solve multiple goals g1, . . . , gn, I call solveMany [g1, . . . , gn] θid κsucc κfail,
where θid is the identity substitution. Function solveMany manages interactions
between Byrd boxes, composing substitutions as it goes. If substitution θ′ solves
goal g1, we apply θ′ to the remaining goals g2, . . . , gn before a recursive call to
solveMany. If that recursive call fails, we transfer control to the resume contin-
uation that came from solving g1, which gives us a chance to produce a different
substitution that might solve the whole lot.

9Clauses preceding the⇒ arrow are irrelevant to any future computation, and searchdiscards them.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S84

Here is the code:
S84a.

query : database -> goal list -> (subst -> (unit->'a) -> 'a) -> (unit->'a) -> 'a
solveOne : goal -> (subst -> (unit->'a) -> 'a) -> (unit->'a) -> 'a
solveMany : goal list -> subst -> (subst -> (unit->'a) -> 'a) -> (unit->'a) -> 'a
search : clause list -> 'a

〈search [[prototype]] S84a〉≡

fun 'a query database =
let val primitives = foldl (fn ((n, p), rho) => bind (n, p, rho))

emptyEnv (〈µProlog’s primitive predicates :: S85d〉 [])
fun solveOne (goal as (predicate, args)) succ fail =

find (predicate, primitives) args succ fail
handle NotFound _ =>
let fun search [] = fail ()

| search (clause :: clauses) =
let fun resume () = search clauses

val G :- Hs = freshen clause
val theta = unify (goal, G)

in solveMany (map (goalsubst theta) Hs) theta succ resume
end
handle Unsatisfiable => search clauses

in search (potentialMatches (goal, database))
end

and solveMany [] theta succ fail = succ theta fail
| solveMany (goal::goals) theta succ fail =

solveOne goal
(fn theta' => fn resume => solveMany (map (goalsubst theta') goals)

(compose (theta', theta))
succ
resume)

fail
in fn gs => solveMany gs idsubst
end

The environment primitives holds the primitive predicates. These predicates are
implemented by polymorphic ML functions, and as a result, MLs̓ “value restric-
tion” prevents me from defining primitives at top level. To work around the re-
striction, function query rebuilds primitives once per query. Luckily the cost is
small compared with the cost of the search.

D.5.4 Processing clauses and queries

µProlog s̓ basis is the database of queries. µProlog uses the same generic read-eval-
print loop as the other interpreters; a “definition” is either a clause or a query.
S84b.

type basis
processDef : cq * database * interactivity -> database

〈definitions of basis and processDef for µProlog S84b〉≡ (S87b)

type basis = database
fun processDef (cq, database, interactivity) =
let fun process (ADD_CLAUSE c) = addClause (c, database)

| process (QUERY gs) = (〈query goals gs against database S85a〉; database)
fun caught msg = (eprintln (stripAtLoc msg); database)

in withHandlers process cq caught
end

To issue a query, I provide success and failure continuations to the query func-
tion defined above. The success continuation uses showAndContinue to decide be-

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.5
Implementation

S85

tween two possible next steps: resume the search and look for another solution, or
just say “yes” and stop.
S85a. 〈query goals gs against database S85a〉≡ (S84b)

query database gs
(fn theta => fn resume =>

if showAndContinue interactivity theta gs then resume () else print "yes\n")
(fn () => print "no\n")

To show a solution, we apply the substitution to the free varables of the query.
If weʼre prompting, we wait for a line of input. If the line begins with a semicolon,
we continue; otherwise we quit. If weʼre not prompting, weʼre in batch mode, and
we produce at most one solution.
S85b.

showAndContinue : interactivity -> subst -> goal list -> bool
〈interaction S85b〉≡ (S87b)

fun showAndContinue interactivity theta gs =
let fun varResult x = x ^ " = " ^ termString (varsubst theta x)

val vars = foldr union' emptyset (map goalFreevars gs)
val results = separate ("", "\n") (map varResult vars)

in if null vars then
false (* no more solutions possible; don't continue *)

else
(print results
; if prompts interactivity then

case Option.map explode (TextIO.inputLine TextIO.stdIn)
of SOME (#";" :: _) => (print "\n"; true)
| _ => false

else
(print "\n"; false)

)
end

To make µProlog more compatible with other implementations of Prolog,
I patch the useFile function defined in Chapter 5. If useFile fails with an I/O er-
ror, I try adding “.P” to the name; this is the convention used by XSB Prolog. If
adding .P fails, I try adding “.pl”; this is the convention used by GNU Prolog and
SWI Prolog.
S85c. 〈definition of useFile, to read from a file S85c〉≡

val try = useFile
fun useFile filename =
try filename handle IO.Io _ =>
try (filename ^ ".P") handle IO.Io _ =>
try (filename ^ ".pl")

D.5.5 Primitives

This section describesµProlog s̓ handful of primitive predicates, starting with true.
S85d. 〈µProlog’s primitive predicates :: S85d〉≡ (S84a) S85e ▷

("true", fn args => fn succ => fn fail =>
if null args then succ idsubst fail else fail ()) ::

Predicate atom tests to see if its argument is an atom.
S85e. 〈µProlog’s primitive predicates :: S85d〉+≡ (S84a) ◁ S85d S86a ▷

("atom", fn args => fn succ => fn fail =>
case args of [APPLY(f, [])] => succ idsubst fail

| _ => fail ()) ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S86

Printing a term always succeeds, and it produces the identity substitution.
S86a. 〈µProlog’s primitive predicates :: S85d〉+≡ (S84a) ◁ S85e S86d ▷

("print", fn args => fn succ => fn fail =>
(app (fn x => (print (termString x); print " ")) args
; print "\n"
; succ idsubst fail
)) ::

Primitive predicate is requires a very small evaluator. Because it works only
with integers, never with variables, the evaluator doesnʼt need an environment.
S86b.

eval : term -> int
〈functions eval, is, and compare, used in primitive predicates S86b〉≡ (S87b) S86c ▷

fun eval (LITERAL n) = n
| eval (APPLY ("+", [x, y])) = eval x + eval y
| eval (APPLY ("*", [x, y])) = eval x * eval y
| eval (APPLY ("-", [x, y])) = eval x - eval y
| eval (APPLY ("/", [x, y])) = eval x div eval y
| eval (APPLY ("-", [x])) = 0 - eval x
| eval (APPLY (f, _)) =

raise RuntimeError (f ^ " is not an arithmetic predicate " ^
"or is used with wrong arity")

| eval (VAR v) = raise RuntimeError ("Used uninstantiated variable " ^ v ^
" in arithmetic expression")

Predicate x is e evaluates term e as an integer expression and constrains it to
equal x.
S86c. 〈functions eval, is, and compare, used in primitive predicates S86b〉+≡ (S87b) ◁ S86b S86e ▷

fun is [x, e] succ fail = (succ (solve (x ~ LITERAL (eval e))) fail
handle Unsatisfiable => fail())

| is _ _ fail = fail ()

S86d. 〈µProlog’s primitive predicates :: S85d〉+≡ (S84a) ◁ S86a S86f ▷
("is", is) ::

A comparison predicate is applied to exactly two arguments. If these arguments
arenʼt integers, it s̓ a run-time error. If they are, ML function cmp determines the
success or failure of the predicate.
S86e. 〈functions eval, is, and compare, used in primitive predicates S86b〉+≡ (S87b) ◁ S86c

fun compare name cmp [LITERAL n, LITERAL m] succ fail =
if cmp (n, m) then succ idsubst fail else fail ()

| compare name _ [_, _] _ _ =
raise RuntimeError ("Used comparison " ^ name ^ " on non-integer term")

| compare name _ _ _ _ =
raise InternalError ("this can't happen---non-binary comparison?!")

There are four comparison predicates.
S86f. 〈µProlog’s primitive predicates :: S85d〉+≡ (S84a) ◁ S86d S86g ▷

("<", compare "<" op <) ::
(">", compare ">" op >) ::
("=<", compare "=<" op <=) ::
(">=", compare ">=" op >=) ::

Each predicate above takes as argument a list of terms, a success continua-
tion, and a failure continuation. Two more predicates, ! and not, cannot be im-
plemented using this technique; they have to be added directly to the interpreter
(Exercises 44 and 45). This code ensures that they canʼt be used by mistake.
S86g. 〈µProlog’s primitive predicates :: S85d〉+≡ (S84a) ◁ S86f

("!", fn _ => raise RuntimeError "The cut (!) must be added to the interpreter") ::
("not", fn _ => raise RuntimeError "Predicate `not' must be added to the interpreter") ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.6
Larger example:
The blocks world

S87

D.5.6 Putting the pieces together

The µProlog interpreter is composed of these parts:
S87a. 〈upr.sml S87a〉≡

〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉
〈abstract syntax for µProlog S58f〉
〈support for tracing µProlog computation S583d〉
〈substitution and unification S82b〉
〈renaming µProlog variables S83a〉
〈lexical analysis and parsing for µProlog, providing cqstream S574c〉
〈evaluation, testing, and the read-eval-print loop for µProlog S87b〉
〈function runAs for µProlog S583b〉
〈code that looks at µProlog’s command-line arguments and calls runAs S583c〉

The evaluation parts are organized as follows:
S87b. 〈evaluation, testing, and the read-eval-print loop for µProlog S87b〉≡ (S87a)

〈µProlog’s database of clauses S82a〉
〈functions eval, is, and compare, used in primitive predicates S86b〉
〈tracing functions S119〉
〈search (left as an exercise)〉
〈interaction S85b〉
〈shared definition of withHandlers (left as an exercise)〉
〈definitions of basis and processDef for µProlog S84b〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for µProlog S572d〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined (left as an exercise)〉

D.6 LARGER EXAMPLE: THE BLOCKS WORLD

If you want to investigate language and reasoning, give your computer something
simple to reason about. An idea that predates Prolog is to imagine discourse with
a computer whose entire world consists of a table full of blocks (Figure D.4 on
page S88). The computer can see the blocks, and the computer controls a robot
arm that can pick up and move one block at a time. This simple world was devel-
oped for one of the first language-understanding programs, SHRDLU. The blocks
were designed “to give the system a world to talk about in which one can say many
different kinds of things” (Winograd 1972, page 33).10 In this example, we create
Prolog axioms and inference rules for reasoning about blocks.

Even Winograds̓ blocks world is too complicated for a simple example, so let s̓
consider a table containing only three cubical blocks labeled a, b, and c. And let s̓
abstract away most of the details of the state—we donʼt care exactly where any block
is located; all we want to know is what blocks are on top of what other blocks. Fi-
nally, let s̓ not use natural language. Instead, let s̓ use logic programming to tackle
just one of the many problems solved by SHRDLU: developing a plan to get the
blocks world from one state to another by moving one block at a time. For example,
we might like to know how to get the blocks world from an initial state where each
block is on the table to a desired state like that shown in Figure D.5 on page S90.
We can tackle this problem using depth-first search; my design follows those of
Kamin (1990, p. 362) and Sterling and Shapiro (1986, p. 222).

10Winograds̓ objective was the understanding of natural language, and while he was well informed of
work in automated theorem proving using axioms and inference rules, he found it not practical enough
to support language understanding or even reasoning about the blocks world. He observes that “logic
is a declarative rather than imperative language, and to get an imperative effect requires a good deal of
careful thought and clever trickery” (page 232). You are learning it.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S88

Figure D.4: The original blocks world as depicted by Winograd (1972)

A key question is how to represent the state of the world. A state is determined
by the answer to the question “what object is each block on top of?” We could, for
example, represent a state as a three-tuple of objects. The initial state would be
(table, table, table), and the desired state would be (b, table, a). But this state
is hard to read. So instead of representing a state as a three-tuple, I use a list of
relations:

State Representation

Initial [on(a, table), on(b, table), on(c, table)]
Desired [on(a, b), on(b, table), on(c, a)]

We may as well allow relations to appear in any order, so two lists represent the
same state if they contain the same relations.

The problem weʼre trying to solve is “given an arbitrary initial state, by what
sequence of moves can we get to a desired state?” A “move” is the atomic action
that the robot arm performs: it picks up a block from one place and sets it down in
another. A move is represented by the term move(b, d), where b is a block and d is
a destination.

To specify the effect of a move, we define our first predicate, which resembles
a classic “Hoare triple”: predicate triple(Pre, Move, Post) relates Move to states
Pre and Post, which immediately precede and follow Move. Moving the first block
in the state changes the thing the block is sitting on:
S88. 〈transcript S48〉+≡ ◁ S81 S89a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.6
Larger example:
The blocks world

S89

?- [rule].
-> triple([on(Block, Thing) | S], move(Block, Dest), [on(Block, Dest) | S]).

Informally, if we move Block to Dest, the state changes so that instead of what-
ever Thing the Block was on before, it is now on Dest. But this rule works only
if Block s̓ location is the first relation in the state. What if the block occurs later?
We need a rule that handles Block in other positions. Recursion seems promising,
but we want to recur only if Block is not first. To guard the recursion, I use the same
different predicate I use in the map-coloring problem.
S89a. 〈transcript S48〉+≡ ◁ S88 S89b ▷

-> triple([on(B1, T1) | Pre], move(Block, Dest), [on(B1, T1) | Post]) :-
different(Block, B1), triple(Pre, move(Block, Dest), Post).

Differences between blocks are made manifest in these axioms:
S89b. 〈transcript S48〉+≡ ◁ S89a S89c ▷

-> different(a, b). different(b, a).
-> different(a, c). different(c, a).
-> different(b, c). different(c, b).

Predicate triple tells how a move relates two states. It s̓ a good predicate, but
there s̓ too much it doesnʼt know:

• You canʼt move a block to be on top of itself (a law of geometry).

• On the top of a cubical block, there is room for at most one other cubical
block of the same size (geometry and physics).

• The robot arm can move a block, but it canʼt move the table.

• The robot arm can pick up a block only if nothing is on top of the block.

These facts are embodied in a new predicate legal_move.
Predicate legal_move can be proven with either of two inference rules. One

rule moves a block onto the table, which can hold any number of blocks. The other
rule moves a block onto another block, which can hold the first block only if no
other block is on top of it. To say “in state S, nothing is on top of block B,” I use the
auxiliary predicate holds_nothing(B, S).
S89c. 〈transcript S48〉+≡ ◁ S89b S89d ▷

-> block(a). block(b). block(c). /* these things are blocks */
-> legal_move(move(Block, table), S) :- block(Block), holds_nothing(Block, S).
-> legal_move(move(B1, B2), S) :-

block(B1), different(B1, B2), holds_nothing(B1, S), holds_nothing(B2, S).

A block holds nothing if nothing in the state is on it.
S89d. 〈transcript S48〉+≡ ◁ S89c S89e ▷

-> holds_nothing(Block1, [on(Block2, Thing) | S]) :-
different(Block1, Thing), holds_nothing(Block1, S).

-> holds_nothing(Block1, []).

This definition works only if the table is different from any block.
S89e. 〈transcript S48〉+≡ ◁ S89d S90a ▷

-> different(Block, table) :- block(Block).
-> different(table, Block) :- block(Block).

A move might be legal and still not good. For example, a move might move a
block to where it already is. Such a move is particularly bad because we are search-
ing for a sequence of moves, and we can make arbitrarily many such moves without

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S90 Initial

b

a

c

����

��������

�� ��

��

��

��

⇒
Moves

����

��������

Desired

c

b

a
�� ��

��

��

��

Figure D.5: Example problem in the simplified blocks world

making progress. To rule out these useless moves, here is a predicate that is prov-
able only if a move changes the state.
S90a. 〈transcript S48〉+≡ ◁ S89e S90b ▷

-> changes_state(move(Block, Dest), [on(Block, Thing) | S]) :- different(Dest, Thing).
-> changes_state(move(Block, Dest), [on(B1, T1) | S]) :-

different(Block, B1), changes_state(move(Block, Dest), S).

A move is good if it is legal and it changes state.
S90b. 〈transcript S48〉+≡ ◁ S90a S91c ▷

-> good_move(M, S) :- legal_move(M, S), changes_state(M, S).

We are now ready to search for a sequence of good moves that transforms one
state into another. We might imagine we could compute such a list this way:
S90c. 〈nonterminating version of transforms S90c〉≡ S90d ▷

-> transforms(State, [], State).
-> transforms(Initial, [Move|Moves], Final) :-

good_move(Move, Initial),
triple(Initial, Move, Intermediate),
transforms(Intermediate, Moves, Final).

Regrettably, this idea wonʼt work. For example, the following query asks for the
transformation pictured in Figure D.5:
S90d. 〈nonterminating version of transforms S90c〉+≡ ◁ S90c

-> initial([on(a, b), on(b, table), on(c, a)]).
-> desired([on(a, b), on(b, c), on(c, table)]).
-> [query].
?- initial(S1), desired(S2), transforms(S1, Moves, S2).

The query does not terminate. To see why, let s̓ add a print subgoal to the second
clause of transforms:11

11You canʼt actually change an existing clause. All you can do is add new clauses to the database.
(In full Prolog, you can remove a clause using the fancy predicate retract, but let s̓ not go there—it s̓

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.6
Larger example:
The blocks world

S91

S91a. 〈nonterminating version of transforms, with debugging code S91a〉≡
-> transforms(Initial, [Move|Moves], Final) :-

good_move(Move, Initial),
triple(Initial, Move, Intermediate),
print(moved(Move, Intermediate)),
transforms(Intermediate, Moves, Final).

Now we can see what is going on:
S91b. 〈output from nonterminating version of transforms, with debugging code S91b〉≡

moved(move(c, table), [on(a, b), on(b, table), on(c, table)])
moved(move(a, table), [on(a, table), on(b, table), on(c, table)])
moved(move(a, b), [on(a, b), on(b, table), on(c, table)])
moved(move(a, table), [on(a, table), on(b, table), on(c, table)])
moved(move(a, b), [on(a, b), on(b, table), on(c, table)])
...

The robot cheerfully puts block a on the table, then on block b, then back on the
table, and so on forever. This problem is a classic problem in any connected graph,
and it has a classic solution: donʼt visit the same states repeatedly. The algorithm
is depth-first search, and it needs an auxiliary variable to hold the set of states al-
ready visited. To hold such a variable in a Prolog program, we create a 4-argument
version of the transforms predicate. The 4-argument version acts like an auxiliary
function, and it canʼt possibly be confused with the three-argument transforms,
because no substitution can make them equal. Predicate transforms(Initial,
Moves, Final, Visited) holds if Moves leads from Initial to Final without pass-
ing through any state in Visited.
S91c. 〈transcript S48〉+≡ ◁ S90b S91d ▷

-> transforms(State, [], State, Visited).
-> transforms(Initial, [Move|Moves], Final, Visited) :-

good_move(Move, Initial),
triple(Initial, Move, Intermediate),
not_member(Intermediate, Visited),
transforms(Intermediate, Moves, Final, [Intermediate|Visited]).

-> transforms(Initial, Moves, Final) :- transforms(Initial, Moves, Final, []).

Predicate not_member does just what the name says.
S91d. 〈transcript S48〉+≡ ◁ S91c S91e ▷

-> not_member(X, []).
-> not_member(X, [Y|YS]) :- different(X, Y), not_member(X, YS).

To make this code work, we extend different to states.
S91e. 〈transcript S48〉+≡ ◁ S91d S91f ▷

-> different([on(A, X)|State1], [on(A, Y)|State2]) :- different(X, Y).
-> different([on(A, X)|State1], [on(A, X)|State2]) :- different(State1, State2).

With these new clauses, we get:
S91f. 〈transcript S48〉+≡ ◁ S91e S92a ▷

-> initial([on(a, b), on(b, table), on(c, a)]).
-> desired([on(a, b), on(b, c), on(c, table)]).
-> [query].
?- initial(S1), desired(S2), transforms(S1, Moves, S2).
S1 = [on(a, b), on(b, table), on(c, a)]
S2 = [on(a, b), on(b, c), on(c, table)]
Moves = [move(c, table), move(a, table), move(b, a), move(b, c), move(a, b)]
yes

way too far outside the logical interpretation.) What you really do is blow up your interactive session
and start over with new definitions.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S92

The plan works, but it s̓ not great. Moving block b twice in a row is not smart. Elim-
inating double moves helps (Exercise 21 on page S111), but we can do even better.

To do better, let s̓ reconsider what step to take from an Initial state. In this
step, predicate transforms does not take the Final state into account. To direct the
search, let s̓ define a new predicate better_move(Move, Initial, Final), which
prefers moves that move us closer to the Final state. Predicate transforms2 is like
transforms, except it uses better_move instead of good_move.
S92a. 〈transcript S48〉+≡ ◁ S91f S92b ▷

?- [rule].
-> transforms2(State, [], State, Visited).
-> transforms2(Initial, [Move|Moves], Final, Visited) :-

better_move(Move, Initial, Final),
triple(Initial, Move, Intermediate),
not_member(Intermediate, Visited),
transforms2(Intermediate, Moves, Final, [Intermediate|Visited]).

-> transforms2(Initial, Moves, Final) :- transforms2(Initial, Moves, Final, []).

Predicate better_move in turn uses suggest, which looks at Final and suggests
moving a block directly to the location where it is in the Final state.
S92b. 〈transcript S48〉+≡ ◁ S92a S92c ▷

-> better_move(Move, Initial, Final) :- suggest(Move, Final),
good_move(Move, Initial).

-> better_move(Move, Initial, Final) :- good_move(Move, Initial).
-> suggest(move(Block, Dest), State) :- member(on(Block, Dest), State).

The suggestion eliminates the double move:
S92c. 〈transcript S48〉+≡ ◁ S92b S93a ▷

-> [query].
?- initial(S1), desired(S2), transforms2(S1, Moves, S2).
S1 = [on(a, b), on(b, table), on(c, a)]
S2 = [on(a, b), on(b, c), on(c, table)]
Moves = [move(c, table), move(a, table), move(b, c), move(a, b)]
yes

In fact, this plan is optimal: getting from S1 to S2 requires at least four moves.

D.7 LARGER EXAMPLE: HASKELL TYPE CLASSES

Logic programming is a key ingredient in the type system of the popular func-
tional language Haskell. Logic programming is part of Haskell s̓ system of type
classes, which determines the meanings of names like == (equality), < (compari-
son), + (arithmetic), and show (printing). Each of these operations has a type that
uses bounded polymorphism (Chapter 9); the operation can be used at any type that
meets a constraint:

Operation Type

== (forall ['a where (Eq 'a)] ('a 'a -> bool))
< (forall ['a where (Ord 'a)] ('a 'a -> bool))
+ (forall ['a where (Num 'a)] ('a 'a -> 'a))
show (forall ['a where (Show 'a)] ('a 'a -> string))

(The types are written not as they are in Haskell but as they might be written in an
extension of Typed µScheme or Molecule.)

Logic programming enters the picture in two ways:

• Haskell uses a logic program to to prove that constraints like Eq (list int)
are satisfied.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.7
Larger example:

Haskell type classes

S93

• Haskell also uses a logic program to generate code for the instance of == at
type (list int). The generated implementation of == provides constructive
evidence that Eq (list int) is satisfied; it is sometimes called a witness. This
ability to generate code from a type is one of Haskell s̓ mutant superpowers
(Claessen and Hughes 2000).

This section develops the example by providing inference rules for a single predi-
cate,

implemented_by(O, T, F),

which holds when functionF implements the instance of polymorphic, overloaded
operation O at type T . Making a query at a given O and T produces the generated
function F .

To represent the names of operations, I use Prolog functors. To represent
Haskell s̓ expressions and types, I use Prolog terms. How terms can represent
Haskell expressions and types is a question that cannot be answered in Prolog it-
self, but I can specify informally which terms represent types. One of the simplest
and best specifications is a grammar.12

htype ::= int
∣∣ bool ∣∣ pairtype(htype,htype) ∣∣ listtype(htype)

| arrowtype([
{
htype,

}
],htype)

hexp ::= x
∣∣ lambda([

{
arg(x,htype),

}
],hexp)

∣∣ apply(hexp,[{hexp,}])
| if(hexp,hexp,hexp)

∣∣ letrec(x,hexp,hexp)
In addition, I assume the existence of primitive functions for comparison on base
types (inteq, intlt), for introducing and eliminating pairs (pair, fst, snd), and
for operating on lists (isnull, cons, car, cdr). Finally, to spell Haskell s̓ operators
in Prolog, instead of ==, <, and + I write eq, lt, and plus.

I begin my proof system with a claim that integers can be compared for equality,
and the function to be used is inteq.
S93a. 〈transcript S48〉+≡ ◁ S92c S93b ▷

?- [rule].
-> implemented_by(eq, int, inteq).

And integers can be compared for order.
S93b. 〈transcript S48〉+≡ ◁ S93a S93c ▷

-> implemented_by(lt, int, intlt).

To compare Booleans for equality, I use the function

(lambda ([p : bool] [q : bool]) (if p q (not q)))

In Prolog, the function is encoded by a term:
S93c. 〈transcript S48〉+≡ ◁ S93b S93d ▷

-> implemented_by(eq,
bool,
lambda([arg(p,bool),arg(q,bool)],if(p,p,apply(not,[q])))).

I order Booleans by putting falsehood before truth, so my lt function is

(lambda ([p : bool] [q : bool]) (if p #f q))

S93d. 〈transcript S48〉+≡ ◁ S93c S94a ▷
-> implemented_by(lt, bool, lambda([arg(p,bool),arg(q,bool)],if(p,false,q))).

12Warning: at the end of each list, the grammar shows a specious comma.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S94

Now let s̓ generate some code. I start by generating code to compare pairs of
types τ1 and τ2. Two pairs are equal if both their elements are equal, so I need two
equality functions =1 and =2. Given those functions, I compare pairs p1 and p2
using this function:

(lambda ([p1 : τ1] [p2 : τ2])
(if (=1 (fst p1) (fst p2))

(=2 (snd p1) (snd p2))
#f))

Here it is in Prolog:
S94a. 〈transcript S48〉+≡ ◁ S93d S94b ▷

-> implemented_by(eq, pairtype(T1, T2),
lambda([arg(p1, pairtype(T1,T2)),

arg(p2, pairtype(T1,T2))],
if(apply(EQ1,[apply(fst,[p1]),apply(fst,[p2])]),

apply(EQ2,[apply(snd,[p1]),apply(snd,[p2])]),
false))) :-

implemented_by(eq, T1, EQ1),
implemented_by(eq, T2, EQ2).

At this point I can ask, for example, for a function used to compare pairs of type
(pair int bool):
S94b. 〈transcript S48〉+≡ ◁ S94a S94c ▷

-> [query].
?- implemented_by(eq, pairtype(int, bool), EQIB).
EQIB = lambda([arg(p1, pairtype(int, bool)), ...
yes

The full definition of EQIB is a snarl that only a compiler writer could love, but it
can be prettyprinted into something a programmer would recognize:

(lambda ([p1 : (pair int bool)] [p2 : (pair int bool)])
(if (inteq (fst p1) (fst p2))

((lambda ([p : bool] [q : bool]) (if p p (not q)))
(snd p1)
(snd p2))

#f))

This code could use some simplification—the inner lambda is applied to known
arguments—but any compiler for any functional language includes a simplifier that
is more than capable of dealing with such code.

As another example, here is < on pairs. Haskell allows < only when it also has
equality, so I assume the same.
S94c. 〈transcript S48〉+≡ ◁ S94b S95a ▷

?- [rule].
-> implemented_by(lt, pairtype(T1, T2),

lambda([arg(p1, pairtype(T1,T2)),
arg(p2, pairtype(T1,T2))],
if(apply(EQ1,[apply(fst,[p1]),apply(fst,[p2])]),

apply(LT2,[apply(snd,[p1]),apply(snd,[p2])]),
apply(LT1,[apply(fst,[p1]),apply(fst,[p2])])))) :-

implemented_by(eq, T1, EQ1),
implemented_by(lt, T1, LT1),
implemented_by(lt, T2, LT2).

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.7
Larger example:

Haskell type classes

S95

We can now ask for < on, for example, a pair of integers:
S95a. 〈transcript S48〉+≡ ◁ S94c S95b ▷

-> [query].
?- implemented_by(lt, pairtype(int, int), LTII).
LTII = lambda([arg(p1, pairtype(int, int)), ...
yes

The code bound to LTII prettyprints as follows:

(lambda ([p1 : (pair int int)] [p2 : (pair int int)])
(if (inteq (fst p1) (fst p2))

(intlt (snd p1) (snd p2))
(intlt (fst p1) (fst p2))))

Let s̓ wrap up by generating a recursive function. If we have function =τ for
comparing list elements, we can compare lists using this function:

(letrec ([eqlists (lambda ([xs : (list τ)] [ys : (list τ)])
(if (null? xs)

(null? ys)
(if (null? ys)

#f
(if (=τ (car xs) (car ys))

(eqlists (cdr xs) (cdr ys))
#f))))])

eqlists)

Here s̓ how that rule is coded in µProlog:
S95b. 〈transcript S48〉+≡ ◁ S95a S95c ▷

?- [rule].
-> implemented_by(eq, listtype(T),

letrec(eqlists,
lambda([arg(xs, listtype(T)), arg(ys, listtype(T))],

if(apply(isnull,[xs]),
apply(isnull,[ys]),
if(apply(isnull,[ys]),

false,
if(apply(EQT, [apply(car,[xs]),apply(car,[ys])]),

apply(eqlists,[apply(cdr,[xs]),apply(cdr,[ys])]),
false)))),

eqlists)) :-
implemented_by(eq, T, EQT).

All the examples above imitate what Haskell does with its type-class system.
Each rule for predicate implemented_by corresponds to a Haskell instance declara-
tion. But with Prolog, we can do more. For example, we can define MLs̓ notion of
a type that “admits equality.” A type admits equality if there is an implementation
of eq.
S95c. 〈transcript S48〉+≡ ◁ S95b S95d ▷

-> admits_equality(T) :- implemented_by(eq, T, F).

Here, as in ML, types emit equality as long as no function types are involved.
S95d. 〈transcript S48〉+≡ ◁ S95c S98a ▷

-> [query].
?- admits_equality(int).
yes
?- admits_equality(listtype(pairtype(int, listtype(int)))).
yes
?- admits_equality(arrowtype([int, int], bool)).
no

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S96

D.8 PROLOG AS IT REALLY IS

D.8.1 Syntax

µProlog s̓ syntax is close to the syntax of the ISO standard; both are based on Ed-
inburgh Prolog (Clocksin and Mellish 2013). Full Prolog allows additional control
structures in clauses and queries, of which the most notable are disjunction, writ-
ten with a semicolon, and conditional, written (g1 -> g2; g3).

Real Prolog uses different naming conventions than µProlog. In µProlog, I use
past participles such as reversed, appended, sorted, and so on. I do so in order
to emphasize the distinction between programming with predicates and program-
ming with functions. In full Prolog, it is more idiomatic to name one s̓ predicates
using imperative verb forms such as reverse, append, and sort.

D.8.2 Logical interpretation as a single first-order formula

Section D.3.4 describes logical interpretation of Prolog in terms of proofs and
derivations. Left unspecified is what algorithm to use to find a proof. But Prolog
was invented in part to take advantage of one particular algorithm: the resolution
technique invented by Robinson (1965). The details are beyond the scope of this
book, but in this section I sketch the ideas.

The first idea is that a Prolog query can be viewed purely as a question about a
formula in first-order logic, with no need to construct a derivation. The key to this
view is that every Prolog clause corresponds to a first-order formula:

G : −H1, . . . , Hn ≡ H1 ∧ · · · ∧Hn =⇒ G

≡ ¬(H1 ∧ · · · ∧Hn) ∨G

≡ ¬H1 ∨ · · · ∨ ¬Hn ∨G

Let us write this last formula asC, and let us imagine thatC is wrapped in a univer-
sal quantifier ∀X1, . . . , Xk, where X1, . . . , Xk are the free variables of the clause.

The entire database can be viewed as the conjunction of all the clauses: C1 ∧
. . . ∧ Cm. By a suitable renaming of variables, we can pull all the universal quan-
tifiers out to the front. Writing X⃗ for the list of all the logical variables mentioned
in the database, we can say

D = ∀X⃗ : C1 ∧ . . . ∧ Cm.

In the jargon of mathematical logic, the database is a closed, first-order formula.
When we write a query g1, . . . , gj , we are asking if there exists an assignment to

variables of the g s̓ such that the database implies all the g s̓. Writing Y⃗ for the list of
all the logical variables that appear in g1, . . . , gj , we are asking about the formula

(∀X⃗ : C1 ∧ . . . ∧ Cm) =⇒ ∃Y⃗ : g1 ∧ · · · ∧ gj ,

which is another closed, first-order formula. What we want to know is if this for-
mula is valid—that is, given any sensible interpretation of predicates as relations,
functors as functions, and atoms as objects, is the formula true? And in classi-
cal logic, a first-order formula is valid if and only if its complement leads to a
contradiction—that is, if the complement can be refuted.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.8
Prolog as it really is

S97

The complement of our formula is

F = ¬((∀X⃗ : C1 ∧ . . . ∧ Cm) =⇒ ∃Y⃗ : g1 ∧ · · · ∧ gj)

≡ ∀X⃗ : C1 ∧ . . . ∧ Cm ∧ ∀Y⃗ : ¬(g1 ∧ · · · ∧ gj)

≡ ∀X⃗ : ∀Y⃗ : C1 ∧ . . . ∧ Cm ∧ (¬g1 ∨ · · · ∨ ¬gj)

If F can be refuted, there is a particular assignment to the Y⃗ that refute the inner
formula. These Y⃗ satisfy the query.

This presentation should seem very abstract. To connect it to Prolog requires
a genius like Robinson. Formula F is a conjunction of disjunctions, also known
as conjunctive normal form. Robinsons̓ resolution method discovers refutations of
formulas in conjunctive normal form. Resolution matches ¬Hi s̓ and ¬gi s̓, which
have logical complement ¬ in front of them, with G s̓, which donʼt have a logical
complement. If you revisit the individual formulas that are conjoined together,
you can verify that in any one conjunct, at most one predicate is not complemented.
That property makes resolution very effective, because for any given ¬gi or ¬Hi,
there is at most one candidate G in each conjunct. The details of resolution are
beyond the scope of this book, but are explained well by Kamin (1990, Chapter 8).

To return to Prolog, the gi s̓ are goals in the query, the Hi s̓ are subgoals, and
each G is the head of some clause. The “matching” performed by resolution is
actually unification. And the property that in each conjunct, at most one predi-
cate is not complemented? That property is built into Prolog s̓ design, on purpose.
The property is so important that it has a name: this form of formula is called a
Horn clause.

This second logical interpretation of Prolog says that making a query is equiv-
alent to building a single logical formula that says “for all X s̓ in the database, the
assertions in the database imply that there exist a set of Y s̓ such that the query is
satisfied.” This interpretation is elegant, and it is supported by Robinsons̓ efficient
resolution algorithm. But it is a little more difficult to connect to what actually goes
on in a Prolog interpreter, and for the beginning Prolog programmer it is of more
historical and academic interest than practical interest.

D.8.3 Semantics

Full Prolog is a nice, simple language, and its semantics is largely the same as the
semantics of µProlog, but with some powerful extensions. The most important
extensions are the “cut” and not. Full Prolog also has a large initial basis which
includes not only input/output and arithmetic but also many predicates that reflect
on the state of the Prolog machine and the computation itself. We look at two of
the relatively easy and interesting reflective predicates, assert and retract.

The occurs check

The most salient difference between full Prolog and µProlog is that implementa-
tions of full Prolog typically omit the occurs check (page S64), at least by default.
The occurs check takes time linear in the size of a term, so omitting it can save a
lot, reducing some algorithms from quadratic time to linear time. But when the
occurs check is omitted, the programmer is obligated to avoid unifying a variable
with a term which contains that variable—or to use run-time flags or predicates
that reinstate the occurs check. If you take Prolog seriously, it is an obligation to
be aware of.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S98

Extra-logical features: The cut and the not predicate

The extension called the cut limits backtracking. A cut is written by using the ex-
clamation mark (!) as a goal. A clause with a cut takes the form

G :-H, !,H ′.

When this clause is used, it is to try to satisfy goal g with which the head G unifies.
In the usual way, the search tries to satisfy subgoal H, then the cut, then H ′. An at-
tempt to prove a cut always succeeds; that is, a cut is always satisfied. If subgoals
H and H ′ are also satisfied, g is proven, and the cut plays no substantial role. If H
cannot be satisfied, the search never arrives at the cut, and again it plays no role.
But if H is satisfied, and then (because the cut is always satsified) H ′ cannot be
satisfied, the search backtracks. And when it backtracks into the cut, it does not
continue by trying to find a different substitution that proves H. Instead, back-
tracking into the cut causes the goal g to fail immediately. Goal g fails even if there
are later clauses in the database that might apply to g.

The cut simplifies many computations that involve some sort of negation. An
example is this definition of not_equal:
S98a. 〈transcript S48〉+≡ ◁ S95d S98b ▷

?- [rule].
-> not_equal(X,Y) :- equal(X,Y), !, fail.
-> not_equal(X,Y).

where the definition of equal is the single clause:
S98b. 〈transcript S48〉+≡ ◁ S98a

-> equal(X,X).

Predicate not_equal(X,Y) makes sense only when X and Y are bound to ground
terms. When X and Y are unequal, not_equal(X,Y) is satisfied. When X and Y are
equal, not_equal(X,Y) is unsatisfiable.

As an example, query not_equal(1, 2) triggers these computational steps:

1. The query matches the first clause with X = 1 and Y = 2. The first subgoal
on the right-hand side is therefore equal(1, 2). Because 1 is not identical
to 2, that subgoal fails, and Prolog backtracks, looking for another clause
that matches query not_equal(1, 2).

2. The query matches the second clause with X = 1 and Y = 2. There are no sub-
goals, to the original query is satisfied: Prolog proves not_equal(1, 2).

Compare that computation with what ensures after query is not_equal(2, 2):

1. The query matches the first clause with X = 2 and Y = 2. The first subgoal is
therefore equal(2, 2). Because 2 is identical to 2, equal(2, 2) succeeds.

2. The next subgoal from the first clause is the cut, which always succeeds in
the forward direction.

3. The next and final subgoal from the first clause is fail. Predicate fail/0 is
a conventional predicate that canʼt be proven; it always fails.

4. Now Prolog backtracks into the cut, which causes the original query, not_equal(2, 2),
to fail.

In both cases, Prolog proves what we expect.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.8
Prolog as it really is

S99

The idiom of “cut-then-fail” can be used with many predicates. For example,
the not_member predicate from the blocks world can be defined using

not_member(X,Y) :- member(X,Y), !, fail.
not_member(X,Y).

The idiom is so common that Prolog provides an implementation using the primi-
tive predicate not. Using this predicate, we can write

not_member(X,Y) :- not(member(X,Y)).

The predicate not is a special reflective predicate. Its argument is not just a term;
its argument is a fragment of a Prolog program—in this case, a goal. Query not(g)
asks a question about computing with goal g: is it provable? If g is provable, query
not(g) fails. If g is not provable, query not(g) succeeds. This behavior is called
“negation as failure”; it is another example of how Prolog deals in provability, not
in truth.

Prolog s̓ not also upends the logical interpretation. Our normal idea of a query
is “can we find a substitution for the logical variables such that the resulting propo-
sition is provable?” For example, the query not(member(X, [2, 4, 6])) might
stand for a logical formula like ∃X : ¬(X ∈ {2, 4, 6}), to which the answer is
yes, there is an X not in {2, 4, 6}—in fact there are infinitely many. But when we
issue that query to Prolog, the logical question that is actually being asked is if there
exists an X that makes X ∈ {2, 4, 6} provable, and the answer to that question is
also yes, so the answer to the not query is no. The difference is the difference be-
tween two formulas:

What you might think you are asking ∃X : ¬(X ∈ {2, 4, 6})
What you are actually asking ¬(∃X : X ∈ {2, 4, 6})

This contrast suggests a heuristic for working with not: to avoid confusion about
where the existential quantifier goes, make sure there is no existential quantifier.
In other words, ask not(g) only when g is a ground term.

In addition to its role in negation, the cut can also be used for efficiency: when
an early goal is proven without substituting for any logical variables, but a later
goal fails, there is no need to search for a second proof of the early goal. To see an
example, imagine this generic query:

generate(X), member(X, zs), test(X)

with these assumptions:

1. Goal generate(X) succeeds only by substituting a ground term for X. But it is
likely to succeed multiple times with multiple different X s̓, just like the goal
better_move(X, Initial, Final) in Section D.6.

2. Term zs is a ground term. Because both X and zs are ground terms, the sub-
goal member(X, zs) is executed only for success or failure—it never substi-
tutes for a logical variable.

3. Sometimes test(X) succeeds and sometimes it fails.

Now imagine what happens if member is defined as on page S54. If generate and
member succeed but test fails, backtracking will cause member to search the entire
list zs . But this search is wasted effort: whether it succeeds or fails, it canʼt change X.
This kind of wasted effort can be eliminated by using the cut, as in this revised
definition of member:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S100

member(X,[X|XS]) :- !.
member(X,[Y|YS]) :- member(X,YS).

Once member is defined in this way, any backtracking into member aborts immedi-
ately, and backtracking resumes with generate(X). I think of this use of the cut as
enforcing “succeed at most once.”

The correctness of the succeed-at-most-once trick rests on a long chain of as-
sumptions, and it throws the logical interpretation out the window. The cost of
the performance improvement is a significant change in the semantics of member.
For example, in the new semantics, if X is not instantiated to a ground term,
the query member(X, [1, 2, 3]) means exactly the same thing as the query
equal(X, 1). Not what you hoped for. But sometimes, to get a Prolog program
to perform well, you really do want the cut.

Both the cut and the primitive not predicate are easy to add to µProlog (Exer-
cises 44 and 45 on page S120).

Changing the database: assert and retract

Another reflective feature of Prolog is provided by predicates assert and retract,
which enable a program to add clauses to or remove clauses from the database.
Each of these predicates takes a clause as its argument. These predicates are like
print: an attempt to prove one always succeeds, and success has a side effect:

• Predicate assert(C) places C into the database, at a position that is not
specified. Variants asserta and assertz put C in first and last positions,
respectively.

• Predicate retract(C) finds and removes the first clause in the database that
matches C.

These predicates can add or remove any any clause, but a common use is to sim-
ulate the effect of a global variable. For example, let s̓ suppose that you want to
instrument a blocks-world program to count the total number of moves generated,
which Iʼll call N . This information can be represented by storing a single clause in
the database of the form moves_generated(N). The counter can be initialized by
defining

moves_generated(0).

The number of moves can be incremented by predicate bump_moves, defined as
follows:

bump_moves :- retract(moves_generated(N)), M is N+1, assert(moves_generated(M)).

To reset the counter, use predicate reset_moves:

reset_moves :- retract(moves_generated(X)), assert(moves_generated(0)).

A more interesting use of assert and retract is to convert data into code. Exer-
cise 47 (b) on page S121 asks you to use assert and retract to convert map-coloring
data into a map-coloring rule. This model enables a skilled Prolog programmer to
avoid the layer of interpretation required by Exercise 7.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.9. Summary

S101

Full Prolog versus logic

Primitive predicates assert and retract, as well as not and the cut, cannot be
explained in logic—they make sense only when viewed through the procedural in-
terpretation of Prolog. In full Prolog, many other primitive predicates are the same
way. This aspect of Prolog is viewed as a major weakness: the logical interpretation
doesnʼt describe the full language, and the procedural interpretation, even with the
help of Byrd boxes, is too hard to understand. An ideal language for logic program-
ming would have programs that make sense in logic, and some other way to man-
age the database and the search for proofs. As Robinson (1983) put it, “we ought not
to incorporate into the logical notation itself particular conventions about how to
manage the details of the deductive search.” For better or worse, Robinsons̓ view
has not carried the day; serious Prolog programmers know that they canʼt treat Pro-
log as simple first-order logic, and they expect to use non-logical features, including
reflection and the cut.

D.9 SUMMARY

In logic programming, we solve problems using predicates, propositions, formu-
las, and terms. Symbols for functions and values exist, but except for simple arith-
metic, the functions and values are unspecified. Atoms and functors act like value
constructors in ML: an atom is identical to itself, and identical functors applied to
identical arguments produce identical results. A logic program takes a set of as-
serted formulas, both facts and rules, and asks what is provable—not necessarily
what is true.

The best-known exemplar of logic programming is Prolog. It has proponents
in a wide variety of fields, but is probably best known for use in artificial intelli-
gence, natural-language processing, and expert systems. You can find Prolog in
unexpected places, however; my two favorites are the first interpreter for Erlang
and the operating-system bootstrap code used in Microsoft Windows NT.

D.9.1 Key words and phrases

LOGIC PROGRAMMING A style of programming in which a program is regarded as
an assertion in a logic, and a computation asks whether a given QUERY is
provable from the assertions in the program.

PROPOSITIONAL LOGIC A language of uninterpreted propositions and logical con-
nectives. There are several popular sets of connectives, all equivalent.
One minimal set is implication =⇒ and negation ¬. Another popular set
is conjunction ∧, disjunction ∨, and negation ¬—possibly augmented with
implication. All these sets are equivalent to the singleton set containing only
the NAND operator, where x NAND y = ¬(x ∧ y). Propositional logic is
DECIDABLE.

PREDICATE LOGIC An extension of propositional logic that allows for LOGICAL
VARIABLES to be quantified using the universal and existential quantifiers
∀ and ∃. In first-order logic, a variable may stand only for a mathematical
object. In second-order logic, a variable may stand for a predicate or func-
tion. First-order predicate logic is not DECIDABLE, but when a proof of a
formula exists, there are sound and complete algorithms for discovering it.

OBJECT What a variable may stand for in logic; a thing from a (mathematical) do-
main.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S102

ATOM A Prolog object consisting of a single name, like jacques or yellow. Like a
Scheme atom, its only property is that it is identical to itself.

FUNCTOR Prolog s̓ name for an uninterpreted function symbol, expecting one or
more arguments.

TERM Prolog s̓ representation of a mathematical object: an atom, a number, or a
functor applied to one or more terms.

PROPOSITION The fundamental unit of propositional logic (that is, logic without
quantifiers). In Prolog, a PREDICATE applied to zero or more arguments.

PREDICATE The means of forming propositions. A zero-place predicate is a propo-
sition by itself; a multi-place predicate forms a proposition when applied to
one or more terms. In Prolog, a predicate is identified by the combination
of its symbol (an atom) and the number of arguments to which it is applied,
as in member/2 or person/1.

PROPERTY Convenient shorthand for a one-place PREDICATE.

RELATION Convenient shorthand for a PREDICATE of two or more places. Also, the
species of mathematical object that a predicate stands for.

LOGICAL VARIABLE In first-order logic, a variable that may stand for a mathemat-
ical object drawn from some domain. In Prolog, a variable that may stand
for a term—or for which a term may be substituted. Unlike a variable in
an imperative language, whose value is set by assignment, or a variable in
a functional language, whose value is bound by function application or let
binding, a logical variable is associated with a value by means of a SUBSTI-
TUTION, usually computed by UNIFICATION.

GROUND TERM A term that contains no LOGICAL VARIABLES.

SUBSTITUTION A finite mapping from LOGICAL VARIABLES to TERMS. Extends to
structure-preserving mappings on terms and CLAUSES.

GOAL A PROPOSITION, or conjunction of PROPOSITIONS, that Prolog tries to prove
using CLAUSES. Prolog s̓ proof process may substitute for LOGICAL VARI-
ABLES in the goal.

SUBGOAL A subsidiary GOAL spawned by Prolog s̓ proof search. Also, one conjunct
in a goal that is a conjunction.

QUERY A GOAL posed to the Prolog engine at top level. If it contains logical vari-
ables, they are implicitly existentially quantified—at least in the logical inter-
pretation of Prolog.

UNIFICATION The algorithm used to discover a substitution θ that makes two terms
identical—that is, the algorithm used to find a solution to an equality con-
straint t1 ∼ t2.

FACT A PROPOSITION asserted as fact and entered into the Prolog database. If it
contains logical variables, they are implicitly universally quantified.

RULE An inference rule asserted as valied and entered into the Prolog database.
Contains a conclusion (also called head) and one or more premises, all of which
are propositions. If a rule contains logical variables, they are implicitly uni-
versally quantified.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.9. Summary

S103

CLAUSE A valid reasoning principle stored in the Prolog database, consisting of a
conclusion or head that is justified by means of zero or more premises. If there
are no premises, the clause is called a FACT; otherwise it is a RULE. If a clause
contains logical variables, they are implicitly universally quantified. That is,
any term may be substituted for any variable, and the resulting rule is con-
sidered a valid reasoning principle.

DIFFERENCE LIST A representation of a list that includes an unbound logical vari-
able, as in diff([1,2,3|XS], XS). Difference lists support many interesting
programming techniques; for a good exposition, see Sterling and Shapiro
(1986, Chapter 15).

THE CUT An extra-logical feature of Prolog used to limit backtracking and to imple-
ment negation. Written as an exclamation mark (!). When the cut appears as
a premise in a clause, attempts to prove it always succeed, but backtracking
into the cut causes the goal from the clause s̓ head to fail—even if there are
other clauses that match the goal.

OCCURS CHECK The part of UNIFICATION that refuses to unify a variable X with a
non-variable term t whenever X occurs in t. The occurs check guarantees
that the SUBSTITUTION returned by unification does indeed solve the given
equality constraint. If the occurs check is omitted, the underlying logic may
be made unsound. However, the occurs check is perceived as expensive, and
popular implementations of full Prolog omit it by default. Making sure the
resulting program is sound is up to the programmer (who may instead choose
to turn on the occurs check).

SOUNDNESS An algorithm for implementing logic programs is called sound if,
whenever the algorithm says a judgment is provable, the judgment is actu-
ally provable in the logic. The algorithm used by Prolog, resolution, is sound,
but omitting the OCCURS CHECK can make it unsound. A logic itself is called
sound if every provable judgment is true in all MODELS.

COMPLETENESS An algorithm for implementing logic programs is called com-
plete if, whenever a proof of a query exists, the algorithm eventually finds
such a proof. As a system for proving that a formula implies a contradiction,
the algorithm used by Prolog, resolution, is complete. Prolog s̓ search algo-
rithm is not complete.

A logic itself is called complete if every judgment that is true in all MODELS
is also provable.

DECIDABILITY A question is called decidable if there is an algorithm for answer-
ing it that is sound, complete, and terminating on all inputs. In PROPOSI-
TIONAL LOGIC, the general query problem “is this formula provable?” is de-
cidable. (One decision procedure is to enumerate the truth table of the for-
mula; this procedure works because propositional logic is sound and com-
plete with respect to the model of truth tables.) In general FIRST-ORDER
LOGIC, the general query problem “is this formula provable?” is not decid-
able.

MODEL A model of a language is a mapping from each symbol of the language to a
mathematical object. Objects are made up of a universe, which is a nonempty
setA. Function symbols, like Prolog FUNCTORS, map to functions. Predicate
symbols map to relations; a predicate symbol of arity n maps to a subset of
the Cartesian product space An.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S104

D.9.2 Further Reading

While it is usually fun to go to the source, the original report on Prolog is written in
French (Colmerauer et al. 1973). A good alternative is an early article by Kowalski
(1974). Although the article opens with some startling claims about “human logic”
versus “mathematical logic”—as if mathematicians werenʼt human—it proceeds to
lay out the logic-programming agenda nicely, and it explains Horn clauses, which
are the logical basis for the form of clauses that Prolog accepts.

Retrospective commentary about Prolog can be found in an address by Robin-
son (1983), who identifies many contributors, and who also pleads with his audi-
ence for a principled approach to the subject. Another retrospective, from Cohen
(1988), describes applications in natural-language processing and in automated
theorem proving, and it compares the development of Prolog with the develop-
ment of Lisp. Kowalski (1988) presents a more personal retrospective, focusing on
developments at Edinburgh in the 1970s. His presentation includes comparisons
between logic programs and the PLANNER approach used by Winograd (1972) in
his work on the original blocks world.

As suggested in Section D.1, logic programming encourages a different way of
thinking about programming. Kowalski (1979, 2014) introduces logic, computer
programming, and problem-solving at book length, for an audience of beginners;
I recommend this book highly.

The standard introduction to Prolog is by Clocksin and Mellish (2013). There
are other introductory texts by Hogger (1984) and Sterling and Shapiro (1986).

The Byrd box was originally proposed as a conceptual tool for understanding
Prolog, not as an implementation technique (Byrd 1980). Proebsting (1997) shows
how to use Byrd boxes to implement Icon, another language that has backtracking
built in (Griswold and Griswold 1996).

Efficient implementation of Prolog rests on two technologies. The resolution
principle (Robinson 1965) offers an algorithm for refuting formulas in conjunc-
tive normal form; when formulas are limited to Horn clauses (Exercise 11 on
page S109), the asymptotic costs of resolution are made tractable. Warren (1983)
proposes an abstract machine, including an instruction set, for executing Prolog
programs; this machine has informed many efficient implementations. If you want
to understand Warrens̓ abstract machine, consult one of the tutorial presentations
by Kogge (1990) or Aït-Kaci (1991).

To the best of my knowledge, the blocks world was created by Winograd (1972)
for his doctoral work on language understanding. Winograds̓ dissertation reflects
the 1970s belief, strongly held in North America, that approaches based only on
logic would not be sufficient for understanding natural language. The blocks
world appears in many books on artificial intelligence (Winograd 1972; Winston
1977; Nilsson 1980) and on logic programming (Kowalski 1979; Sterling and Shapiro
1986). My solution to the moves problem is derived from those of Kamin (1990) and
Sterling and Shapiro (1986).

D.10 EXERCISES

Highlights

Here are some of the highlights of the exercises below:

• Exercise 9 on page S108 asks you to implement addition, subtraction, multi-
plication, and division on Peano numerals. It illustrates beautifully the ease
with which an axiomatic specification can be implemented in Prolog.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S105

• Exercises 25 and 26 on page S112 ask you to write an evaluator and type
checker in Prolog. It s̓ not worth doing both, but either illustrates how easy it
is to take a formal operational semantics or a type system and implement it
directly in Prolog—judgments in the the specification are expressed as pred-
icates in the code.

• All the puzzle and game problems are entertaining, but the best of the lot is
Exercise 34 on page S116, which asks you to solve a logic problem of Raymond
Smullyans̓. All these sorts of problems yield to a simple exhaustive search,
but Exercise 34 can be solved using a more sophisticated strategy in which the
code talks directly about what propositions imply what other propositions.

• Exercise 44 on page S120 asks you to extend µProlog by adding the cut.
It showcases the ease with which continuation-passing style can be used to
add a control operator.

Guide to all the exercises

Exercises 1 to 3 are warmups. Exercise 1 asks you to prove that Socrates is mortal.
Exercise 2 asks you to define two different predicates, both called mother, but with
different arities. Exercise 3 asks you to define predicates that show who celebrates
Mother s̓ Day.

Exercises 4 to 8 build on the map-coloring example in Section D.2. Exercise 4
asks you to color the Atlantic Ocean blue. Exercise 5 asks you to define a new pred-
icate that makes it easier to define maps, and to define and color a new map of
Europe. Exercise 6 asks you to color my map of Europe using four colors. Exer-
cise 7 asks you to color a map that is represented as an adjacency list, not as an
inference rule. Exercise 8 asks you to instrument code and work out the rest of the
computation that colors the map of the British Isles.

Exercises 9 to 11 are exercises in logic. Exercise 9 asks you to implement Peanos̓
theory of the natural numbers. Exercise 10 asks you to determine when a Boolean
formula is satisfied. Exercise 11 asks you to convert a Prolog clause to a Horn clause.

Exercises 12 to 17 are list exercises. Exercise 12 asks you to remove elements
from a list. Exercise 13 asks you to split a list into equal parts. Exercise 14 asks
you to duplicate the µScheme function flatten from Chapter 2, but in a way that
can be sometimes run backward—and to use it backward to compute a triangular
list. Exercises 15 and 16 ask you to implement insertion sort and merge sort. And
Exercise 17 ask you to define some predicates on difference lists.

Exercises 18 to 20 explore predicates that canʼt be run backward or might not
always terminate. Exercise 18 asks about power; Exercise 19 asks about fac; and
Exercise 20 asks about quicksorted.

Exercise 21 asks you to implement and measure some variations on the move
solver for the blocks world.

Exercises 22 to 24 explore some implications of the procedural interpretation of
Prolog. Exercise 22 asks you to define backprint, a predicate that prints not when
you try to prove it, but when you backtrack into it. Exercise 23 asks you to distin-
guish the procedural interpretation from the logical interpretation by defining two
predicates that behave differently only because of a cut. Exercise 24 asks you to use
the cut to simplify the definition of not_equal from Section D.8.3.

Exercises 25 and 26 ask you to write rules of operational semantics and type
systems in Prolog. Exercise 25 asks for an evaluator and Exercise 26 asks for a type
checker.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S106

Exercises 27 to 32 are about peg-solitaire puzzles. Exercise 27 asks you to write
code that figures out if there is a way to leave at most N pegs on a 10-hole peg-
solitaire board. Exercises 28 and 29 ask you to compute the minimum number
of pegs that can be left on peg-solitaire boards of 10 holes and 15 holes, respec-
tively. Exercise 30 asks you to compute a sequence of moves that solves peg soli-
taire, where you can specify in which hole you want the single peg left. Exercise 31
asks you to compute a winning sequence of moves from any starting configura-
tion. Finally, Exercise 32 asks you to solve some of the same problems, but on a
peg-solitaire board of arbitrary size—the size of the board becomes another input.

Exercises 33 to 35 present “logic problems,” where you are given a bunch of facts
about some objects and you have to find the unique relation that is consistent with
the facts. “It was Colonel Mustard in the library with the candlestick”; that sort of
thing.

Exercises 36 and 37 explore the semantics of Prolog. Exercise 36 asks you to
prove facts about substitutions, and Exercise 37 asks you to complete a big-step
operational semantics for the procedural interpretation of Prolog (not including
the cut).

Exercises 38 to 48 work with the interpreter.
Exercise 38 asks you to implement the constraint solver. Exercise 39 asks you to

investigate the consequences of omitting the occurs check in the constraint solver.
Exercise 40 asks you to implement a primitive predicate, and Exercise 41 asks

you to prevent anyone from defining a predicate that shares a name with a primitive
predicate.

Exercise 42 asks you to improve the usability of the interpreter by adding a trac-
ing facility, and Exercise 43 asks you to improve the performance of the interpreter
by changing the representation of the database.

Exercises 44 to 47 ask you to improve µProlog so it is closer to full Prolog. Ex-
ercises 44 and 45 asks you implement the cut and the primitive not predicate, re-
spectively. Exercise 46 asks you to change the types of primitive predicates so they
can look at and modify the database, and Exercise 47 asks you to use this ability to
implement assert and retract.

Finally, Exercise 48 is a companion to Exercise 37: it asks you to reimplement
the query function in direct style, without streams instead of continuations. It is
based on the operational semantics you write in Exercise 37.

D.10.1 Digging into the language

1. Using two clauses and a query, express Aristotle s̓ famous syllogism in Prolog.

2. This exercise illustrates the use of the predicate mother at more than one
arity.

• For mother/2, proposition mother(M, C) should hold if person M is
the mother of child C.

• For mother/1, proposition mother(P) should hold if person P is a
mother.

The exercise has three parts:

(a) Use your knowledge of family relationships to define one of these pred-
icates in terms of the other.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S107

(b) The longest-reigning monarch in British history is Elizabeth II. As I write,
her eldest son and heir is Charles. Write whatever facts and rules of
Prolog are needed to express their relationship. Use as few clauses as
possible.

(c) To verify that mother(elizabeth) is provable but mother(charles) is
not, write unit tests.

3. Building on the previous exercise, let us suppose a person celebrates Mother s̓ Day
if she is a mother or if he or she has a living mother.

(a) Define a predicate celebrates_md/1 that tells whether a person cele-
brates Mother s̓ Day.

(b) Define a predicate living/1 that reflects current knowledge of the
British royal family. Limit your attention to the reigning monarch and
his or her descendants.

(c) Define a relation celebrants/2 such that celebrants(PS, CS) holds
whenever list CS contains exactly those persons from PS who cele-
brate Mother s̓ Day.

4. The next few exercises build on the map-coloring examples in Section D.2.
To start, get Prolog to produce a coloring of the British Isles map in which
the Atlantic Ocean is colored blue.

5. In this exercise, you make it easier to define maps.

(a) Define a predicate alldifferent/2 predicate so that if C is a color and
CS is a list of colors, alldifferent(C, CS) holds if and only if C is
different from every color in CS .

(b) Using the alldifferent/2, rewrite the rules for coloring the British
Isles so that fewer premises are needed.

(c) In an unlikely event of historic impact, France and Germany decide to
unify to form one country, Europa—changing the map of Europe. Al-
ter map (b) in Figure D.1 to reflect the new reality, by which I mean,
write a Prolog program to color the new map. Use your alldifferent
predicate.
I regret the loss of the Iberian and Scandinavian peninsulas, not to
mention southern Italy and eastern Europe, but ignore them.

6. The map of Western Europe, or at least that part shown in Figure D.1 (b),
needs to be colored.

(a) Add new clauses to the Prolog database so a map can be colored with
four colors.

(b) Write a Prolog program that colors the map in Figure D.1 (b). Ignore
the Atlantic Ocean, the Iberian and Scandinavian peninsulas, and all
the other interesting parts of Europe that arenʼt shown.

7. In Section D.2, each map is represented by an inference rule. But it is also
possible to represent a map as data. For coloring, a good representation may
involve an adjacency list. An adjacency list is a list of terms, each of which
has the form adj(C, CS), where C is associated with a country and each
element of CS is associated with a country adjacent to C. For purposes of
this problem, represent each country as a logical variable.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S108

I can represent a map by relating a list of countries to an adjacency list. As an
example, a map of the island (not the country) of Ireland could be repre-
sented as follows:
S108a. 〈exercise transcripts S108a〉≡ S108b ▷

-> ireland([Atl, Ir, NI], [adj(Atl, [Ir, NI]), adj(Ir, [NI])]).

(a) Using the adjacency-list representation, define the predicatecoloring/1,
which is holds if its argument is a properly colored adjacency list.
Consider using the predicate alldifferent/2 from Exercise 5 on
page S107.
S108b. 〈exercise transcripts S108a〉+≡ ◁ S108a S108c ▷

-> [query].
?- ireland([Atl, Ir, NI], Rows), coloring(Rows).
Atl = yellow
Ir = blue
NI = red
Rows = [adj(yellow, [blue, red]), adj(blue, [red])]
yes

(b) Using the adjacency-list representation, color the full map of the British
Isles.

8. Give a step-by-step account of the rest of the computation for the coloring
of the map of the British Isles, the first 13 steps of which are shown starting
on page S71. I recommend against trying to simulate the computation by
hand; instead, instrument the britmap_coloring rule with printpredicates.
Use the results to write your explanation.

9. One of the mathematical achievements of the nineteenth century was a log-
ical theory of arithmetic. The simplest arithmetical theory is the theory of
the natural numbers, which can be represented using the atom zero and the
functor succ. For example, the term succ(succ(succ(zero))) represents
the number 3. This representation is called a Peano numeral, after the math-
ematician who used these numerals to develop an axiomatic description of
arithmetic, expressed in mathematical logic. Using Peano numerals, define
these predicates:

(a) Predicate equals/2 tells if two Peano numerals are equal.

(b) Predicate plus/3 computes the sum of two Peano numerals.

(c) Predicate minus/3 computes the difference of two Peano numerals.
It succeeds only if the difference is representable as a Peano numeral—
that is, if it is nonnegative.

(d) Predicate times/3 computes the product of two Peano numerals.

(e) Predicate div/4 divides one Peano numeral by another, computing the
quotient and the remainder. If asked to divide by zero, div should fail,
not loop forever.

(f) Predicate print_peano/1 succeeds if its argument is a Peano numeral,
and as a side effect, it prints the corresponding integer:
S108c. 〈exercise transcripts S108a〉+≡ ◁ S108b S109 ▷

?- print_int(succ(succ(zero))).
2
yes

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S109

Except for part (f), donʼt use the primitive is predicate.

10. A Boolean formula is a term in the following form:

• Any logical variable is a formula.

• true and false are formulas.

• If f is a formula, the term not(f) is a formula.

• If f1 and f2 are formulas, the term and(f1, f2) is a formula.

• If f1 and f2 are formulas, the term or(f1, f2) is a formula.

Write clauses for a Prolog predicate satisfied such that if f is a formula,
the query satisfied(f) succeeds if and only if there is an assignment to f s̓
variables such that f is satisfied. Issuing the query should also produce the
assignment.
S109. 〈exercise transcripts S108a〉+≡ ◁ S108c S111 ▷

?- satisfied(and(A, and(B, not(C)))).
A = true
B = true
C = false
yes

11. In this exercise, you write Prolog code to convert a Prolog clause into a Horn
clause. There are a lot of definitions.

A literal is one of the following:

• An atom, which is called a positive literal

• A term of the form not(a), where a is an atom, and which is called a
negative literal

A formula is one of the following:

• A literal

• A term of the form not(f), where f is a formula

• A term of the form and(f1, f2), where f1 and f2 are formulas

• A term of the form or(f1, f2), where f1 and f2 are formulas

A Prolog clause is a term of the form (a0 :- a1, . . . , an), where each ai is an
atom.

A disjunction is one of the following:

• A literal

• A formula of the form or(d1, d2), where d1 and d2 are disjunctions

A Horn clause is a disjunction that contains at most one positive literal.

Write a Prolog predicate is_horn/2 that converts between Prolog clauses and
Horn clauses. It should run both forward and backward.

12. The chapter defines member, which says if a list contains an element. To re-
move all copies of an element from a list, define predicate stripped/3,
where stripped(XS,X, YS) holds whenever YS is the list obtained by
removing all copies of X from XS .

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S110

13. To split lists into equal or approximately equal parts, define and use these
predicates:

(a) Define bigger/2, where bigger(XS, YS) holds if and only if XS is a
list containing more elements than YS .

(b) Write a query that uses bigger/2 and appended/3 to split a list into two
sublists of nearly equal lengths.

(c) Write a query that uses bigger/2 and appended/3 to split a list into two
sublists whose lengths differ by at most 1.

(d) To help you write unit tests for your work, define has_length/2, where
has_length(XS,N) holds if and only if XS is a list of N elements.
If XS is a logical variable, or if any tail of XS is a logical variable, the
resulting proposition need not be provable. In other words, if some-
body hands you an N , donʼt try to conjure a suitable XS .

14. This exercise explores conversions between S-expressions and lists. For pur-
poses of this exercise, let us say that an S-expression is an atom, a number,
or a list of zero or more S-expressions.

(a) Define flattened/2, such that flattened(SX , AS) holds whenever
SX is an S-expression and AS is a list containing the same atoms
as SX , in the same order. The problem is analogous to the Scheme
flatten function described in Exercise 8(d) on page 182.

(b) For any list AS , there is an unbounded number of S-expressions SX
such that flattened(SX , AS). The issue is that SX may contain any
number of empty lists, none of which contributes anything to AS .
Address this issue by decomposing flattened/2 into two or more pred-
icates, one of which removes all empty lists, and the other of which flat-
tens the result. Make sure the second predicate can be run backward.

(c) A list of lists XSS is triangular if the first element of XSS has length 1,
the second element has length 2, and so on. Define predicatetriangular/1,
which holds if its argument is triangular. Any auxiliary predicates you
use should also be called triangular, but they may have a different
arity.

(d) Using your predicate from part (b) to generate candidates, and using
triangular to test them, write a query that produces a triangular list
containing the elements 1 to 6.

15. Implement insertion sort by defining predicateisorted/2, whereisorted(NS,MS)
holds whenever MS is the result of sorting the list of numbers NS .

16. Implement merge sort by defining predicatemsorted/2, wheremsorted(NS,MS)
holds whenever MS is the result of sorting the list of numbers NS .

17. Program the following operations on difference lists. Donʼt simply transform
them to ordinary lists.

(a) diffsnocced

(b) diffreversed

(c) diffquicksorted

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S111

18. These problems relate to the predicate power:

(a) Under exactly what circumstances will power work in the backward di-
rection?

(b) Explain why the version of power in 〈bad version of power S78a〉 doesnʼt
work.

19. Consider the definition of the predicate fac in chunk S78b. Do queries in-
volving fac always terminate? If so, prove termination. If not, give an ex-
ample query that fails to terminate, explain the problem, and show how to
correct it.

20. Explain why quicksorted canʼt be run backward.

21. These problems concern the blocks-world code:

(a) Change transform so that a move generated by good_move is rejected
if it moves a block that has just been moved. Confirm that transform
does not generate any plans that involve moving the same block twice
in a row.

(b) Change the representation of states to state(a, b, c), where a is the
location of block a b is the location of block b, and so on. Modify the pro-
gram accordingly. Explain which representation you prefer, and why.

(c) Instrument the code to measure how much backtracking is done by
transform/4. In particular, count the number of moves generated by
good_move. What is the ratio of that count to the number of moves in
the solution?
Measure the same ratio for transforms2/4. Does the superior answer
produced by transforms2 come at the cost of more backtracking?

22. The primitive predicate print prints a term when solved, but does noth-
ing during backtracking. Create a predicate backprint which does nothing
when solved, but which prints a term during backtracking. Perhaps surpris-
ingly, backprint does not need to be a primitive predicate; you can write it
in Prolog. Together, print and backprint make a crude tracing mechanism.
S111. 〈exercise transcripts S108a〉+≡ ◁ S109 S112b ▷

?- member(X, [1, 2, 3]), print(trying(x, X)), backprint(failed(x, X)),
member(Y, [3, 2, 1]), print(trying(y, Y)), backprint(failed(y, Y)),
X > Y.

trying(x, 1)
trying(y, 3)
failed(y, 3)
trying(y, 2)
failed(y, 2)
trying(y, 1)
failed(y, 1)
failed(x, 1)
trying(x, 2)
trying(y, 3)
failed(y, 3)
trying(y, 2)
failed(y, 2)
trying(y, 1)
X = 2
Y = 1
yes

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S112

23. The cut is different from ordinary backtracking. Write rules for two Prolog
predicates that behave differently and that are identical except that one uses
a cut and one doesnʼt. Show a query that illustrates the difference between
the two predicates.

24. Rewrite the predicate not_equal from Section D.8.3 on page S98 so that it still
uses the cut, but it does not require the auxiliary predicate equal.

25. Throughout this book, we express operational semantics using inference
rules. Since inference rules can be expressed directly in Prolog, we can easily
write an interpreter based directly on the semantics. For example, consider
these rules from the semantics of nano-ML:

〈VAL(v), ρ〉 ⇓ v
(CONSTANT)

〈e1, ρ〉 ⇓ v1 v1 = BOOLV(#t) 〈e2, ρ〉 ⇓ v2
〈IF(e1, e2, e3), ρ〉 ⇓ v2

(IFTRUE)

Let s̓ represent judgment 〈e, ρ〉 ⇓ v as the Prolog predicate eval(e, ρ, v).
Then we can write these rules:
S112a. 〈sample rules for nano-ML evaluation S112a〉≡

eval(val(V), Rho, V).
eval(if(E1, E2, E3), Rho, V) :- eval(E1, Rho, true), eval(E2, Rho, V).

Write a complete set of rules of eval so that it forms an interpreter for
nano-ML.
S112b. 〈exercise transcripts S108a〉+≡ ◁ S111

?- eval(apply(val(plus), [val(2), val(2)]), [], V).
V = 4
yes
?- eval(apply(lambda([x], apply(val(plus), [var(x), var(x)])), [val(3)]), [], V).
V = 6
yes

26. In Prolog, write a type checker for a simplified version of Typed µScheme in
which both lambda and type-lambda take exactly one argument.

(a) Define a predicate has_type(Gamma, Term, Type) that holds when
term Term has type Type in environment Gamma. You supply the en-
vironment and the term; Prolog computes the type. For the simplest
possible type system, a checker in Prolog should take about a dozen
lines of code.

(b) Add sums and products with pair, fst, snd, inLeft, inRight, and
either.

(c) Add polymorphism.

Adding sums, products, and polymorphism will more than double part (a).

Here s̓ a sample from my code:
S112c. 〈sample run of a type checker in Prolog S112c〉≡

| ?- has_type([],
tylambda(alpha, tylambda(beta,

lambda(p, cross(alpha, beta), pair(snd(var(p)), fst(var(p)))))), T).

T = forall(alpha,forall(beta,arrow(cross(alpha,beta),cross(beta,alpha))))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S113

(d) Can you “run it backward” and get the engine to exhibit a term with a
particular type? If not, why not?

(e) Can you modify your code to produce a derivation as well as a type? If
not, why not?

D.10.2 Puzzles and games

Peg solitaire

The game “peg solitaire” is played on a board of ten holes arranged in a triangle:

_
o o
o o o
o o o o

where _ represents an empty hole and o represents a hole with a peg in it. A “move”
results when one peg jumps over another to land in a hole. The two pegs and hole
must be colinear, and the stationary peg that was jumped over is removed from the
board. So after a legal first move of the 1st peg on the third row (peg 4) we have:

o
_ o
_ o o
o o o o

and after moving the last peg on the same row (peg 6) we have:

o
_ o
o _ _
o o o o

and so on. When no peg can jump over any adjacent peg to land in a hole, the game
is over. The object of the game is to leave a single peg, preferably in a designated
hole. After my first attempt, I left this configuration:

_
o o
_ _ _
_ _ _ o

If you want to play the game yourself, try it with small coins.
For the exercises below, number the pegs from 1, i.e., number the 10-hole lay-

out like this:

1
2 3
4 5 6
7 8 9 10

Solve the following problems:

27. Write Prolog rules such that the query cansolve10(n) succeeds if and only
if 10-hole peg solitaire has a solution leaving n or fewer pegs. You can as-
sume that n will always be passed in, e.g., we should expect cansolve10(3)
to succeed always.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S114

28. Add new rules for minleaving10 such that querying minleaving10(N) puts
in N the minimum number of pegs that can be left on the board.

Hint: use the cut.

For the next exercises, switch to a 15-hole layout:

or

_
o o
o o o
o o o o
o o o o o

29. Define predicate minleaving such that querying minleaving(N) puts in N the
minimum number of pegs that can be left on the 15-hole board (like Exer-
cise 28, but with 15 holes).

30. Number the holes from top to bottom, left to right, and write Prolog rules
such that solution(n, M) either produces in M a list of moves leaving a single
peg in hole n, or fails if there is no such sequence. Represent a single move
by the term move(Start, Finish), so for example the two possible initial
moves would be represented as move(4,1) and move(6,1).

31. We donʼt always have to start with the top hole empty. Write Prolog rules such
that moves(S, F, M) produces a sequences of moves M that takes the board
from a configuration in which all holes except S have pegs to a configuration
in which only hole F has a peg. Using these rules,

(a) Write a query that finds a single location in which you can put an initial
hole in order to make it possible to leave a single peg in hole 5.

(b) Time how long it takes to answer this query.
(c) Explain how you would speed it up.

Hints:

• Just as in the blocks-world example, think about a predicate that means
“move M takes the board from configuration B to configuration BB.”

• It might be easier to solve Exercise 32 and treat the problems above as
special cases.

• The board has a symmetry group composed of threefold rotational
symmetry plus reflection symmetry.

32. Solve one or more of Exercises 29 to 31, but make the number of holes in
the triangle a parameter to the problem. For example, solve the board in the
introduction by solution(4, 1, M) where 4 is the number of holes along one
side of the triangle, 1 is the desired final hole, and M is the desired sequence
of moves. Measure the performance cost of this generalization.

Hint: The tough part is figuring out what s̓ the numbering for a potential
move. Think about shearing the board to form a lower-triangular matrix.
What are the rules then for the permissible directions of motion? You may
find it useful to number by row and column instead of just numbering the
individual holes.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S115

Logic problems

Mathematically, a “logic problem” is one that presents an N -dimensional Carte-
sian product space, then defines a relation by a set of constraints. The idea is for
the relation to contain exactly one N -tuple, and the problem is to find it. If this
description seems terribly abstract to you, fear not. Read the problems below, and
maybe youʼll recognize the genre. Even if you donʼt, solving logic problems in Pro-
log is easy and fun.

33. Food Fest. Andy, Bill, Carl, Dave, and Eric go out together for five evening
meals, Monday through Friday. Each hosts one meal, and the host picks the
food. They have fish, pizza, steak, tacos, and Thai food. After their exploit,
the following facts transpire:

(a) Eric had to miss Friday s̓ dinner (so he could not host it)

(b) Carl was host on Wednesday

(c) They ate Thai on Friday

(d) Bill, who hates fish, was the first host

(e) Dave chose a steakhouse, where they ate the night before they had
pizza.

Write a Prolog program and query that tells who hosted each night and what
food he selected. A solution should take the form of a Prolog list like the
following:

[hosted(andy, fish, monday), hosted(bill, pizza, tuesday),
hosted(carl, steak, wednesday), hosted(dave, tacos, thursday),
hosted(eric, thai, friday)]

This example is not a solution: it doesnʼt fit facts (a), (d), and (e).

Notes: The classic way to solve this problem is “generate and test.” You gen-
erate all possible solutions, then use the facts to rule out those that donʼt fit.
But some care is needed; there are 5! · 5! = 14, 400 possible solutions, and
each solution has 120 possible representations, so if youʼre not careful you
could wind up exploring over 1.7 million alternatives. If youʼre using a real
Prolog system like XSB Prolog or SWI Prolog, this doesnʼt matter—these sys-
tems have so many optimizations that they find the first of the 120 possible
representations in just a second or two. But if youʼre usingµProlog, you need
to cut down the search space.

• A good first step is to generate a single representation of the solution.
Just pick a fixed order for either people, foods, or days. This step is
worth taking even if youʼre using a real Prolog system; youʼll get an an-
swer ten times faster—essentially instantly.

• If youʼre using µProlog, you have to work harder. Apply the same idea
we applied in the blocks world: change the generator so it generates
only solutions that are consistent with known facts. In the Food Fest
problem, try writing the potential solution not using a logical variable,
but using a pattern that is consistent with what you know. For example,
a potential solution might include the pattern

hosted(carl, CFood, wednesday)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S116

If you follow these two suggestions, you can get µProlog to produce an an-
swer in under a second. If you try only the naïve generate-and-test strategy,
µProlog can run for hours and consume gigabytes of RAM—without deliver-
ing a solution.

34. The Stolen Jam. The following logic problem is adapted from a problem by
Raymond Smullyan, who has made a career out of this sort of nonsense.

Someone has stolen the jam! The March Hare said he didnʼt do it
(naturally!). The Mad Hatter proclaimed one of them (the Hare,
the Hatter, or the Dormouse) stole the jam, but of course it wasnʼt
the Hatter himself. When asked whether the Mad Hatter and
March Hare spoke the truth, the Dormouse said that one of the
three (including herself) must have stolen the jam.

By employing the very expensive services of Dr. Himmelhe-
ber, the famous psychiatrist, we eventually learned that not both
the Dormouse and the March Hare spoke the truth. Assuming, as
one does, that fairy-tale characters either always lie or always tell
the truth, it remains to discover who really stole the jam.

Write a Prolog program to discover who stole the jam. In particular, write
rules for a predicate stole/1 such that the query stole(X) succeeds if and
only if X could have stolen the jam. The query should work even if X is left as a
variable, in which case it should produce all the suspects who could possibly
have stolen the jam. It is most likely that one of the three named characters
is the culprit, but the culprit could be an outsider.

Hints:

• Like Food Fest, this problem can be tackled by exhaustive search of a
large state space. The full state space for this problem should say whos̓
lying, whos̓ telling the truth, and of course who stole the jam.

• The most restricted possible state space has just one element: the iden-
tity of a suspect. This information could then be used to deduce whos̓
lying and whos̓ telling the truth.

• If you work only with simple predicates such as “the Hare is telling the
truthʼʻ or “the Dormouse stole the jam,̓ ʻ you may get stuck. Try such
compound predicates as “if the Dormouse stole the jam, then the Hare
is telling the truth.”

• As mentioned on page S99, it s̓ unwise to use the Prolog not predicate
on anything except a ground term.

• Dr. Himmelheber is telling the truth.

35. Murder, He Wrote. This problem is by Teri Nutton; it was the Logic Problem
of the Month in April, 1998.

Five authors have just sent their latest murder stories to the
publishers—so we all look forward to reading them soon. In the
meantime, however, we intend to completely spoil your enjoy-
ment of the novels, by inviting you to solve the problem of who
murdered whom, as well as the motive involved and the location
of the story!

(a) Neither the butler nor the plumber committed the murder
(which took place in Brighton) for the sake of an inheritance.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S117

(b) The revenge killing didnʼt take place in Fishguard or Dunoon.
The artist didnʼt murder the partner (who was neither the vic-
tim killed in revenge nor the one murdered as the result of a
power struggle).

(c) The dentist murdered a cousin (but not for revenge or love)
in Halifax.

(d) The sister wasnʼt murdered in Brighton or Fishguard; and the
victim in Fishguard wasnʼt the one killed for the love of some-
one. The butler didnʼt murder his partner.

(e) In the novel in which the solicitor murders someone, the mo-
tive is power, but didnʼt involve the killing of a friend.

As in Exercise 33, write a Prolog program that says who killed whom, where,
and for what motive.

D.10.3 Digging into the semantics

36. Definition D.1 on page S60 defines a substitution. Prove these facts about
substitutions:

(a) Given a finite map {X1 7→ t1, . . . , Xn 7→ tn}, show that this map
determines a function from terms to terms, and prove that the function
so determined has all the properties required of a substitution.

(b) Given a function θ that maps terms to terms and that has all the prop-
erties required of a substitution, show that there exists some finite map
{X1 7→ t1, . . . , Xn 7→ tn} such that θ is the function determined by
the map.

(c) Prove that if θ1 and θ2 are substitutions, the composition θ2 ◦ θ1 is also
a substitution.

37. Define a big-step operational semantics for Prolog, without the cut. The idea
of such a semantics is that given a query, Prolog produces a list of substitu-
tions which satisfy the query. In practice, the list is produced lazily, on de-
mand, but your semantics can ignore this aspect.

Your semantics should be based on the judgment form D ` θs, gs , where
D is a database, θs is a list of substitutions, and gs is a list of goals. The judg-
ment says that given database D, query gs is satisfied by every substitution
in θs . If θs is empty, the query cannot be satisfied. If θs is not empty, it con-
tains all the solutions that Prolog finds, in the order in which Prolog finds them.

Your semantics should be able to express nontermination, but only weakly,
like the semantics for Impcore: if Prolog s̓ search does not terminate on a
given D and gs , then there should be no derivation of D ` θs, gs . Your se-
mantics need not be able to express whether Prolog might find some solutions
before failing to terminate.

To express the search for clauses matching a goal, your semantics will need
an auxiliary judgment D,Cs ` θs, g :: gs . This judgment is used only with
a nonempty query of the form g :: gs . It says that the procedural interpreta-
tion finds substitutions θs that satisfy query g :: gs , given database D, and
unifying g with the heads of clauses in Cs only.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S118

To get you started, here are a few rules. The empty query is satisfied by the
identity substitution.

D ` [I], []
(EMPTYQUERY)

A nonempty query searches the entire database

D,D ` θs, g :: gs

D ` θs, g :: gs
(NONEMPTYQUERYSTART)

If a goal does not unify with the (renamed) head of a clause, a property that
I write g ‖ G, the search moves on to the next clause.

g ‖ G D,Cs ` θs, g :: gs

D, (G :- Hs) :: Cs ` θs, g :: gs
(WONTUNIFY)

If there are no clauses left, the search doesnʼt produce any substitutions.

D, [] ` [], g :: gs
(DATABASEEXHAUSTED)

To write the remaining rule, which shows what happens when a goal does
unify with the head of the next clause, you have to compute with multiple
lists of substitutions. I recommend you use a powerful notation called list
comprehensions, which have been popularized by the programming language
Haskell. Here is an example of all pairs (x, y) where x is taken from xs and
y is taken from ys :

[(x, y) | x← xs, y ← ys].

In your rule, you are likely to take a list of substitutions θ′s , and for each θ′

in θ′s , compute a second list of substitutions θ′′s , and finally take the list of
all the compositions. If θ′′s is related to θ′ by relation P (θ′, θ′′s), you can
write the list comprehension

[θ′′ ◦ θ′ | θ′ ← θ′s, P (θ′, θ′′s), θ′′ ← θ′′s].

Using this notation, write the last rule of the operational semantics for the
procedural interpretation of Prolog. If you want to implement it, see Exer-
cise 48 on page S121.

D.10.4 Digging into the interpreter

38. Implement the constraint solver. That is, write function solve in chunk S83d.
Given a constraint, solve should either return a substitution that satisfies the
constraint, or raise the exception Unsatisfiable.

This exercise is substantially the same exercise as Exercise 18 on page 459
of Chapter 7. If you need guidance, Chapter 7 explains constraint solving in
detail.

39. Suppose you eliminate the occurs check. In this chapter, what examples go
wrong? (You can instrument your solver to bark when the occurs check fails,
or you can try another implementation of Prolog, which may have a flag that
can be set to issue an error message when an occurs check fails.)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S119

40. Add a two-place primitive predicate /= (not equal).

(a) Implement the basic version, which fails when applied to two identical
integers or symbols and succeeds otherwise.

(b) Implement the advanced version, which fails when applied to identical
ground terms and succeeds otherwise.

(c) Use either version in the blocks-world code, to replace the different
predicate. Measure the difference in performance.

41. Modify the µProlog interpreter so that if a user tries to define a clause in
which the left-hand side is a built-in predicate, the interpreter issues an er-
ror message and refuses to add the clause to the database. For example, the
following rule should cause an error:

Z is X ^ N :- power(X, N, Z).

42. Create a tracing version of the interpreter that logs every entry to and exit
from a Byrd box. Use the following functions:
S119. 〈tracing functions S119〉≡ (S87b)

fun logSucc goal succ theta resume =
(app print ["SUCC: ", goalString goal, " becomes ",

goalString (goalsubst theta goal), "\n"]
; succ theta resume
)

fun logFail goal fail () =
(app print ["FAIL: ", goalString goal, "\n"]
; fail ()
)

fun logResume goal resume () =
(app print ["REDO: ", goalString goal, "\n"]
; resume ()
)

fun logSolve solve goal succ fail =
(app print ["START: ", goalString goal, "\n"]
; solve goal succ fail
)

43. Every time it tries to satisfy a goal, our implementation of µProlog searches
the entire database for matching clauses. More serious implementations use
hash tables that are keyed on the name and number of arguments in the goal.
Even without a hash table, one could cut down on searches by using

type database = clause list env vector

where element 0 of the vector contains 0-argument predicates, element 1
contains 1-argument predicates, and so on. Use either this data structure or
some other one to change the implementation of the µProlog database, and
measure the resulting speedups.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S120

44. Add the cut to the µProlog interpreter.

• Each Byrd box must take three continuations: κsucc, κfail, and κcut.
Supposing we are solving goal gi based on the rule

g :- g1, . . . , gn,

the continuations play these roles:
κsucc If we successfully satisfy θ(gi), we pass θ to κsucc. We also

pass a resumption continuation so that if the solution of
gi+1, . . . , gn fails, we can backtrack into gi.

κfail If we fail to find a θ satisfying θ(gi), we call κfail(), which
is set up to backtrack to gi−1.

κcut If gi is a cut, we succeed and pass θid to κsucc, but we don’t
pass a resumption continuation; if we backtrack into the
cut, the entire goal g fails, not just gi. Therefore the resump-
tion continuation for κsucc must be the failure continuation
for g.

• Change the implementation of functionquery in 〈search [[prototype]] S84a〉
to add support for the cut. Functions solveOne and solveMany will
both need an extra continuation argument κcut; the types of functions
search and query should remain unchanged.

45. Add the primitive predicate not to the µProlog interpreter. You will not be
able to do this simply using the existing mechanism for primitives, because
implementing not requires a call to solveOne. Instead, treat not as a special
case within solveOne.

46. In µProlog, the implementation of a primitive predicate has ML type

∀α.term list→ (subst→ (unit→ α)→ α)→ (unit→ α)→ α.

This type tells us that a Prolog primitive cannot affect the database. But prim-
itives that affect the database, like assert and retract, are useful! In this
exercise you change types in the interpreter so that primitive predicates be-
come capable of reflection.

(a) Change the type of every failure continuation from unit → α to
database→ α× database.

(b) Change the type of every success continuation fromsubst→ (unit→ α)→
α to database → subst → (database → α × database) → α ×
database.

(c) Change the type of query to

∀α.db → goallist → (db → subst → (db → α×db) → α×db) → (db → α×db) → α×db,

where db is short for database.
(d) Change the type of every primitive predicate to

∀α.termlist → (db → subst → (db → α×db) → α×db) → (db → α×db) → α×db,

where db is short for database.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S121

(e) Change function process in processDef to return the database com-
puted by applying snd to the results of query. Pass query the failure
continuation

(fn db => (print "no\n", db))

and the success continuation

(fn db => fn theta => fn resume =>
if showAndContinue interactivity theta gs then resume db
else (print "yes\n", db))

(f) Function query is also used to implement unit tests. Change the way
query is called from testIsGood: give it success and failure continua-
tions that are consistent with its new type.

(g) Using the new code, build and test µProlog.

47. Using the interpreter from Exercise 46,

(a) Define primitive predicatesassert andretract as described on page S100.

(b) Test your work by using assert to convert a map-coloring adjacency list
(Exercise 7 on page S107) into map-coloring rules. Color, yet again, the
map of the British Isles.

(c) Test your work by using assert and retract to implement the general
case of peg solitaire for a triangle of any size (Exercise 32 on page S114).

To represent a fact, use a term. To represent a clause, wrap it in parentheses.
As an example, µProlog parses the term

(sick(Patient) :- psychiatrist(Doctor), analyzes(Doctor, Patient))

as an application of functor:- to argumentssick(Patient), psychiatrist(Doctor),
and analyzes(Doctor, Patient). The first argument represents the con-
clusion of the clause, and the remaining arguments represent the premises.
This information should be enough to enable you to implement assert and
retract.

48. Using your operational semantics from Exercise 37 on page S117, rewrite the
core of the interpreter for µProlog. Here are some suggestions:

• The main part of your rewrite should be a new function solutions,
which takes a database and query and produces a stream of substitu-
tions (Section I.4.2 on page S249).

• Function solutions should be specified by your operational semantics,
which may include list comprehensions. To implement list compre-
hensions, I recommend a variation on streamConcatMap. I sometimes
define
S121.

every : 'a stream -> unit -> ('a -> 'b stream) -> 'b stream
〈streams S121〉≡ (S237a) S122a ▷

fun every xs () k = streamConcatMap k xs
val run = ()

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Prolog and logic
programmingD

S122

Using every and run, the example list comprehension for the Cartesian
product, [(x, y) | x← xs, y ← ys], is written as
S122a.

cartesian : 'a stream -> 'b stream -> ('a * 'b) stream
〈streams S121〉+≡ (S237a) ◁ S121 S122b ▷

fun cartesian xs ys =
every xs run (fn x =>
every ys run (fn y =>
streamOfList [(x, y)]))

This style lends itself to implementing list comprehensions.

• Your solutions function should generate solutions for µProlog s̓ prim-
itive predicates, but the implementations of those predicates need not
change. Those implementations expect success and failure continua-
tions, but you can get a stream of substitutions usingstreamOfCPS (p args),
where p represents the primitive predicate, args represents its argu-
ments, and streamOfCPS is defined as follows:
S122b. 〈streams S121〉+≡ (S237a) ◁ S122a S122c ▷

fun streamOfCPS cpsSource =
cpsSource (fn theta => fn resume => theta ::: resume ()) (fn () => EOS)

• When solutions is complete, write a replacement query function that
calls cpsStream on the result of solutions, where cpsStream is defined
as follows:
S122c.

cpsStream : 'subst stream ->
('subst -> (unit->'a) -> 'a) -> (unit->'a) -> 'a

〈streams S121〉+≡ (S237a) ◁ S122b

fun cpsStream answers succ fail =
case streamGet answers
of NONE => fail ()
| SOME (theta, answers) =>

succ theta (fn () => cpsStream answers succ fail)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§D.10. Exercises

S123

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
11.1 TYPEFUL PROGRAM-

MING 737

11.2 PROPOSITIONS AS TYPES 737

11.3 MORE FUNCTIONS 739

11.4 MORE OBJECTS 739

11.5 FUNCTIONS AND OB-
JECTS, TOGETHER 739

11.6 FUNCTIONAL ANIMA-
TION 739

11.7 SCRIPTING 740

11.8 PARALLEL AND DIS-
TRIBUTED COMPUTA-
TION 740

11.9 ONE COOL DOMAIN-
SPECIFIC LANGUAGE 740

11.10 STACK-BASED LANGUAGES 740
11.11 ARRAY LANGUAGES 741
11.12 LANGUAGES BASED ON

SUBSTITUTION 741
11.13 STRING-PROCESSING

LANGUAGES 741
11.14 CONCLUSION 742

VI. LONG PROGRAMMING EXAMPLES

S127

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
E.1 LARGE µSCHEME EXAM-

PLE: A METACIRCULAR
EVALUATOR S129

E.1.1 The environment and
value store S129

E.1.2 Representations of val-
ues S130

E.1.3 The initial environment
& store S130

E.1.4 The evaluator S131
E.1.5 Evaluating definitions S133
E.1.6 The read-eval-print

loop S134
E.1.7 Tests S134
E.1.8 Exercises for the metacir-

cular evaluator S135

E.2 LARGE µML EXAMPLE:
2D-TREES S136

E.2.1 Searching for points in
2D-trees S136

E.2.2 Making a balanced
2D tree S139

E.2.3 Applying the 2D-tree:
points of interest S143

E.2.4 Exercises S146

E.3 MORE EXAMPLES OF
MOLECULE S148

E.3.1 Bit sets S148
E.3.2 Other S148
E.3.3 Sets of integers, using a

stronger invariant S148
E.3.4 Another interface: the

histogram S150

E.4 EXTENDED µSMALLTALK
EXAMPLE: DISCRETE
EVENT SIMULATION S151

E.4.1 Designing discrete-
event simulations S151

E.4.2 Implementing the Sim-
ulation class S154

E.4.3 Implementing the
robot-lab simulation S157

E.4.4 Running robot-lab sim-
ulations S163

E.4.5 Summary and analysis S166
E.4.6 Robot-lab exercises S167

EExtended programming examples

E.1 LARGE µSCHEME EXAMPLE: A METACIRCULAR EVALUATOR

One of the most intriguing features of Scheme is that programs are easily repre-
sented as S-expressions. By writing programs that manipulate such S-expressions,
Scheme programmers can extend their programming environment more easily
than with almost any other language. This extensibility accounts in part for the
great power and variety of the programming environments in which Scheme and
Lisp are often embedded (which, however, are beyond the scope of this book).

The treatment of programs as data was illustrated by McCarthy (1962) in a par-
ticularly neat way, namely by programming a “metacircular” interpreter for Lisp,
that is, a Lisp interpreter written in Lisp. In this section, we follow McCarthy s̓
lead, presenting a µScheme interpreter in µScheme. (We interpret just the core of
µScheme, without the extended definitions, so there is no implementation of use,
check-expect, check-assert, or check-error.)

We represent expressions exactly as if they were quoted literals. For example,
we represent the expression (+ x 4) by the S-expression '(+ x 4).

Our evaluator has much the same structure as the C version, but we use higher-
order functions in ways that are not possible in C.

E.1.1 The environment and value store

We represent locations as numbers. The store is an association list from numbers
to values, sodomσ = NUM . To support allocation, the store also maps the special
key next to a fresh location n. The representation satisfies the invariant that ∀i ≥
n : i /∈ domσ.
S129a. 〈eval.scm S129a〉≡ S129b ▷

(val emptystore '((next 0)))

We make the store a global variable sigma.
S129b. 〈eval.scm S129a〉+≡ ◁ S129a S129c ▷

〈definition of find-c generated automatically〉
(val sigma emptystore)
(define load (l) (find-c l sigma (lambda (x) x)

(lambda () (error (list2 'unbound-location: l)))))
(define store (l v) (begin (set sigma (bind l v sigma)) v))

To allocate, we use the special key 'next. We give allocate the same interface
as in C.
S129c. 〈eval.scm S129a〉+≡ ◁ S129b S130a ▷

(define allocate (value)
(let*
([loc (load 'next)])
(begin

(store 'next (+ loc 1))

S129
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S130

(store loc value)
loc)))

Also as in C, bindalloc allocates a new location, stores a value in it, and returns
that location. Similarly, bindalloclist allocates and initializes lists of locations.
S130a. 〈eval.scm S129a〉+≡ ◁ S129c S130b ▷

(define bindalloc (name v env)
(bind name (allocate v) env))

(define bindalloclist (xs vs env)
(if (and (null? xs) (null? vs))
env
(bindalloclist (cdr xs) (cdr vs) (bindalloc (car xs) (car vs) env))))

By insisting that in the base case, both xs and vs must be empty, we ensure that if
xs and vs have different lengths, the interpreter issues an error message and halts.

E.1.2 Representations of values

Within the metacircular interpreter, we can represent most values as themselves.
That is, we use symbols to represent symbols, numbers to represent numbers, etc.
The exception is functions. Rather than represent each function as itself, we rep-
resent every function as a unary function, which takes a list of arguments, possibly
changes the store, and returns a single result. We call such a function a “function
in list form.”

To transform a primitiveµScheme function into list form, we defineapply-prim.
We exploit our knowledge that all primitives are either unary or binary.
S130b. 〈eval.scm S129a〉+≡ ◁ S130a S130c ▷

(define apply-prim (prim)
(lambda (args)
(if (null? args)
(error 'missing-arguments-to-primitive)
(if (null? (cdr args))
(prim (car args))
(if (null? (cddr args))
(prim (car args) (cadr args))
(error (list2 'all-primitives-expect-one-or-two-arguments---got args)))))))

We make no special effort to ensure that each primitive gets the right number of
arguments. If an interpreter function applies + to only one argument, for example,
we just get the underlying error message from the µScheme interpreter.

E.1.3 The initial environment and store

We can now build the initial environment. We start with an empty env and use let*
to bind each primitive in sequence.
S130c. 〈eval.scm S129a〉+≡ ◁ S130b S131a ▷

(define primenv ()
(let*

([env '()]
[env (bindalloc '+ (apply-prim +) env)]
[env (bindalloc '- (apply-prim -) env)]
[env (bindalloc '* (apply-prim *) env)]
[env (bindalloc '/ (apply-prim /) env)]
[env (bindalloc '< (apply-prim <) env)]
[env (bindalloc '> (apply-prim >) env)]
[env (bindalloc '= (apply-prim =) env)]
[env (bindalloc 'car (apply-prim car) env)]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.1
Large µScheme
example: A
metacircular
evaluator

S131

[env (bindalloc 'cdr (apply-prim cdr) env)]
[env (bindalloc 'cons (apply-prim cons) env)]
[env (bindalloc 'println (apply-prim println) env)]
[env (bindalloc 'print (apply-prim print) env)]
[env (bindalloc 'printu (apply-prim printu) env)]
[env (bindalloc 'error (apply-prim error) env)]
[env (bindalloc 'boolean? (apply-prim boolean?) env)]
[env (bindalloc 'null? (apply-prim null?) env)]
[env (bindalloc 'number? (apply-prim number?) env)]
[env (bindalloc 'symbol? (apply-prim symbol?) env)]
[env (bindalloc 'function? (apply-prim function?) env)]
[env (bindalloc 'pair? (apply-prim pair?) env)])

env))

E.1.4 The evaluator

Weʼre ready to explore the structure of the evaluator. Because the environment
changes only when we make a function call, we define eval in curried form. It
accepts an environment and returns a function from expressions to values. We
call this inner function ev.
S131a. 〈eval.scm S129a〉+≡ ◁ S130c S133b ▷

〈auxiliary functions for evaluation S131c〉
(define eval (env)

(letrec
([ev (lambda (e) 〈result of evaluating expression e in environment env S131b〉)]
〈letrec bindings of functions used to evaluate abstract syntax S132f〉)

ev))

Symbols are variables, the locations of which must be looked up in the environ-
ment. Other atoms evaluate to themselves.1 Lists are function applications, unless
they are abstract syntax.
S131b. 〈result of evaluating expression e in environment env S131b〉≡ (S131a)

(if (symbol? e)
(load (find-variable e env))
(if (atom? e)
e
(let ([first (car e)]

[rest (cdr e)])
(if (exists? ((curry =) first) '(set if while lambda quote begin))

〈evaluate first with rest as abstract syntax S132a〉
〈evaluate first to a function, and apply it to arguments from rest S131d〉))))

To find a variable, we use find-c, so we can fail if the variable is not found.
S131c. 〈auxiliary functions for evaluation S131c〉≡ (S131a) S132b ▷

(define find-variable (x env)
(find-c x env (lambda (x) x) (lambda () (error (list2 'unbound-variable: x)))))

Function application is straightforward. We donʼt bother to check to see if we
are applying a non-function; the underlying µScheme interpreter does that for us.
It takes much less space to write the code than to say what it does!
S131d. 〈evaluate first to a function, and apply it to arguments from rest S131d〉≡ (S131b)

((ev first) (map ev rest))

1The empty list shouldnʼt evaluate to itself; it should be an error, but we ignore that fine point.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S132

Abstract syntax is a bit more involved. We use brute force to check all the re-
served words.
S132a. 〈evaluate first with rest as abstract syntax S132a〉≡ (S131b)

(if (= first 'set) (binary 'set meta-set rest)
(if (= first 'if) (trinary 'if meta-if rest)
(if (= first 'while) (binary 'while meta-while rest)
(if (= first 'lambda) (binary 'lambda meta-lambda rest)
(if (= first 'quote) (unary 'quote meta-quote rest)
(if (= first 'begin) (meta-begin rest)
(error (list2 'this-cannot-happen---bad-ast first))))))))

The auxiliary functions unary, binary, and trinary unpack rest and check
to be sure that it holds the correct number of elements. Function holds-exactly
takes at most time proportional to n, no matter how long xs is.
S132b. 〈auxiliary functions for evaluation S131c〉+≡ (S131a) ◁ S131c S132c ▷

(define holds-exactly? (xs n)
(if (= n 0)
(null? xs)
(if (null? xs)
#f
(holds-exactly? (cdr xs) (- n 1)))))

(check-assert (holds-exactly? '(a b c) 3))
(check-assert (not (holds-exactly? '(a b) 3)))
(check-assert (not (holds-exactly? '(a b c d) 3)))

S132c. 〈auxiliary functions for evaluation S131c〉+≡ (S131a) ◁ S132b S132d ▷

(define unary (name f rest)
(if (holds-exactly? rest 1)
(f (car rest))
(error (list3 name 'expression-needs-one-argument,-got rest))))

S132d. 〈auxiliary functions for evaluation S131c〉+≡ (S131a) ◁ S132c S132e ▷
(define binary (name f rest)
(if (holds-exactly? rest 2)
(f (car rest) (cadr rest))
(error (list3 name 'expression-needs-two-arguments,-got rest))))

S132e. 〈auxiliary functions for evaluation S131c〉+≡ (S131a) ◁ S132d
(define trinary (name f rest)
(if (holds-exactly? rest 3)
(f (car rest) (cadr rest) (caddr rest))
(error (list3 name 'expression-needs-three-arguments,-got rest))))

The ast functions themselves are straightforward, except for lambda. The easiest
are quote, if and while.
S132f. 〈letrec bindings of functions used to evaluate abstract syntax S132f〉≡ (S131a) S132g ▷

(meta-quote (lambda (e) e))
(meta-if (lambda (e1 e2 e3) (if (ev e1) (ev e2) (ev e3))))
(meta-while (lambda (condition body) (while (ev condition) (ev body))))

A set expression requires us to find the location and rebind it.
S132g. 〈letrec bindings of functions used to evaluate abstract syntax S132f〉+≡ (S131a) ◁ S132f S132h ▷

(meta-set (lambda (v e)
(let ([loc (find-variable v env)])

(if (null? loc)
(error (list2 'set-unbound-variable v))
(store loc (ev e))))))

A begin expression evaluates arguments until it gets to the last. We use foldl.
S132h. 〈letrec bindings of functions used to evaluate abstract syntax S132f〉+≡ (S131a) ◁ S132g S133a ▷

(meta-begin (lambda (es) (foldl (lambda (e result) (ev e)) '() es)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.1
Large µScheme
example: A
metacircular
evaluator

S133

A lambda expression is the most fun. It must evaluate to a closure, so we use
the real lambda to make a closure.
S133a. 〈letrec bindings of functions used to evaluate abstract syntax S132f〉+≡ (S131a) ◁ S132h

(meta-lambda (lambda (formals body)
(if (all? symbol? formals)
(lambda (actuals)
((eval (bindalloclist formals actuals env)) body))

(error (list2 'lambda-with-bad-formals: formals)))))

E.1.5 Evaluating definitions

Evaluating a definition results in a new environment.
S133b. 〈eval.scm S129a〉+≡ ◁ S131a S134a ▷

〈functions used to evaluate definitions S133c〉
(define evaldef (e env)
(if (pair? e)
(let ([first (car e)]

[rest (cdr e)])
(if (= first 'val)
(binary 'val (meta-val env) rest)
(if (= first 'define)

(trinary 'define (meta-define env) rest)
(meta-exp e env))))

(meta-exp e env)))

The hardest definition to implement is val, which must see if the name x is
already bound in the environment. We examine the environment using function
find-c from Section 2.10 on page 138. If x is bound, we leave env alone; otherwise
we extend env by binding x to the empty list. Once x is safely bound, we evaluate a
set expression.
S133c. 〈functions used to evaluate definitions S133c〉≡ (S133b) S133d ▷

(define meta-val (env)
(lambda (x e)
(if (symbol? x)

(let* ([env (find-c x env (lambda (_) env) (lambda () (bindalloc x '() env)))])
(begin
((eval env) (list3 'set x e))
env))

(error (list2 'val-tried-to-bind-non-symbol x)))))

The define item is easy: we rewrite it into a val declaration.
S133d. 〈functions used to evaluate definitions S133c〉+≡ (S133b) ◁ S133c S133e ▷

(define meta-define (env)
(lambda (name formals body)
((meta-val env) name (list3 'lambda formals body))))

Since we donʼt have a read primitive, we canʼt implement use. The only other
“definition” is evaluation of a top-level expression.
S133e. 〈functions used to evaluate definitions S133c〉+≡ (S133b) ◁ S133d

(define meta-exp (e env)
(begin
(println ((eval env) e))
env))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S134

E.1.6 The read-eval-print loop

Function read-eval-print takes a list of definitions, evaluates each in turn, and
returns the final environment and store.
S134a. 〈eval.scm S129a〉+≡ ◁ S133b S134b ▷

(define read-eval-print (env es)
(foldl evaldef env es))

Function run runs read-eval-print in an initial environment that contains just
the primitives, then returns zero. (By returning zero, we make it possible to use run
interactively without having to look at the final environment and store, which can
be quite large.)
S134b. 〈eval.scm S129a〉+≡ ◁ S134a

(define run (es)
(begin (read-eval-print (primenv) es) 0))

E.1.7 Tests

These tests exercise functionsapply-prim, initialenv, meta-lambda, eval, evaldef,
meta-if, meta-set, meta-val, meta-define, meta-exp, read-eval-print, and
rep.
S134c. 〈evaltest.scm S134c〉≡ S134d ▷

'(5 0 1 (Hello Dolly) 5 5 1 0)
(run
'((define mod (m n) (- m (* n (/ m n))))
(define gcd (m n) (if (= n 0) m (gcd n (mod m n))))
(mod 5 10)
(mod 10 5)
(mod 3 2)
(cons 'Hello (cons 'Dolly '()))
(println (gcd 5 10))
(gcd 17 12)))

These tests also exercise meta-while and meta-begin.
S134d. 〈evaltest.scm S134c〉+≡ ◁ S134c

'(5 0 1 #t 'blastoff 1 5 1 0)
(run
'((define mod (m n) (- m (* n (/ m n))))
(define not (x) (if x #f #t))
(define != (x y) (not (= x y)))
(define list6 (a b c d e f) (cons a (cons b (cons c (cons d (cons e (cons f '())))))))
(define gcd (m n r)
(begin
(while (!= (set r (mod m n)) 0)
(begin
(set m n)
(set n r)))

n))
(mod 5 10)
(mod 10 5)
(mod 3 2)
(!= 2 3)
(begin 5 4 3 2 1 'blastoff)
(gcd 2 3 0)
(gcd 5 10 0)
(gcd 17 12 0)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.1
Large µScheme
example: A
metacircular
evaluator

S135

E.1.8 Exercises for the metacircular evaluator

The primary advantage of a metacircular evaluator is that it is easy to extend, so
you can try out new language features. (It was once argued that a metacircular
evaluator was a good way to write a language definition, but Reynolds (1998) found a
flaw in that argument.) A significant disadvantage is that the metacircular evaluator
may be slow, making it hard to try out your new features, especially if you want to
run tests.

1. In the metacircular evaluator, the results of evaluating a top-level expression
are not bound to it. Change the code in chunk S133e to correct this fault.

2. The metacircular evaluator doesnʼt implement any LET forms. Using syntac-
tic sugar, as described in Sections 1.8 and 2.13, add those forms.

(a) As described in Section 2.13.1, add let to the metacircular evaluator
using the law

(let ([x1 e1] ... [xn en]) e) ≡ ((lambda (x1 ... xn) e) e1 ... en)

You may find map more helpful than foldr.

(b) Similarly, add let* to the metacircular evaluator using the two laws

(let* () e) ≡ e
(let* ([x1 e1] ... [xn en]) e) ≡ (let ([x1 e1]) (let* (... [xn en]) e))

As usual, use the standard higher-order functions to help.

(c) Add letrec to the metacircular evaluator by rewriting

(letrec ([x1 e1] ... [xn en]) e)

to

(let ([x1 '()] ... [xn '()])
(begin (set x1 e1) ... (set xn en) e))

Use higher-order functions.

(d) With let, let*, and letrec, the evaluator should be powerful enough
to evaluate itself. Measure how long the evaluator takes to evaluate it-
self evaluating (+ 2 2).

3. Add short-circuit conditional primitives to the metacircular evaluator, using
the syntactic sugar described in Section 2.13.3

(a) In full Scheme, and is variadic, and it works by short-circuit evalua-
tion, like the && operator from Section 2.13.3. This behavior can be
expressed by the following laws:

(and) ≡ #t
(and p) ≡ p
(and p1 p2 . . . pn) ≡ (if p1 (and p2 . . . pn) #f)

Use these laws and foldr to add and to the metacircular evaluator in
Section E.1.

(b) Similarly, use foldr to add variadic, short-circuit or to the metacircular
evaluator, following these laws:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S136

(or) ≡ #f
(or e) ≡ e
(or e1 · · · en) ≡ (let ([x e1]) (if x x (or e2 · · · en))),

where x does not appear in any ei

4. In many of my tests, the metacircular evaluator is annoyingly slow. This ex-
ercise suggests some improvements.

(a) Instead of making next an ordinary key in the store, represent the store
as a pair (cons next alist), so that you donʼt have to copy the store ev-
ery time you allocate. Measure the effect on the speed of the metacircu-
lar evaluator, and measure the effect on the number of cells allocated
by the underlying interpreter. (You will need to instrument allocate
in chunk 164b.)

(b) Rewrite bind so that if a key does not appear in the association list, it
conses a new key-attribute pair onto the front of the association list,
without copying any existing pairs. Measure the effect on speed and
allocation when running the metacircular evaluator.

(c) Rewritebind to use move-to-front caching. That is, ifal2=(bind x y al),
the list (list2 x y) should be the first element of al2, regardless of the
position of x within al. This rewrite should also incorporate the im-
provement in part (b), so that if x is not bound in al, nothing is copied.
Measure the effect on speed and allocation when running the metacir-
cular evaluator.

(d) Measure the cumulative effect of the three preceding improvements on
speed and allocation when running the metacircular evaluator.

For the measurements in this exercise, use the tests in chunks S134c and S134d.

E.2 LARGE µML EXAMPLE: 2D-TREES

If you want to study full programs that use algebraic data types, this book is full of
them: from Chapter 5 onward, every expression and every definition in every inter-
preter is represented using algebraic data types. But algebraic data types are good
for more than just interpreters—they are good representations of many data struc-
tures, especially those involving trees. In this section I present 2D-trees, which are
used to look up geographic locations quickly.

E.2.1 Searching for points in 2D-trees

A 2D-tree is like a binary-search tree, but it is organized in two dimensions.
The purposes of both trees are the same—search—but in a 2D-tree you are look-
ing not for an exact match but for the point nearest a given location. With this
background, here are some important differences:

• In a standard binary tree, each internal node contains a key, and each leaf
is empty. In a 2D-tree, it s̓ the other way around: an internal node contains
only administrative information and subtrees, not any points—but each leaf
contains a point.

• Order invariants are different. In a standard binary-search tree, keys are to-
tally ordered. Values in the left subtree are smaller than the value at the root,

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S137

(x, y)

Nearest point
above boundary

N

B

N ≤ B: Neednʼt search below boundary

(x, y)
Nearest point
above boundaryN

B

N > B: Must search below boundary

Figure E.1: Search in a 2D-tree (the two important cases)

and values in the right subtree are larger than the value at the root. Each sub-
tree also obeys the order invariant.

In a 2D-tree, keys are points in the plane, which canʼt be totally ordered.
But each point has (x, y) coordinates, and any set of points can be totally
ordered along either the x coordinate or the y coordinate, but not both.
The order invariant depends on the administrative information at each in-
ternal node. At a horizontal split, the node contains the y coordinate of a
horizontal boundary line, and two subtrees. The below subtree contains only
points with smaller y coordinates than the horizontal line, and the above sub-
tree contains only points with larger y coordinates than the horizontal line.
At a vertical split, the boundary line is vertical, the root contains its x coor-
dinate, and the left and right subtrees contain points with smaller and larger
x coordinates, respectively.

As an example, Figure E.2 on page S140 shows a 2D-tree that contains the
locations and names of city halls near Boston, Massachusetts. Horizontal
and vertical splits are shown by horizontal and vertical lines.

• When searching a standard binary-search tree, youʼre given a key and you
search for exactly that key. If an internal node doesnʼt contain the key youʼre
looking for, you go either to left or the right, and you look at just that subtree.

When searching a 2D-tree, youʼre given an (x, y) coordinate pair, and you
search for the point nearest to (x, y). In Figures E.1 and E.2, the search point
(x, y) is depicted as a crosshair symbol . At an internal node, you still look
left or right, up or down, but depending on what you find, you may have to
look at both subtrees.

I hope youʼre already familiar with binary-search trees; you can implement some
related codes in Exercise 14. This section explains 2D-trees: how search works,
how to build one, and how they are used.

A search in a 2D-tree has only two nontrivial cases, both of which are shown
in Figure E.1. The figure shows a single 2D-tree being searched at two different
points; in each case, the search point (x, y) is shown as a crosshair . The tree
being searched is a horizontal split, and the search point is above the boundary
line. And in both cases, the nearest point in the above subtree (found by a recursive
call) is the same. Also in both cases, the distance to that nearest point is N , and the
distance to the boundary is B. Where the two cases differ is in whether we need to
search below the boundary.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S138

• On the left, N < B, which means the black dot is closer than the boundary
line, and no point below the boundary can possibly be closer than the black
dot. The search is over.

• On the right, N > B, so there might be a point in the shaded region, below
the boundary, that is closer than the black dot. So we have to search the below
subtree.

The other interesting cases are obtained by rotating the diagram through angles of
90, 180, and 270 degrees. I want not to write the same code four times, so in each
case I refer to the “near subtree” and “far subtree.” The near subtree is the one that
contains the search point, and the far subtree is the one that doesnʼt—the one on
the far side of the boundary.

A 2D-tree is made up of 2Dpoints, like the black dot in Figure E.1. Each point
carries an x and y coordinate, plus a value of any type it likes.
S138a. 〈gis.uml S138a〉≡ S138b ▷

(record ('a) 2Dpoint ([x : int] [y : int] [value : 'a]))

A value of type (2Dtree τ) is one of the following:

• A point (POINT p), where p is a (2Dpoint τ)

• A horizontal split (HORIZ y below above), where the y coordinate of every
point in below is at most y, and the y coordinate of every point in above is
at least y

• A vertical split (VERT x left right), where the x coordinate of every point in
left is at most x, and the x coordinate of every point in right is at least x

The structure and the types of all the parts, but not the ordering properties, are
expressed using this algebraic data type.
S138b. 〈gis.uml S138a〉+≡ ◁ S138a S138c ▷

(implicit-data ('a) 2Dtree
[POINT of (2Dpoint 'a)]
[HORIZ of int (2Dtree 'a) (2Dtree 'a)] ; location below above
[VERT of int (2Dtree 'a) (2Dtree 'a)] ; location left right

)

To search a 2D-tree, I have to compare distances in the plane. But I donʼt want to
compute distances—the computation includes a square root, andµML supports only
integer arithmetic. Fortunately I can get the same results by comparing distances
squared. Here is a function that gives the squared distance from (x, y) to a point.
S138c. 〈gis.uml S138a〉+≡ ◁ S138b S138d ▷

(check-type point-distance-squared (forall ['a] (int int (2Dpoint 'a) -> int)))
(define square (n) (* n n))
(define point-distance-squared (x y p)
(+ (square (- x (2Dpoint-x p)))

(square (- y (2Dpoint-y p)))))
(check-expect (point-distance-squared 7 1 (make-2Dpoint 3 4 'test))

25)

Before I tackle the search function, I want some auxiliary functions that em-
body the concepts of the search. For example, on the right of Figure E.1, if I have
to search both sides of a boundary, I choose the closer of the two resulting points.
S138d. 〈gis.uml S138a〉+≡ ◁ S138c S139a ▷

(check-type closer
(forall ['a] (int int (2Dpoint 'a) (2Dpoint 'a) -> (2Dpoint 'a))))

(define closer (x y p1 p2)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S139

(if (< (point-distance-squared x y p1) (point-distance-squared x y p2))
p1
p2))

Now Iʼm ready to start nearest-point. But there are nine cases! Luckily, one is
trivial, and the other eight are all instances of Figure E.1. To handle the two cases
shown in Figure E.1, I define auxiliary function near-or-far below. It takes x, y,
the near subtree, the far subtree, and the distance squared B2 between (x, y) and
the boundary line. It returns the point closest to (x, y).

Using near-or-far, I define nearest-point. One case is POINT, four are from
HORIZ, and four are from VERT. The two cases shown in Figure E.1 are from HORIZ
where y is above the boundary; they are handled by the first call to near-or-far.
Each pair of other interesting cases (the rotations) is handled by a different call to
near-or-far.
S139a. 〈gis.uml S138a〉+≡ ◁ S138d S140 ▷

(check-type nearest-point
(forall ['a] (int int (2Dtree 'a) -> (2Dpoint 'a))))

(define nearest-point (x y tree)
(letrec (〈definition of near-or-far within letrec S139b〉)
(case tree
[(POINT p) p]
[(HORIZ y-boundary below above)

(if (> y y-boundary)
(near-or-far x y above below (square (- y y-boundary)))
(near-or-far x y below above (square (- y y-boundary))))]

[(VERT x-boundary left right)
(if (> x x-boundary)

(near-or-far x y right left (square (- x x-boundary)))
(near-or-far x y left right (square (- x x-boundary))))])))

I define near-or-far in a letrec because µML hasnʼt got syntax for defining mu-
tually recursive functions at top level.

Function near-or-far makes the decision in Figure E.1. The black dot is the
closest point in the near subtree, at distance N from (x, y). If N2 ≤ B2, weʼre
done; otherwise we search the far subtree and take the closer of the two points.
S139b. 〈definition of near-or-far within letrec S139b〉≡ (S139a)

[near-or-far
(lambda (x y near far the-B-squared)
(let* ([closest-near (nearest-point x y near)]

[the-N-squared (point-distance-squared x y closest-near)])
(if (<= the-N-squared the-B-squared)

closest-near ; don't need to search the far subtree
(closer x y closest-near (nearest-point x y far)))))]

Now that we know how to search a 2D-tree, the next step is how to make one.

E.2.2 Making a balanced 2D tree

In typical applications, you build a 2D-tree for a fixed set of points, and you use
it for a lot of searches. To make searches as fast as possible, you want the tree
to be perfectly balanced, so the length of the path from the root to each leaf is
the logarithm of the number of points. And to reduce the chances that you have
to look across a boundary, the recommended heuristic is to alternate horizontal
and vertical splits, hoping that alternating the directions of the boundaries will put
them far away from the search point.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S140

Woburn

Somerville

Melrose

Malden

Waltham Cambridge

Newton

Everett Revere

Salem

Lynn

Boston

Chelsea

Quincy

Tufts

Figure E.2: Balanced 2D-tree of city halls near Boston, searched at Tufts (see
page S145)

When I make a vertical split, how will I do it? I need to choose an x value
such that half my points have smaller x s̓ and half have larger x s̓. I sort points
on their x coordinates, then split in the middle. To make a horizontal split, I do
the same, but with y coordinates. For sorting, I define a higher-order function
sort-on. When given a projection function, sort-on sorts a list of values using
that projection. (I take mergesort as given.)
S140. 〈gis.uml S138a〉+≡ ◁ S139a S141a ▷

(check-type mergesort
(forall ['a] (('a 'a -> order) -> ((list 'a) -> (list 'a)))))

(check-type sort-on ; sorts on a projection
(forall ['a] (('a -> int) -> ((list 'a) -> (list 'a)))))

〈definition of mergesort (left as an exercise)〉
(define sort-on (project)
(mergesort (lambda (x1 x2) (Int.compare (project x1) (project x2)))))

After sorting a list of points, I split it into halves. Here is the specification of
function halves: Here is the specification of function halves:

(halves xs) = (pair ys zs),
where xs = (append ys zs) and |(length ys)− (length zs)| ≤ 1.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S141

S141a. 〈gis.uml S138a〉+≡ ◁ S140 S141b ▷

(check-type halves (forall ['a] ((list 'a) -> (pair (list 'a) (list 'a)))))
(check-expect (halves '(1 2 3 4)) (pair '(1 2) '(3 4)))
(check-expect (halves '(1 2 3 4 5)) (pair '(1 2) '(3 4 5)))

Reasonable people would implement halves by using length, take, and drop.
But I canʼt resist the opportunity to do it in one pass, with a tail-recursive function
that uses constant stack space. This function, scan, takes three parameters:

left^ A prefix of xs, reversed
right Whatever part of xs is not in left^
ys A list that is empty once left^ contains half of xs

Getting scan right requires attention to loop invariants. But there s̓ also a nice bit
of pattern matching: function scan keeps going as long as ys has at least two ele-
ments; then it stops.
S141b. 〈gis.uml S138a〉+≡ ◁ S141a S141c ▷

(define halves (xs)
(letrec ([scan (lambda (left^ right ys)

; invariants: xs = (revapp left^ right)
; (length xs) = (length ys) + 2 * (length left^)
(case ys
((cons _ (cons _ zs))

(case right
('() (error 'this-cannot-happen))
((cons w ws)

(scan (cons w left^) ws zs))))
(_ (pair (reverse left^) right))))])

(scan '() xs xs)))

Once Iʼve split a list into halves, I draw a boundary between the largest small point
(last element of the first list) and the smallest large point (first element of the sec-
ond list). Here are auxiliary functions first and last, which are defined only on
nonempty lists.
S141c. 〈gis.uml S138a〉+≡ ◁ S141b S141d ▷

(define first (xs) (car xs))
(define last (xs)
(case xs
[(cons x '()) x]
[(cons _ ys) (last ys)]
['() (error 'last-of-empty-list)]))

Now that I can sort lists and split any list into two halves, I can build 2D-trees.
As with search, I want to avoid duplicating code for the horizontal and vertical
cases. To avoid duplicating code, I abstract over the coordinate. To abstract over
X or Y , I need to know

• How to project the relevant coordinate

• How to make a split on that coordinate

I abstract these operations into a record of type (forall ['a] (dimenfuns 'a)).
S141d. 〈gis.uml S138a〉+≡ ◁ S141c S142a ▷

(record ('a) coord-funs
([project : ((2Dpoint 'a) -> int)]
[mk-split : (int (2Dtree 'a) (2Dtree 'a) -> (2Dtree 'a))]))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S142

The x projection goes with the vertical split, and the y projection goes with the
horizontal split.
S142a. 〈gis.uml S138a〉+≡ ◁ S141d S142b ▷

(val vert-funs (make-coord-funs 2Dpoint-x VERT))
(val horiz-funs (make-coord-funs 2Dpoint-y HORIZ))
(check-type vert-funs (forall ['a] (coord-funs 'a)))
(check-type horiz-funs (forall ['a] (coord-funs 'a)))

When using vert-funs and horiz-funs, I want to alternate: vertical, horizon-
tal, vertical, horizontal, and so on. But because I want you to generalize to more
than two dimensions (Exercises 3 and 4), I code the alternation as follows: vertical;
horizontal; start over; vertical; horizontal; start over; and so on. This idea gener-
alizes to a sequence like “X, Y , Z, start over.” To code it, I put the coordinates
in a list all-coordinates, use the elements of that list until they are exhausted,
then start again with all-coordinates. The coordinates not yet used are in list
remaining-coordinates.
S142b. 〈gis.uml S138a〉+≡ ◁ S142a S142d ▷

(check-type 2Dtree (forall ['a] ((list (2Dpoint 'a)) -> (2Dtree 'a))))

(val all-coordinates (list2 vert-funs horiz-funs))
(define 2Dtree (points)
(letrec

([build (lambda (points remaining-coordinates)
(case remaining-coordinates
['() (build points all-coordinates)] ; start over
[(cons cfuns next-remaining)

(case points
[(cons pt '()) (POINT pt)]
[_ 〈build tree using cfuns with points S142c〉])]))])

(build points all-coordinates)))

Given my coordinate functions, I extract projection and split-making functions,
sort the points, split them into large and small halves, and compute the median
coordinate for the split. The subtrees that go into the split are built using build
with next-coords.
S142c. 〈build tree using cfuns with points S142c〉≡ (S142b)

(let* ([project (coord-funs-project cfuns)]
[mk-split (coord-funs-mk-split cfuns)]
[sort (sort-on project)]
[points (sort points)]
[the-halves (halves points)]
[small (fst the-halves)]
[large (snd the-halves)]
[_ (if (null? small) (error 'empty-small-tree) UNIT)]
[_ (if (null? large) (error 'empty-large-tree) UNIT)]
[average (lambda (n m) (/ (+ n m) 2))]
[median (average (project (last small)) (project (first large)))])

(mk-split median (build small next-remaining) (build large next-remaining)))

Here are some rudimentary tests:
S142d. 〈gis.uml S138a〉+≡ ◁ S142b S143a ▷

(val test-points
(list3 (make-2Dpoint 10 12 'A)

(make-2Dpoint 5 6 'B)
(make-2Dpoint 33 99 'C)))

(val test-tree (2Dtree test-points))
(check-expect (2Dpoint-value (nearest-point 11 11 test-tree)) 'A)
(check-expect (2Dpoint-value (nearest-point 100 100 test-tree)) 'C)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S143

For a more interesting test, we need more data.

E.2.3 Applying the 2D-tree: points of interest

The United States Geological Survey maintains a list of over two million geographic
names, or as they are usually called by commercial GPS units, “points of interest.”
The list is part of the U.S. Geographic Names Information System. Points of inter-
est are partitioned into over 60 different “feature classes” ranging from Airport to
Woods. In this section I use 2D-trees to find cities, towns, and city halls located
near various points of interest in New England. The software that comes with this
book includes lists of points of interest.

A geographic location is specified by its latitude and longitude. In the old days,
these quantities were measured in degrees, minutes, and seconds or arc. Today,
decimal degrees are widely used, and because µML provides only integers, I use
millionths of a degree, also known as “microdegrees.”
S143a. 〈gis.uml S138a〉+≡ ◁ S142d S143b ▷

(record deg ([microdegrees : int]))

To compute the difference between two angles, I subtract their microdegrees.
S143b. 〈gis.uml S138a〉+≡ ◁ S143a S143c ▷

(check-type deg-diff (deg deg -> deg))
(define deg-diff (d1 d2)
(make-deg (- (deg-microdegrees d1) (deg-microdegrees d2))))

A point of interest has a latitude, a longitude, and a name. Latitudes north of
the equator are positive; latitudes south of the equator are negative. Longitudes
east of Greenwich, England are positive; longitudes west of Greenwich, England
are negative.
S143c. 〈gis.uml S138a〉+≡ ◁ S143b S143d ▷

(record poi ([name : sym] [lat : deg] [lon : deg]))

Function easy-poi allows me to write the whole-number part and fractional
part of latitude and longitude separately. This way Iʼm less likely to mess up the
data entry.
S143d. 〈gis.uml S138a〉+≡ ◁ S143c S144a ▷

(check-type easy-poi (sym int int int int -> poi))
(define easy-poi (name lat-n lat-frac lon-n lon-frac)
(let ([degrees (lambda (whole frac) (make-deg (+ (* 1000000 whole) frac)))])
(make-poi name (degrees lat-n lat-frac) (degrees lon-n lon-frac))))

Am I ready to build a 2D-tree? Not yet. Microdegrees are accurate, but as
x and y coordinates for a 2D-tree, they wonʼt work, because of two problems:

• The closer we get to the Earths̓ poles, the closer together the lines of longi-
tude are. 500 microdegrees of longitude represents a shorter distance than
500 microdegrees of latitude. My Euclidean calculations of distance squared
would give wrong answers.

• If I square microdegrees, the resulting number wonʼt be representable as a
32-bit integer. My calculations would cause machine arithmetic to overflow.

To address the distance-calculation problem, I approximate the Earths̓ surface as
flat. The approximation is valid near a point, and the point I choose is the city of
Boston, Massachusetts, whose inhabitants call it “the hub of the universe.” Near

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S144

Boston, there are 111,080 meters in a degree of latitude and 82,418 meters in a de-
gree of longitude.
S144a. 〈gis.uml S138a〉+≡ ◁ S143d S144b ▷

(val boston (easy-poi 'City-of-Boston 42 332221 -71 -016432))
(val meters-in-degree-lat 111080)
(val meters-in-degree-lon 82418)

To address the arithmetic-overflow problem, I compute distances not to the
nearest meter, but to the nearest 30 meters.
S144b. 〈gis.uml S138a〉+≡ ◁ S144a S144c ▷

(val distance-unit-in-meters 30)

I can now define functions that convert microdegrees into distances that make
sense in a 2D-tree—as long as I stay aware of machine arithmetic. To convert mi-
crodegrees to meters, I could multiply by the number of meters in a degree, then
divide by a million. But arithmetic would overflow. So instead of dividing after the
multiplication, I divide each multiplicand by 1,000. And for better accuracy, I di-
vide using function /-round, which rounds toward the nearest integer, and which
is defined as follows:
S144c. 〈gis.uml S138a〉+≡ ◁ S144b S144d ▷

(define /-round (dividend divisor)
(/ (+ dividend (/ divisor 2)) divisor))

And finally, the conversion functions:
S144d. 〈gis.uml S138a〉+≡ ◁ S144c S144e ▷

(define distance-of-microdegrees (meters-in-degree microdegrees)
(let ([meters (* (/-round meters-in-degree 1000) (/-round microdegrees 1000))])
(/-round meters distance-unit-in-meters)))

(define distance-of-degrees-lat (d)
(distance-of-microdegrees meters-in-degree-lat (deg-microdegrees d)))

(define distance-of-degrees-lon (d)
(distance-of-microdegrees meters-in-degree-lon (deg-microdegrees d)))

Using these functions, we can convert a point of interest into a proper 2Dpoint
whosex andy coordinates represent distance from Boston in units ofdistance-unit-in-meters.
S144e. 〈gis.uml S138a〉+≡ ◁ S144d S144f ▷

(check-type 2Dpoint-of-poi (poi -> (2Dpoint poi)))
(define 2Dpoint-of-poi (p)
(let* ([delta-north (deg-diff (poi-lat p) (poi-lat boston))]

[delta-east (deg-diff (poi-lon p) (poi-lon boston))])
(make-2Dpoint (distance-of-degrees-lon delta-east)

(distance-of-degrees-lat delta-north)
p)))

To simplify my examples, I define nearest-to-poi, which finds the point of
interest nearest to some other point of interest.
S144f. 〈gis.uml S138a〉+≡ ◁ S144e S144g ▷

(check-type nearest-to-poi (forall ['a] (poi (2Dtree 'a) -> (2Dpoint 'a))))
(define nearest-to-poi (poi tree)
(case (2Dpoint-of-poi poi)
[(make-2Dpoint x y _) (nearest-point x y tree)]))

And here are some points of interest located in various New England states.
Pinnacle Rock is a glacial erratic that offers a nice view of the city of Boston. The
other points of interest listed here are all easily discoverable.
S144g. 〈gis.uml S138a〉+≡ ◁ S144f

(val pinnacle-rock (easy-poi 'Pinnacle-Rock 42 439467 -71 -078238))
(val gillette-stadium (easy-poi 'Gillette-Stadium 42 090900 -71 -264300))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S145

(val tufts (easy-poi 'Tufts-University 42 408222 -71 -116402))
(val mt-washington (easy-poi 'Mount-Washington 44 270500 -71 -303200))
(val the-breakers (easy-poi 'The-Breakers 41 469722 -71 -298611))
(val mark-twain-house (easy-poi 'Mark-Twain-House 41 767139 -72 -700500))

Here is the search shown in Figure E.2 on page S140, except that it uses 83 city
halls, not just the fourteen shown in the figure.
S145. 〈2D-trees transcript S145〉≡

-> (use gis.uml)
-> (use ne-city-halls.uml)
-> (val city-halls pois)
-> (val nearest-city-hall

(let ([t (2Dtree (map 2Dpoint-of-poi city-halls))])
(lambda (poi) (poi-name (2Dpoint-value (nearest-to-poi poi t))))))

nearest-city-hall : (poi -> sym)
-> (nearest-city-hall tufts)
Somerville-City-Hall/MA : sym

The city hall nearest Tufts is Somerville City Hall, but this search actually has to
check four city halls:

1. The first city hall searched is the one in the same region as Tufts: Somerville.

2. The boundary between Tufts and Woburn is closer than the Somerville City
Hall, so the next point searched is across the boundary: Woburn City Hall.
Somerville is closer.

3. The vertical boundary between the subtree for Woburn/Somerville and
the subtree for Melrose/Malden subtree is just barely closer to Tufts than
Somerville City Hall is. So the code also searches east of that boundary.

4. Tufts is below the Melrose/Malden boundary, so it finds Malden. But if you
extend that boundary line out to the west, youʼll see Malden is further away
from Tufts than the boundary is. So the code also looks above that boundary
and finds Melrose. Malden is closer.

5. Finally, Somerville is closer than Malden. Therefore there s̓ no need to look
in the east half of the tree (the one containing Boston, Chelsea, Revere,
Salem, and others).

My data set lists only 83 city halls, but the 2D-tree scales nicely to larger
searches. This book is also accompanied by a data set of over 1500 cities and towns
in New England You can easily find that Gillette Stadium is nearest to Foxborough,
The Breakers is nearest to Newport, and the Mark Twain House is nearest to Hart-
ford. These queries are answered instantly. Building the 2D-tree takes a few sec-
onds, if µML is built using the Moscow ML bytecode interpreter, or a quarter of a
second, if µML is built using the MLton optimizing compiler.

Task Time (milliseconds)
Moscow ML MLton

Infer types for code that builds list of pois 2,930 520
Convert 1527 pois to 2Dpoints 350 220
Build 2D-tree 4,650 435
Find nearest city 1 1

Much time is also spent in type inference; the simple data structures used in Chap-
ter 7 take time quadratic in the number of type variables. It is faster to store the
point-of-interest data as S-expressions, read the S-expressions, and convert each
S-expression to a poi.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S146

E.2.4 Exercises

Geometrical search trees

The next group of exercises generalize the 2D-tree search code in Section E.2.
You can implement other searches in two dimensions, the nearest-point search in
higher dimensions, and a combination.

1. Generalize the code in Section E.2 to write a function nearest-satisfying
that takes as arguments a search point (x, y), a predicate p?, and a 2D-tree t,
and returns the nearest point whose value satisfies p?, if any.
S146a. 〈exercise transcripts S146a〉≡ S146c ▷

-> (check-type nearest-point-satisfying
(forall ['a] (int int ('a -> bool) (2Dtree 'a) -> (option (2Dpoint 'a)))))

S146b. 〈answers S146b〉≡ S146d ▷

(use gis.uml)
(val hello 'HELLO)
(define nearest-point-satisfying (x y p? tree)
(letrec (〈definition of near-or-far-satisfying within letrec generated automatically〉)
(case tree
((POINT p) (if (p? (2Dpoint-value p)) (SOME p) NONE))
((HORIZ y-boundary below above)

(if (> y y-boundary)
(near-or-far-satisfying above below (square (- y y-boundary)))
(near-or-far-satisfying below above (square (- y y-boundary)))))

((VERT x-boundary left right)
(if (> x x-boundary)

(near-or-far-satisfying right left (square (- x x-boundary)))
(near-or-far-satisfying left right (square (- x x-boundary))))))))

2. Generalize the code in Section E.2 to write a function nearest-k-points,
which is like nearest-point except that it returns the nearestk points, where
k is an additional parameter.
S146c. 〈exercise transcripts S146a〉+≡ ◁ S146a S147a ▷

-> (check-type nearest-k-points
(forall ['a] (int int int (2Dtree 'a) -> (list (2Dpoint 'a)))))

S146d. 〈answers S146b〉+≡ ◁ S146b
(define nearest-k-points (x y k t)

(case t
((POINT p) (list1 p))
(_ (if (< k (+ x y)) '() '()))))

As in the original search algorithm, donʼt look across a boundary unless you
have to. Here are a few hints:

• If you find points, return them in a list with the closest point first. Then
when you have to look on both sides of a boundary, you can simply
merge the two lists and return the first k elements of the merged list.

• You might be asked for more points than you can supply. For example,
if you reach a single POINT but are asked for a number k > 0, the best
you can do is return a list containing just the one point you have.

• If youʼre asked for the k nearest points, you can find up to k on the near
side of the boundary, but on the far side of the boundary, you may not
have to look for so many—depending on how many points you find on
the near side, and where they are located, you might need only k − 1

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.2
Large µML

example: 2D-trees

S147

points from the far side, or 3 points, or 0 points, or really any number
from 0 to k inclusive.

• If youʼre asked for the nearest k points where k = 0, you donʼt have to
look at anything; you just return an empty list.

3. In this exercise you generalize the 2D-tree to three dimensions. In the first
parts of the exercise, you refactor the existing 2D-tree so that it still works in
only two dimensions, but it is ready to be generalized:

(a) Change the type of nearest-point to be

(forall ['a] ((2Dpoint unit) (2Dtree 'a) -> (2Dpoint 'a)))

(b) Introduce type coordinate using this definition:
S147a. 〈exercise transcripts S146a〉+≡ ◁ S146c S147b ▷

-> (implicit-data coordinate X Y)
coordinate :: *
X : coordinate
Y : coordinate

(c) Define functionproject : (coordinate -> ((2Dpoint 'a) -> int)).

(d) Change the representation of 2D-tree so that there is only one value
constructor for a split, and to distinguish the vertical split from the
horizontal split, that value constructor takes a parameter of type
coordinate:

(implicit-data ('a) 2D-tree
[POINT of (2Dpoint 'a)]
[SPLIT of coordinate int (2Dtree 'a) (2Dtree 'a)])

Now you can add the third dimension:

(e) Change the representation of 2Dpoint so that it includes a z coordinate.

(f) Add new value constructor Z to type coordinate, and update the
project function.

(g) Add a new record to the list all-coordinates. Change whatever else
must change in functions nearest-point and 2Dtree so they work with
three dimensions.

4. In this exercise, you build on Exercise 3 to generalize the 2D-tree to arbitrarily
many dimensions. Do Exercise 3 first, then complete the following parts.

(a) Change the definition of 2Dpoint so that a point stores a list of integer
coordinates.

(b) Define algebraic data type
S147b. 〈exercise transcripts S146a〉+≡ ◁ S147a

-> (implicit-data coordinate [C of int])

(c) Update function project so it uses the coordinate to index into the
point s̓ list of integers.

(d) Update your nearest-point function to work with the new representa-
tions.

(e) If youʼve completed Exercise 2, update your nearest-k-point function to
work with the new representations.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S148

(f) Define a function that given a number N and a list of N -dimensional
points, builds a suitable search tree. A good place to start is with a list
of coord-funs of length N .

If you complete this data structure, you can use it as part of a k-nearest-
neighbor classifier. Such a classifier is a simple machine-learning tool, but
still very effective on some problems, like classifying gestures based on a
photograph of the human body. And as long as the number of dimensions is
not too great, the search tree is reasonably efficient—it works well provided
the number of points being searched is much larger than 2N .

E.3 MORE EXAMPLES OF MOLECULE

POSSIBLY TO BECOME EXERCISES!

E.3.1 Bit sets

S148a. 〈bitset.mcl S148a〉≡
(module [Bitset : (exports [abstype t]

[empty : t]
[insert : (int t -> t)]
[inter : (t t -> t)]
[union : (t t -> t)]
[print : (t -> unit)]
[println : (t -> unit)])]

(type t int)
(val empty 0)
(define t insert ([i : t] [s : t]) (Int.lor s (Int.<< 1 i)))
(val inter Int.land)
(val union Int.lor)
(define bool nonzero? ([n : int]) (!= n 0))
(define unit print ([s : t])
(Char.print Char.left-curly)
(let ([i 0])
(while (< i 32)

(when (nonzero? (inter s (Int.<< 1 i)))
(Char.print Char.space)
(Int.print i))

(set i (+ i 1))))
(Char.print Char.space)
(Char.print Char.right-curly))

(define unit println ([s : t])
(print s)
(Char.print Char.newline))

)

E.3.2 Other

E.3.3 Sets of integers, using a stronger invariant

We represent a set of integers as a list with no repeated elements, just as in Sec-
tion 2.3.7 on page 106. But to improve the cost model, we add a representation
invariant: every list is sorted.
S148b. 〈int-set.clu S148b〉≡

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.3
More examples of

Molecule

S149

Creators

new Returns a fresh histogram, distinct from any other, that maps every in-
teger to a count of 0.

Observers

count-of (count-of i h)Returns the count associated with index i in histogramh.
println Prints an attractive diagram of a range of entries in the histogram.

The range includes all the indices that are associated with nonzero
counts.

Mutators

inc Calling (inc i h) mutates h to increase by 1 the count associated with
index i.

inc-by Calling (inc i k h) mutates h to increase by k the count associated with
index i.

Table E.3: Operations on histograms

(cluster int-set [exports [insert : (int int-set -> int-set)]
[member? : (int int-set -> bool)]
[union : (int-set int-set -> int-set)]
[elements : (int-set ->* int)]
〈other exported operations of cluster int-set (left as an exercise)〉]

(type rep int-list) ; invariant: members are strictly increasing
〈operations of cluster int-set S149a〉

)

The new invariant demands changes in some operations and enables changes in
others. For example, the insert operation must insert into a sorted list, without
duplicates, so it is almost but not exactly the same as the insert function defined in
chunk 103a. The member? operation does not have to change, but it can be changed
so that it doesnʼt necessarily inspect all the elements: if n is bigger than the first
element of the representation, then n is not in the set.

Where the new invariant really pays off is in the implementation of union.
To see the payoff, let s̓ start with a naïve implementation of union: we compute
the union of two sets nset and mset by inserting each element of nset into mset.
S149a. 〈operations of cluster int-set S149a〉≡ (S148b) S149b ▷

(define naive-union ([nset : int-set] [mset : int-set] -> int-set)
(for [(n : int)] (elements nset)

(set mset (insert n mset)))
(return mset))

This naïve implementation of union treats both nset and mset only as abstractions;
you can tell because it does not use unseal. Such an implementation is correct no
matter how sets are represented. But in the worst case, it takes quadratic time. But
both nset and mset are represented by sorted lists, and if we inspect both represen-
tations, we can implement set union using list merge, which takes linear time:
S149b. 〈operations of cluster int-set S149a〉+≡ (S148b) ◁ S149a S150a ▷

(define merge-lists ([ns : int-list] [ms : int-list] -> int-list)
(if (int-list$null? ns)
(return ms)
(if (int-list$null? ms)
(return ns)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S150

(begin
(val [n : int] (int-list$car ns))
(val [m : int] (int-list$car ms))
(if (= n m)
(return (int-list$cons n (merge-lists (int-list$cdr ns) (int-list$cdr ms))))
(if (< n m)
(return (int-list$cons n (merge-lists (int-list$cdr ns) ms)))
(return (int-list$cons m (merge-lists ns (int-list$cdr ms))))))))))

An optimized implementation of union inspects the representations of both nset
and mset, using unseal on both arguments.
S150a. 〈operations of cluster int-set S149a〉+≡ (S148b) ◁ S149b

(define optimized-union ([nset : int-set] [mset : int-set] -> int-set)
(return (seal (merge-lists (unseal nset) (unseal mset)))))

Completing the implementation of int-set and measuring the effect of the opti-
mized union operation is the subject of Exercise 46 on page 613.

E.3.4 Another interface: the histogram

NEED TO ORGANIZE ALL THE EXAMPLES:

• WHAT ARE WE DOING WITH INTERFACES?

• WHAT ARE WE DOING WITH GENERIC MODULES?

Here s̓ another example: the histogram. Given these interfaces, we can write
and typecheck client code that uses association lists and histograms. The same
interface can be used with many different clients.

A histogram, like an array, is a species of finite map from integers to values.
In a histogram, the value is always a natural number, intended to represent a thing
to be counted. The abstraction is mutable, and it offers the operations shown in
Table E.3.
S150b. 〈histogram.mcl S150b〉≡

(module-type HISTOGRAM
[exports [abstype t]

[new : (-> t)]
[inc : (int t -> unit)]
[inc-by : (int int t -> unit)]
[count-of : (int t -> int)]
[println : (t -> unit)]])

The histogram offers a few benefits over a simple array:

• There s̓ no need to worry about low and high bounds—when a histogram is
mutated, bounds are extended as needed.

• A count is incremented in a single operation, instead of a load-modify-store
sequence.

• The println function offers a simple but pleasant visualization of the con-
tents of a histogram.

I use histograms below to verify the cost model of a hash table.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S151

E.4 EXTENDED µSMALLTALK EXAMPLE: DISCRETE-EVENT SIMULATION

Having been introduced to theµSmalltalk language and its initial basis, weʼre ready
to tackle a more ambitious example. The example in this section is big enough that
you can see some interplay among classes and methods. This sort of interplay is
characteristic of object-oriented programs. In this example, we look at a problem
faced by our distinguished colleague Professor S.

Professor S s̓ students are training robots to help urban search-and-rescue
teams. For example, if firefighers cannot safely search a burning building, they
might send one of Professor S s̓ robots inside. Unfortunately, fireproof robots are
madly expensive, so Professor S s̓ lab has has only two robots, and his students
have to take turns. To make sure every student gets a turn, Professor S wants to
limit each student to at most t minutes on any given robot; after t minutes, another
student gets a turn. How should Professor S choose t? Specifically, what value of t
minimizes the time that the average student can expect to wait for a robot?

Professor S could experiment with different values of t in the robot lab, but the
average waiting time is also affected by the number of students in the lab and by
other conditions that are hard to reproduce, so it s̓ not clear what the results would
mean. And if some values of t are worse than others, the experiment is not fair
to the students who are in the lab while those values are in force. The alternative
we explore below is to write a program that simulates the lab—students arriving,
waiting for robots, and using robots—and run the simulation multiple times with
different values of t. Simulation has all sorts of advantages: it doesnʼt disrupt stu-
dents; it s̓ cheap enough to run many experiments; and the laboratory conditions
are totally controlled and reproducible. But there s̓ one huge caveat: we donʼt know
if the simulation models what would really happen. In this section, we donʼt worry
about realism; our goal is to learn Smalltalk.

In the robot lab, the interesting events happen at discrete points in time: a stu-
dent arrives and wants a robot; a student actually gets to use a robot; or because
t minutes have elapsed, a student has to relinquish a robot. This situation calls
for a discrete-event simulation. Discrete-event simulations are used for many prob-
lems, including such problems as evaluating plans for handling baggage at an air-
port, estimating traffic flow over a highway, or deciding what inventory to keep in
a warehouse.

Other kinds of simulation work with continuous variables, like the voltage of
electrons in a circuit or the density of molecules in the atmosphere. These are
continuous-event simulations, and the techniques used to implement them are very
different from those we explore below.

E.4.1 Designing discrete-event simulations

Smalltalk s̓ object-oriented style is a good fit for simulation. A full Smalltalk-80 sys-
tem includes tools for modeling, viewing, and controlling simulations. Using these
tools is so easy that even novice programmers can create interesting simulations.
In this section, I draw on these tools to create a discrete-event simulation that high-
lights object-oriented programming techniques.

• If an entity in the system is allowed to take actions, like grabbing a robot, it
is represented by a simulation object. In our example, each student is repre-
sented by a simulation object. A student takes such actions as asking for a
robot or relinquishing a robot.

• If an entity represents a finite supply of some good or service—like a robot,
a baggage cart, or a warehouse shelf—that entity is called a resource. The

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S152

simulation classes that come with Smalltalk-80 provide special support that
helps simulation objects acquire, release, or wait for resources. A resource
might be represented by a single object, but it s̓ also possible that a group of
identical resources can be represented by a single object. An object repre-
senting a resource keeps track of the state of that resource as the simulation
progresses. In our example, the only significant resource is the lab with its
two fireproof robots.

• The overall simulation is orchestrated by an object, called “the simulation,”
whose class inherits from Simulation:

– It keeps track of simulated time.

– It schedules and runs every simulated event, always knowing what ac-
tion is supposed to happen next.

– It responds to requests for resources, and if a resource isnʼt available,
it puts the requesting simulation object on a queue to wait.

– It keeps track of whatever information about the simulation is impor-
tant, so when the simulation is over, it can report conclusions. In our
example, the simulation tracks the amount of time students spend wait-
ing for robots.

As you walk through the design and implementation of the robot-lab simula-
tion, keep an eye out for two salient aspects of the object-oriented style: you will
see methods, like the Simulation instance methods, which are intended to be easy
to reuse; and you will also see that, unlike in procedural programming, the actions
needed to implement an algorithm tend to be “smeared out” over multiple methods
of multiple classes, making the algorithm a bit difficult to follow.

Figure E.4 sketches the protocol that I suggest for simulations. The protocol is
adapted from similar protocols in the Smalltalk-80 blue book (Goldberg and Robson
1983):

• The first three methods of a Simulation instance make it possible to start,
run, and end the simulation. A subclass typically adds extra initialization
and finalization to the startUp and finishUp methods.

• The enter: and exit: methods allow a subclass to keep track of which “ac-
tive” simulation objects are participating in the simulation.

• The time-nowmethod and scheduling methods allow all participants to know
the current time and to schedule future events.

• Resource methods are simulation-specific. They enable active objects to ac-
quire and release resources, and they should be provided by a subclass of
Simulation.

• Finally, the design assumes that only one simulation runs at a time. It is
stored in global variable ActiveSimulation.2

S152. 〈simulation classes S152〉≡ S154a ▷
(val ActiveSimulation nil)

2In Smalltalk-80, ActiveSimulation would be a class variable (page 711), not a global variable.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S153

Instance protocol for Simulation:

startUp Initialize the simulation, including scheduling at least one
event.

proceed Simulate the next event.
finishUp End the simulation and save (or print) the results.

enter: anObject Notify the receiver that a new object (the argument) has
entered the simulation.

exit: anObject Notify the receiver that the argument has left the
simulation.

time-now Answer the current simulated time
scheduleEvent:at: anEvent aTime

Schedule the event anEvent to occur at the given
simulated time. The anEvent object must respond to the
takeAction message, which is sent to it when the
scheduled time arrives.

scheduleEvent:after: anEvent aTimeInterval
Schedule the event to occur after the given (simulated)
time interval will have passed.

scheduleRecurringEvents:using: aClass aStream
Get a time interval from aStream by sending it the next
message, then schedule a new, anonymous event to occur
after that interval. When the new event occurs, create a
new simulation object by sending message new to aClass,
then repeat indefinitely. The effect is a series of recurring
events at time intervals given by aStream.

resource methods (Every subclass of simulation provides subclass-specific
methods that are used to acquire and release simulated
resources.)

Global variable used by Simulation:

ActiveSimulation Holds the value of the currently active Simulation
object.

Figure E.4: Partial instance protocol for class Simulation

Using this design, you can expect most of a simulation to be programmed with mes-
sages that fall into three categories:

• A message from a simulation object to the simulation. It notifies the simula-
tion of entry or exit, requests or releases a resource, schedules an event, or
asks about the current time.

• A message from the simulation to a simulation object. It grants access to a
resource or tells the simulation object to act. Granting access is simulation-
specific, but to tell a simulation object to act, every simulation sends the
takeAction message. This message is the only message to which all simu-
lation objects must respond.

• A simulation-specific message either from the simulation or from a simula-
tion object to a resource or to another passive entity. It tells the receiver to
change its state.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S154

Instance protocol for PriorityQueue:

isEmpty Answer True if and only if the receiver holds no
events.

at:put: aTime anEvent Add anEvent to the receiver, scheduling it to occur
at time aTime.

removeMin Provided the receiver is not empty, answer an
Association in which the value is an event that is
contained in the receiver and has minimal time,
and the key is the associated time.

Figure E.5: Protocol for class PriorityQueue

The rest of this section shows how to implement the Simulation class, how to im-
plement a RobotLabSimulation subclass, and how to implement the simulation
objects and resources that support the robot-lab simulation.

E.4.2 Implementing the Simulation class

The methods for scheduling and simulating events are common to all simulations
and should therefore be implemented just once, in the Simulation class. Several
methods are specialized by different subclasses, and simulation-specific resource
methods are implemented only in subclasses.

To implement the protocol in Figure E.4, we need only two instance variables:

• Variable nowholds the current simulated time. A simulation is free to use any
representation of time that answers the Magnitude protocol in Figure 10.17
on page 659. (A simulation needs only to know which of two times is smaller,
because the event with the smallest time is the one that occurs the soonest.)

• Variable eventQueue holds events that have not yet taken place, but are
scheduled to occur in the simulated future. The event queue may also hold
events that are scheduled to occur at time now.

S154a. 〈simulation classes S152〉+≡ ◁ S152 S156c ▷
(class Simulation

[subclass-of Object]
[ivars now eventQueue]
(method time-now () now)
〈more methods of class Simulation S154b〉

)

The main invariant of a simulation is that at each point in time, the state of the
objects in the simulation faithfully represents the state of the entities at the time
stored in now. The states and the clock change only when there s̓ an event. Events
that are planned to occur in the simulated future are stored in eventQueue, which is
a collection of events keyed by future time. The protocol for eventQueue is given in
Figure E.5, and its implementation is discussed further in Exercise 1 on page S167.

Initializing, finalizing, and stepping a simulation

Initializing a simulation initializes the two instance variables and the global vari-
able ActiveSimulation. To add initialization for its own private state, a subclass
defines its own startUp method, which should send (super startUp).
S154b. 〈more methods of class Simulation S154b〉≡ (S154a) S155a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S155

(method startUp ()
(set now 0)
(set eventQueue (PriorityQueue new))
((ActiveSimulation isNil) ifFalse:

{(self error: 'multiple-simulations-active-at-once)})
(set ActiveSimulation self)
self)

Finalizing the simulation resets ActiveSimulation to nil.
S155a. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S154b S155b ▷

(method finishUp ()
(set ActiveSimulation nil)
self)

The proceed method simulates the next event in the queue.
S155b. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S155a S155c ▷

(method proceed () [locals event]
(set event (eventQueue removeMin))
(set now (event key))
((event value) takeAction))

(This implementation is too simple-minded: it always sends removeMin to the
eventQueue object, but the client object that sends proceed canʼt know if removeMin
is safe. The Simulationprotocol should be enriched so that clients can call proceed
safely, as described in Exercise 7 on page S170.)

We define a method runUntil:, which runs events from the queue in order of
increasing time until there are no more events—or until a time limit is reached.
This is the method we use to run robot-lab simulations.
S155c. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S155b S155d ▷

(method runUntil: (timelimit)
(self startUp)
({(((eventQueue isEmpty) not) & (now <= timelimit))} whileTrue:

{(self proceed)})
(self finishUp)
self)

Tracking entry and exit of simulation objects

In a general simulation, the enter: and exit:methods donʼt do anything. To know
what needs to be done when a simulation object enters or exits the simulation,
we need a simulation-specific method. Such a method would be defined on a sub-
class of Simulation, but because a subclass is not required to do anything on entry
or exit, trivial implementations of enter: and exit: are provided here.
S155d. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S155c S155e ▷

(method enter: (anObject) nil)
(method exit: (anObject) nil)

Scheduling events

The fundamental scheduling operation is to schedule an event at a given time.
An example would be to tell the simulation, “schedule the lab to open at 3:00PM.”
We schedule an event by using the at:put: method of class PriorityQueue to add
the event to the event queue.
S155e. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S155d S156a ▷

(method scheduleEvent:at: (anEvent aTime)
(eventQueue at:put: aTime anEvent))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S156

It s̓ often convenient to schedule an event not at an absolute time, but at a time
that is relative to the current time. An example would be “schedule this student to
relinquish her robot at time t minutes from now.”
S156a. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S155e S156b ▷

(method scheduleEvent:after: (anEvent aTimeInterval)
(self scheduleEvent:at: anEvent (now + aTimeInterval)))

The most interesting scheduling method is one that schedules recurring events.
This method takes two arguments:

• An eventFactory provides an unlimited supply of events: to create a new
event, send message new to the factory. An eventFactory is typically (but
not always) a class.

• A timeStream provides a sequence of intervals that should elapse between
events. The next interval is obtained by sending the message next to a
timeStream. In a full Smalltalk-80 system, times in a stream are computed
using a random-number generator. For example, “random arrival times” are
normally modeled using a random-number generator that uses a Poisson dis-
tribution.

To implement recurring events, we define a new class of simulation object which
is called RecurringEvents. An object of class RecurringEvents is initialized with
an eventFactory and a timeStream.
S156b. 〈more methods of class Simulation S154b〉+≡ (S154a) ◁ S156a

(method scheduleRecurringEvents:using: (eventFactory timeStream)
((RecurringEvents new:atNextTimeFrom: eventFactory timeStream) scheduleNextEvent))

An object of class RecurringEvents represents an infinite stream of future
events. Every object in this class answers the scheduleNextEvent message, for
which the protocol requires the receiver to remove the next event from itself and
schedule it.

The implementation is subtle. When the object receives scheduleNextEvent,
it pulls the next time from the timeStream, but it schedules itself as a proxy for
the real event that is supposed to occur at the next time. Then, when the sched-
uled event occurs, the proxy receives the takeAction message, and it responds by
using the factory to create the real event that is supposed to occur at this time.
This implementation ensures that the new message is sent to a factory object at the
appropriate simulated time. Finally, takeAction finishes by scheduling the next
recurring event. All this action is easier to code than to explain: the two methods
together need only 5 lines of µSmalltalk.
S156c. 〈simulation classes S152〉+≡ ◁ S154a S157 ▷

(class RecurringEvents [subclass-of Object]
; represents a stream of recurring events, each created from
; 'factory' and occurring at 'times'
[ivars factory times]
(method scheduleNextEvent ()

(ActiveSimulation scheduleEvent:after: self (times next)))
(method takeAction ()

(factory new)
(self scheduleNextEvent))

(class-method new:atNextTimeFrom: (eventFactory timeStream)
((super new) init:with: eventFactory timeStream))

(method init:with: (f s) ; private
(set factory f)
(set times s)
self)

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S157

The other methods (class method new:atNextTimeFrom: and instance method
init:with:) implement the common pattern, first shown in Section 10.1, in which
we create an object by sending a message to a class method, which then uses an
instance method to initialize the new object.

E.4.3 Implementing the robot-lab simulation

The implementation of a robot-lab simulation follows the plan sketched above:

• A single object of class RobotLabSimulation (a subclass of Simulation) or-
chestrates the simulation and keeps track of its state.

• Every simulation object that acts in the system is a student, each one of which
is represented by an instance of class Student.

• The only resource we need to simulate is the lab itself, with its two robots.
The lab is simulated by a single object of class Lab. The queue of students who
are waiting to use the resource is maintained by the RobotLabSimulation.

The Lab class is the simplest, and we start there. Then RobotLabSimulation, and
finally the most complex class, Student.

As you read the code, keep in mind the distinction between an event s̓ being
scheduled and that event s̓ actually occurring. When an event is scheduled, it is sim-
ply added to the eventQueue; nothing else happens. Scheduling is the job of the
Simulation superclass s̓ scheduling methods. When an event occurs (when a simu-
lation object receives takeAction or a factory object receives new), things happen,
and the state of the simulation can change. Changing the state is the job of the
enter: and exit: methods as well as the subclass-specific resource methods.

The class Lab

This class represents the state of the lab as a pair of Booleans, each of which says
if a robot is available. Its protocol allows clients to check if there is a free robot
(hasARobot?), get a robot (takeARobot), and give up a robot (releaseRobot:). All
these methods are called when events occur, not when they are scheduled.
S157. 〈simulation classes S152〉+≡ ◁ S156c S158a ▷

(class Lab
[subclass-of Object]
[ivars robot1free robot2free]
(class-method new () ((super new) initLab))
(method initLab () ; private

(set robot1free true)
(set robot2free true)
self)

(method hasARobot? () (robot1free | robot2free))
(method takeARobot ()

(robot1free ifTrue:ifFalse:
{(set robot1free false) 1}
{(set robot2free false) 2}))

(method releaseRobot: (t)
((t = 1) ifTrue:ifFalse: {(set robot1free true)} {(set robot2free true)}))

)

The private initLab method ensures that in a new lab, both robots are available.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S158

The class RobotLabSimulation

The class RobotLabSimulationmaintains the state associated with a robot-lab sim-
ulation. A simulation carries a lot of internal state:
S158a. 〈simulation classes S152〉+≡ ◁ S157 S159e ▷

(class RobotLabSimulation
[subclass-of Simulation]
[ivars time-limit ; time limit for using one robot
lab ; current state of the lab
robot-queue ; the line of students waiting for a robot
students-entered ; the number of students who have entered the lab
students-exited ; the number of students who have finished and left
timeWaiting ; total time spent waiting in line by students

; who have finished
student-factory ; class used to create a new student when one enters
interarrival-times ; stream of times between student entries
]
〈methods of class RobotLabSimulation S158b〉

)

Time limit t governs how long a student may use a robot while other students
are waiting. But what happens in the lab is affected by more than just t. It also
matters how many students there are, when students arrive at the lab, and how
much time with a robot each student needs. All this information must be provided
to the RobotLabSimulation object.

The number of students and the times at which they arrive are built into a single
abstraction: a stream of interarrival times. (An interarrival time is the amount of
time that elapses between the arrival of one student and the next.) The time needed
by a student is built into a factory object that produces new students on demand.
To create a simulation, then, we pass three parameters: a time limit t, a student
factory s, and a stream of interarrival times as.
S158b. 〈methods of class RobotLabSimulation S158b〉≡ (S158a) S158c ▷

(class-method withLimit:student:arrivals: (t s as)
((super new) init-t:s:as: t s as))

(method init-t:s:as: (t s as) ; private method
(set time-limit t)
(set student-factory s)
(set interarrival-times as)
self)

The rest of the instance variables are initialized when the simulation is started by
the startUp method. This method also initializes the superclass and schedules the
(recurring) student arrivals.
S158c. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S158b S159a ▷

(method startUp ()
(set lab (Lab new))
(set students-entered 0)
(set students-exited 0)
(set timeWaiting 0)
(set robot-queue (Queue new))
(super startUp)
(self scheduleRecurringEvents:using: student-factory interarrival-times)
self)

Finally, to prevent anybody from accidentally creating a simulation without ini-
tializing time-limit, student-factory, and interarrival-times, I redefine class
method new:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S159

S159a. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S158c S159b ▷

(class-method new () (self error: 'robot-lab-simulation-needs-arguments))

Our finishUpmethod reports on the results of the simulation. We print just the
information we care about: the number of students who have finished, the num-
ber left in line, and the total and average times spent waiting by the students who
finished.
S159b. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S159a S159c ▷

(method finishUp ()
('Num-finished= print) (students-exited print)
(self printcomma)
('left-waiting= print) ((robot-queue size) print)
(self printcomma)
('total-time-waiting= print) (timeWaiting print)
(self printcomma)
('average-wait= print) ((timeWaiting div: students-exited) println)
(super finishUp))

(method printcomma () ; private
(', print) (space print))

At entry and exit, the simulation updates its internal statistics:
S159c. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S159b S159d ▷

(method enter: (aStudent)
(set students-entered (1 + students-entered)))

(method exit: (aStudent)
(set students-exited (1 + students-exited))
(set timeWaiting (timeWaiting + (aStudent timeWaiting))))

The enter: and exit: methods are called when events occur, not when they are
scheduled. The exit: method relies on the Student object to be able to tell us how
much time it has spent waiting in the queue.

The robot-lab simulation defines two resource methods: the requestRobotFor:
method requests a robot for a student, and the releaseRobot: method gives it up.
S159d. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S159c S160a ▷

(method requestRobotFor: (aStudent)
((lab hasARobot?) ifTrue:ifFalse:

{(aStudent beGrantedRobot: (lab takeARobot))}
{(robot-queue addLast: aStudent)}))

(method releaseRobot: (aRobot)
(lab releaseRobot: aRobot)
((robot-queue isEmpty) ifFalse:

{((robot-queue removeFirst) beGrantedRobot: (lab takeARobot))}))

These resource methods interact with a queue. If a student requests a robot when no
robot is available, that student is put on the queue. And if, when a student releases
a robot, there are other students waiting, the student who has been waiting the
longest is removed from the queue and is granted use of the robot.

The robot queue is similar to the purely functional queue described in Sec-
tion 2.6. But as is typical for Smalltalk, the queue is not a purely functional data
structure; it is mutable. The operations we need from a queue (add at end and re-
move from beginning) are already provided by Smalltalk lists. But to help with de-
bugging, I define a Queue subclass, which prints the list using the keyword Queue.
S159e. 〈simulation classes S152〉+≡ ◁ S158a S160b ▷

(class Queue
[subclass-of List]

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S160

Instance protocol for Student:

takeAction Simulate whatever action is appropriate to the
receiver s̓ current state.

beGrantedRobot: aRobot Change the receiver s̓ internal state to note that it
now has a robot, and schedule a time at which to
give up the robot.

needsRobot? Answer whether the receiver still needs a robot.
timeWaiting Answer the total amount of time the receiver has

spent waiting for a robot.

Private methods for Student:

timeNeeded This message is sent once, when an instance is created.
The receiver answers the total amount of time it needs
with a robot.

relinquishRobot This method is sent when the receiver is using a robot,
and time has arrived for the receiver to stop. In response,
the receiver takes some action appropriate to its needs:
if it is done with its work, it exits the simulation;
otherwise it asks for more robot time.

Class protocol for Student:

new The class creates a new Student whose status is 'awaiting-robot, and
the Student immediately enters the active simulation and requests a
robot from it.

Figure E.6: Protocol for Student

Finally, the robot-simulation class exposes two public methods that make it pos-
sible for students to observe some of its state. The time-limit method makes it
possible for a Student object to discover the time limit t, so it can relinquish its
robot when the time limit expires. The students-entered method makes it easy to
assign each Student object a unique number when it is created.
S160a. 〈methods of class RobotLabSimulation S158b〉+≡ (S158a) ◁ S159d

(method time-limit () time-limit)
(method students-entered () students-entered)

The class Student

In the robot-lab simulation, the active agents, also known as the simulation objects,
are students. Each of these objects represents an individual who enters the lab,
may wait in line, may use a robot, and so on. In the simulation, a student can be
in one of four states: waiting for a robot, using robot 1, using robot 2, or finished.
A diagram of these states, and of the messages that accompany transitions between
them, is shown in Figure E.7.

The Student class represents a student by six instance variables.
S160b. 〈simulation classes S152〉+≡ ◁ S159e S163d ▷

(class Student
[subclass-of Object]
[ivars number ; uniquely identifies this student
status ; 'awaiting-robot, 'finished, or a robot number
timeNeeded ; total work time this student needs
timeStillNeeded ; time remaining for this student

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S161

'awaiting-robotstart

1 2

'finished

requestRobotFor:

beGrantedRobot: 1 beGrantedRobot: 2

relinquishRobotrelinquishRobot

relinquishRobot

Figure E.7: State-transition diagram for a Student

Value State

'awaiting-robot Waiting for a robot (simulation will call beGrantedRobot:)
1 Using robot 1 (the next scheduled event is to release the robot)
2 Using robot 2 (the next scheduled event is to release the robot)
'finished Finished (no more events will be scheduled for this student)

Figure E.8: Representation of the states in instance variable status

entryTime ; time at which this student enters the simulation
exitTime ; time at which this student exits the simulation
]
(method print () ('<Student print) (space print) (number print) ('> print))
〈other methods of class Student S162a〉

)

Here are some notes on the use of these instance variables:

• The status value indicates what the student is doing now, and also what it
may do when it is next asked to do something via the takeAction method.
The values are shown in Figure E.8, and they correspond to the oval states in
Figure E.7.

• Variable timeNeeded holds total amount of time the student needs with the
robot in order to finish his or her lab work. Variable timeStillNeeded holds
the amount of time left after whatever time the student has already spent with
the robot. Our simulation assumes that having the robot time broken into
chunks doesnʼt affect the amount of time needed. In practice this assumption
is probably false.

• Variables entryTime and exitTime provide an easy way to compute the total
time the student spent in the lab. The difference between the total time and
timeNeeded is the time spent waiting, which is the data weʼre trying to gather.
The data is provided to the simulation by the timeWaiting method.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S162

S162a. 〈other methods of class Student S162a〉≡ (S160b) S162b ▷

(method timeWaiting ()
(exitTime - (entryTime + timeNeeded)))

To create a Student object, we use the classic pattern we have seen in classes
Picture and Shape: a class method creates the instance, then executes a private
method to initialize the object. Initialization is mostly straightforward: set the in-
stance variables, enter the simulation, and ask for a robot. But there s̓ a little some-
thing extra going on with timeNeeded:
S162b. 〈other methods of class Student S162a〉+≡ (S160b) ◁ S162a S162c ▷

(method timeNeeded () (self subclassResponsibility))
(class-method new () ((super new) init))
(method init () ; private
(set number (1 + (ActiveSimulation students-entered)))
(set status 'awaiting-robot)
(set timeNeeded (self timeNeeded))
(set timeStillNeeded timeNeeded)
(set entryTime (ActiveSimulation time-now))
(ActiveSimulation enter: self)
(ActiveSimulation requestRobotFor: self)
self)

The value ofinstance variable timeNeeded is obtained by sending the timeNeeded
message to self. What s̓ going on here? My design uses different subclasses of
Student to represent students who have different needs for the robot. By delegat-
ing the knowledge of the need to a subclass, I make it easy to run simulations with
students who have different needs.

After it requests a robot, a Student cannot do anything it is told—it will receive
a takeAction message from the RobotLabSimulation. Its action depends on its
status.
S162c. 〈other methods of class Student S162a〉+≡ (S160b) ◁ S162b S163a ▷

(method takeAction ()
((status = 'awaiting-robot) ifTrue:ifFalse:

{(ActiveSimulation requestRobotFor: self)}
{(self relinquishRobot)}))

A student who needs a robot asks for one. A student who doesnʼt need a robot must
already have one. That student should give up the robot, by sending himself the
relinquishRobot message.

Relinquishing a robot always returns the robot to the active simulation, by send-
ing the releaseRobot: message. The rest of the action depends on the student s̓
needs.

• If he needs more time, he puts himself in the 'awaiting-robot state, and
he immediately requests the robot again. (Heʼll either wait in the queue,
or in the special case where nobody else is waiting, heʼll be granted the
robot immediately. Because sending requestRobotFor: might result in an
immediate message of beGrantedRobot, it s̓ crucial that status be set to
'awaiting-robot before requestRobotFor: is sent. Otherwise, the simu-
lation might get into an inconsistent state in which the Student has been
granted a robot but doesnʼt know it.)

• If the student has finished, he notes the current time as the exitTime from
the simulation, and then he exits the simulation. Again, order of evaluation
is crucial: sending exit: will result in the simulation sending timeWaiting,
and if exitTime has not been set, a run-time error will occur.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S163

These choices are shown graphically in Figure E.7 by the two different arrows out
of states 1 and 2, both labeled relinquishRobot.
S163a. 〈other methods of class Student S162a〉+≡ (S160b) ◁ S162c S163b ▷

(method relinquishRobot ()
(ActiveSimulation releaseRobot: status)
((self needsRobot?) ifTrue:ifFalse:

{(set status 'awaiting-robot)
(ActiveSimulation requestRobotFor: self)}
{(set status 'finished)
(set exitTime (ActiveSimulation time-now))
(ActiveSimulation exit: self)}))

A student needs a robot if the time still needed is nonzero.
S163b. 〈other methods of class Student S162a〉+≡ (S160b) ◁ S163a S163c ▷

(method needsRobot? () (timeStillNeeded > 0))

The last remaining action in the Student class shows what happens when a
student is granted use of a robot. He or she keeps the robot for as long as needed, or
for the time limit t, whichever is smaller. The beGrantedRobot: method saves this
time interval in the local variable time-to-use. The Student object then adjusts
its internal timeStillNeeded, changes its status, and schedules itself on the event
queue. When the scheduled event arrives, the student s̓ takeAction method will
relinquish the robot.
S163c. 〈other methods of class Student S162a〉+≡ (S160b) ◁ S163b

(method beGrantedRobot: (aRobot) [locals time-to-use]
(set time-to-use (timeStillNeeded min: (ActiveSimulation time-limit)))
(set timeStillNeeded (timeStillNeeded - time-to-use))
(set status aRobot)
(ActiveSimulation scheduleEvent:after: self time-to-use))

E.4.4 Running robot-lab simulations

To create a robot-lab simulation, we need a time limit, a student class, and a stream
of interarrival times. We can then run the simulation for any given number of min-
utes. In a serious simulation, we would put a lot of effort into the classes that repre-
sent studentsʼ needs and arrival times. We would study how real students behave,
create a probabilistic model, and code the model in Smalltalk. But studies are ex-
pensive, and force-feeding you a lot of probability and statistics would not help you
learn about object-oriented techniques for implementing simulations. So Iʼve cho-
sen simplicity over realism; I make assumptions that oversimplify what happens
in the real robot lab.

Our first simplifying assumption is that every student needs two hours of robot
time, which we measure in minutes:
S163d. 〈simulation classes S152〉+≡ ◁ S160b S164a ▷

(class Student120 [subclass-of Student] ; a student needing 120 minutes of robot time
(method timeNeeded () 120)

)

Our second simplifying assumption is that we have 20 students, and they all
pour into the lab the moment it opens (i.e., when the simulation starts). We need to
embody this assumption as an infinite stream of interarrival times. In other words,
we need an object which, when it is sent the next message, will answer 0. But only
20 times! After responding 20 times with 0, the object should respond to future

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S164

next messages with a very large time—one large enough to exceed the duration of
any reasonable simulation. The object will be an instance of class TwentyAtZero:
S164a. 〈simulation classes S152〉+≡ ◁ S163d S164c ▷

(class TwentyAtZero [subclass-of Object] ; Twenty arrivals at time zero
[ivars num-arrived]
(class-method new () ((super new) init))
(method init () (set num-arrived 0) self)
(method next ()

((num-arrived = 20) ifTrue:ifFalse:
{99999}
{(set num-arrived (1 + num-arrived))
0}))

)

We use these classes, plus our implementation of PriorityQueue from Exer-
cise 1, to create a simulation sim30. We then run the simulation for 20 simulated
hours:
S164b. 〈simulation transcript S164b〉≡ S165b ▷

-> (use pqueue.smt) ; implementation of class PriorityQueue
-> (use sim.smt) ; implementations of the simulation classes
-> (val sim30 (RobotLabSimulation withLimit:student:arrivals: 30 Student120

(TwentyAtZero new)))
-> (sim30 runUntil: 1200)
Num-finished=20, left-waiting=0, total-time-waiting=18900, average-wait=945
<RobotLabSimulation>

The robot lab was open long enough to serve all 20 students, and they all fin-
ished. But the 30-minute time limit lead to long waits: the average student waits
for 945 minutes, spending nearly eight times as much time in line as working with
a robot. The results of all four runs are as follows:

Time Students Students left Average
limit t served waiting wait time

30 20 0 945
60 20 0 810
90 20 0 945

120 20 0 540

If we want to minimize average waiting time, we do best to let each student monop-
olize a robot for a full two hours. This policy may not be fair, but it s̓ efficient.

What if not all students are alike? Let s̓ assume that only half the students need
two hours each. The other half are accomplished roboticists and can finish their
work in half an hour. Every time we create a new Student, weʼll assume that the
time needed by the new Student is 150 minutes minus the time needed by the pre-
vious student. That works out to Students who alternate between needing 120 min-
utes and 30 minutes.
S164c. 〈simulation classes S152〉+≡ ◁ S164a S165a ▷

(val last-student-needed 30) ; time needed by last created AlternatingStudent
(class AlternatingStudent

[subclass-of Student]
(method timeNeeded ()

(set last-student-needed (150 - last-student-needed))
last-student-needed)

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S165

In Smalltalk-80 we would store last-student-needed in a class variable, which
would be shared among all instances of AlternatingStudent.

Let s̓ also assume that the students know that there are only two robots, so they
donʼt all crowd into the lab when it opens. Instead, they arrive every 35 minutes.
And to keep the implementation simple, we wonʼt cap the number of students at 20;
instead, we assume that as long as the lab is open, students keep coming.

An object of class EveryNMinutes always returns the same interarrival time n,
which is passed as a parameter to class method new:.
S165a. 〈simulation classes S152〉+≡ ◁ S164c

(class EveryNMinutes
[subclass-of Object]
[ivars interval]
(class-method new: (n) ((super new) init: n))
(method init: (n) (set interval n) self)
(method next () interval)

)

To make these new simulations easier to run, we create an auxiliary helper class
AlternatingLabSim. It s̓ a subclass of RobotLabSimulation, and it has an extra
class method which knows to use AlternatingStudent every 35 minutes. Again,
we run it four times:
S165b. 〈simulation transcript S164b〉+≡ ◁ S164b

-> (class AlternatingLabSim
[subclass-of RobotLabSimulation]
(class-method runWithLimit: (n)

((super withLimit:student:arrivals: n AlternatingStudent
(EveryNMinutes new: 35)) runUntil:

1200))
)

-> (AlternatingLabSim runWithLimit: 30)
Num-finished=30, left-waiting=2, total-time-waiting=1095, average-wait=36
<AlternatingLabSim>
-> (AlternatingLabSim runWithLimit: 60)
Num-finished=30, left-waiting=2, total-time-waiting=1235, average-wait=41
<AlternatingLabSim>
-> (AlternatingLabSim runWithLimit: 90)
Num-finished=29, left-waiting=3, total-time-waiting=1190, average-wait=41
<AlternatingLabSim>
-> (AlternatingLabSim runWithLimit: 120)
Num-finished=30, left-waiting=2, total-time-waiting=1120, average-wait=37
<AlternatingLabSim>

The new results are:

Time Students Students left Average
limit t served waiting wait time

30 30 2 36
60 30 2 41
90 29 3 41

120 30 2 37

The glacial wait times have been eliminated, and with these different students,
there s̓ no time limit t that is clearly superior. Both the 30-minute “rapid turnover”
and 120-minute “hold for two hours” policies appear about 12% better than other
limits, but because the simulation is so unrealistic, we shouldnʼt draw any conclu-
sions.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S166

E.4.5 Summary and analysis

Our simulation omits too many details. For example, a real student who enters
the lab and finds a long line may balk, i.e., he may leave and try again later. We
donʼt consider the cost of interruptions; a student whose work is broken into sev-
eral sessions may need more time with the robots.3 “Average time waiting” is not
a definitive measure for comparing time limits, because it values everyone s̓ time
equally. But Professor S might prefer a policy under which students who need less
time donʼt have to wait as long as students who need more time.

Most importantly, our simulations make bogus assumptions about needs and
about arrival times—and these assumptions probably have a decisive effect on the
results. We might build into the simulation a list of needs and arrival times obtained
by observing real students, or we might simply invent a probabilistic model that we
believe better reflects the needs of real students, then generate students randomly
from the model.

Many of the problems enumerated above can be addressed by making modest
changes to the simulation code. Suggestions for such changes appear in Exercise 3.

Although our simulation does not accurately model real students working in
real labs, it does demonstrate a good way to organize an object-oriented simulation.
To understand the organization deeply, you will need to do some exercises. But we
can jump-start your understanding by looking at the organization through the lens
of a single computation: the algorithm executed when a new student enters the lab.
In a typical procedural language like C or Impcore, we might write a single “new
student” procedure that does this:

• Allocate memory for the student and initialize its fields. Increment the num-
ber of students in the simulation. Finally check to see if a robot is available.
If a robot is available, assign it to the student and add a “robot time expires”
event to the event queue. If no robot is available, put the student on the queue
for the robot.

Let s̓ contrast this single “new student” procedure with the way the same computa-
tion is done in the Smalltalk code:

1. An object of class RecurringEvents sends a new message to its local factory,
which is the class object Student120.

2. The new message is dispatched to class Student, which sends (super new),
which is dispatched to Object. Space is allocated for the object and its in-
stance variables. The new method in class Student then sends init to the
new object.

3. The init method on class Student initializes the instance variables, which
includes sending timeNeeded to self, which dispatches on the Student120
class, answering 120. The init method then sends enter: to the active simu-
lation.

4. The enter: method on class RobotLabSimulation increments the number
of students in the simulation.

5. The init method on class Student finishes by sending requestRobotFor: to
the active simulation.

3It s̓ also possible that students who are interrupted spend more time thinking, after which they may
need to spend less time fiddling with robots.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S167

6. The requestRobotFor: method on class RobotLabSimulation checks to see
if a robot is available. If a robot is available, it notes that the robot is no longer
free, then sends beGrantedRobot: to the student; otherwise it adds the stu-
dent to the robot queue.

7. The beGrantedRobot: method on class Student notes that the student is us-
ing the robot, calculates a time-to-use, then sends scheduleEvent:after:
to the active simulation.

8. ThescheduleEvent:after:method dispatches to the superclassSimulation,
which in turn dispatches to scheduleEvent:at:, which finally puts the
“robot time expires” event on the event queue.

This example illustrates what s̓ hard about object-oriented programming: the al-
gorithm, which the procedural programmer thinks of as one simple sequence of
actions, ends up being “smeared out” over nine methods defined on four classes.
But because the pieces of the algorithm are distributed over four classes, it is much
easier to reuse the pieces—and it is easy, via inheritance, to create variants of the
classes, such as students with different behaviors. Learning to create this sort of
design—though difficult—is the key to becoming a productive object-oriented pro-
grammer.

E.4.6 Robot-lab exercises

Exercises 3 to 7 invite you to explore discrete-event simulation in more depth. Ex-
ercise 3 suggests a number of ways to make the robot-lab simulation (Section E.4)
more realistic. Exercise 4 asks you to improve the resource-handling code so that
it can be written once and used for many simulations. Exercise 5 asks you to de-
velop better ways of generating streams of events. Exercise 6 asks you to create
new Student objects using a factory object rather than a class. Finally, Exercise 7
asks you to repair a defect in the design of the Simulation class.

The next group of problems build on the discrete-event simulation of the robot
lab, which is described in Section E.4 on page S151.

1. The discrete-event simulation requires a priority queue, whose protocol is
given in Figure E.5 on page S154. Use the variable-size arrays from Exer-
cise 23 on page 728 to implement class PriorityQueue:

(a) As your representation, use a variable-size array that holds a sequence
of Associations. In each Association, the value represents an event,
and the key represents the time at which the event is scheduled to occur.

(b) Maintain the invariant that the array is sorted by event time. You
can then implement removeMin using remlo, and you can implement
at:put: by using addhi: and then sifting down the new element into
its new position in the array.

(c) Prove that this implementation takes constant time for removeMin and
O(n) time for at:put:, where n is the number of elements in the
queue.

2. If weʼre implementing a priority queue, we can do better than O(n) time
for insertion. You can implement a faster algorithm if you store the queue s̓
elements in an array which is indexed from 1 to n and which satisfies the
following invariant:

∀k.a[k] ≤ a[2k] ∧ a[k] ≤ a[2k + 1],

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S168

whenever 2k ≤ n and 2k + 1 ≤ n.

(a) Prove that the invariant implies that a[1] is the smallest element of the
array.

(b) Prove that removing the last element maintains the invariant.

(c) If the first element is replaced by an arbitrary element, the invariant
can be re-established by the following procedure:

let k = 1
while (2k ≤ n and a[k] > a[2k]) or (2k + 1 ≤ n and a[k] >
a[2k + 1]) do

swap a[k] with the smaller of a[2k] and a[2k + 1]
replace k with 2k or 2k + 1, whichever was used to swap

If an arbitrary element is added at the end, the invariant can be estab-
lished by similar procedure involving repeated swapping with a[bk2 c].

(d) Use these facts to implement a priority queue. You can use the extensi-
ble arrays from Exercise 23, or you can implement a simpler extensible
array that grows and shrinks only at the right-hand side.

(e) Measure the effect on simulation time.

3. There are a number of ways we could improve the robot-lab simulation.

(a) Professor S gets a big grant and buys three new robots, increasing the
number in the lab to 5. Reimplement the Lab class so it can easily rep-
resent a lab containing 5 robots. Make sure that when robots wear out
or future robots are acquired, the code will be easy to update. (Hint:
the initial basis includes class Set.)

(b) Define a new simulation VerboseRobotLabSimulation, which prints a
message when a student leaves the lab. The message should identify
the student, the time of arrival, and the time of departure. Donʼt touch
any existing code. Remember super.

(c) Modify the model to allow for balking: assume that if a student arrives
and finds more than five other students in line, the student leaves im-
mediately. And account for time lost to interruptions: if a student has
to relinquish a robot before having finished, that student now needs
fifteen more minutes.

(d) When a student finishes, compute his or her time-waiting ratio: total
time spent in the lab divided by time spent using robots. (To represent
the ratio, use Fraction or Float.) At the end of a simulation, report
on the largest time-waiting ratio suffered during that simulation. As a
measure of quality, how does time-waiting ratio compare with average
waiting time? Do they agree on the best policy?
Solve this problem without modifying existing code—just define new
subclasses.

(e) Student arrivals should be random. A process of random arrivals occur-
ring at a fixed rate is called a Poisson process. In a Poisson process, the
probability density function for interarrival times ∆t is an exponential
e−λ∆t, where λ is the arrival rate measured in students per minute.
If you have a way of generating random floating-point numbers U over
the unit interval [0.0, 1.0], you can compute a suitably distributed ∆t
by using the equation

∆t =
− lnU

λ
.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§E.4
Extended
µSmalltalk

example: Discrete
event simulation

S169

Implement a PoissonEveryNMinutes class which uses random num-
bers to deliver random interarrival times with an expected rate of 1

N
students per minute. To compute the natural logarithm in µSmalltalk
you can either use an approximation method suited to computing the
log of a number between 0 and 1, or you can modify the interpreter to
add a primitive logarithm based on the Standard ML function Math.ln,
which operates on floating-point numbers.

4. In the discrete-event simulation, robots are fungible. That is, one robot is as
good as any other robot, and as long as a Studentobject gets a robot, it doesnʼt
matter which one. Simulations turn out to be full of fungible resources: ex-
amples include luggage carts, Boeing 747s, gallons of gasoline, and twenty-
dollar bills. There is no reason that every new simulation class should have
to implement code to manage fungible resources—it should be done once in
the superclass.

Design and implement methods on class Simulation that allow simulation
objects to manage arbitrary collections of named, fungible resources. You
might consider some of the following methods:

• A method that requests a single resource (or N units of resource) by
name.

• A method that returns resources.

• A method that makes a resource name known to the simulation. At-
tempts to request or return resources with unknown names should
cause run-time errors.

• Methods that tell the simulation to create or destroy resources.

In addition, you will have to expand the protocol for simulation objects so
that any simulation object can be granted resources by name.

Your implementation should generalize the code in the robot-lab simulation:
if a simulation object requests an available resource, the request should be
granted right away; if a simulation object requests an unavailable resource,
the object should be put onto a queue associated with the resource.

To check your work, you can reimplement the robot-lab simulation using
your new methods.

5. In the discrete-event simulation, the implementation of streams should of-
fend you: there is no composition and no reuse. Design and implement a
library of stream classes that offer the following functionality:

(a) Implement a superclass Stream that includes the collection methods
select:, reject:, and collect:. Method next should be a subclass
responsibility.

(b) Implement a subclass stream s in which something occurs everynmin-
utes. That is, sending next always answers n.

(c) Given a stream s and a limit N , produce a new stream s′ that such that
repeatedly sending next produces the first N elements of s and after-
ward answers only nil.

(d) Given two streams s1 and s2, produce a new stream s such that repeat-
edly sending next to s produces first all the elements of s1, followed by
all the elements of s2.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Extended
programming

examplesE
S170

(e) Given two streams s1 and s2, produce a new stream s such that repeat-
edly sending next to s produces alternating elements of s1 and s2 (that
is, s1 and s2 “take turns”).

(f) Use your library to reimplement the streams used in the discrete-event
simulation.

6. In the discrete-event simulation, when we have a new model of studentsʼ
needs, we have to create a new subclass of class Student. Creating these
classes is tedious, and this coding style makes it unnecessarily hard to, for
example, read needs from a file. Address these problems by creating a sin-
gle class StudentFactory, such that

• To create StudentFactory, you supply a stream of needs to a class
method new:.

• An instance of class StudentFactor can respond to a new message,
which it does by pulling the “time needed” from its stream, then cre-
ating and answering a new instance of Student with that need.

Try creating a subclass of Student that works with the StudentFactory.

The idea of using an object to create other objects is so popular that “Factory”
is used as the name of a design pattern.

7. The Simulation class in Section E.4.2 is not well designed: although the
startUp, proceed, and finishUp methods provide a handy way to organize
initialization and finalization, they canʼt actually be used by clients, because
if the event queue happens to be empty, it s̓ not safe to call proceed. Repair
this defect by changing class Simulation. Change the implementation, and
if necessary, change the protocol as well.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

VII. INTERESTING INFRASTRUCTURE

S173

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
F.1 STREAMS S175

F.1.1 Streams of lines S178
F.1.2 Streams of parenthe-

sized phrases S181
F.1.3 Streams of extended

definitions S185

F.2 BUFFERING CHARAC-
TERS S186

F.2.1 Implementation of a
print buffer S187

F.3 THE EXTENSIBLE BUFFER
PRINTER S188

F.3.1 Building variadic func-
tions on top of vbprint S190

F.3.2 Implementations of
vbprint andinstallprinter S191

F.3.3 Printing functions S191

F.4 ERROR FUNCTIONS S193
F.4.1 Implementation of er-

ror signaling S193
F.4.2 Implementations of er-

ror helpers S195

F.5 TEST PROCESSING AND
REPORTING S196

F.6 STACK-OVERFLOW DE-
TECTION S197

F.7 ARITHMETIC-OVERFLOW
DETECTION S198

F.8 UNICODE SUPPORT S199

FCode for writing interpreters in C

Chapter 1 presents only those parts of the Impcore interpreter that are most rel-
evant to the study of programming languages. If that code is the tip of the ice-
berg, there s̓ a good deal beneath the surface. Much of it is interesting, some is not.
The parts that are generic to writing interpreters, not specific to Impcore, can be
found here and in Appendix G.

This appendix presents most of the implementations of the interfaces shown in
Chapter 1. It also presents interfaces and implementations used to read lines and
parenthesized phrases from input. Everything presented here is used not only to
help implement Impcore, but also to help implement µScheme and µScheme+ in
Chapters 2 to 4. And almost everything used to implement Impcore is presented
here—with two exceptions.

• The parsing code used to convert input to abstract syntax uses a form of shift-
reduce parsing. While the technology is old and is well understood, when
compared to other techniques I use, it requires elaborate code and compli-
cated data structures. This complexity is justified because it makes it easy for
you to extend any of the parsers, but because the code is complex, it is best
presented on its own. The parsing infrastructure is shown in Appendix G,
along with its application to the Impcore parser.

• There are a few parts of the Impcore interpreter, like the functions that print
abstract syntax, or the implementation of function environments, which are
not reused in any other interpreter. These parts are relegated to Appendix K.

All the infrastructure presented here is reusable. If you choose to reuse it to build
your own interpreters, your interpreters will be simple and easy to modify, but not
fast.

The code in this appendix is organized to parallel the presentation in Chap-
ter 1. A detailed overview, which connects concepts, types, functions, interfaces,
and implementations, is shown in Table F.1 on page S176. A higher-level overview,
which shows what information is presented in each chapter or appendix, is shown
in Table F.2 on page S177.

F.1 STREAMS

The evaluator works by repeatedly calling getxdef on a stream of XDefs. Behind
the scenes, there s̓ a lot going on:

• Each XDef is produced from a parenthesized phrase, like (val n 0) or
(define id (x) x). A parenthesized phrase, which in the code is called Par,
is simply a fragment of the input in which parentheses are balanced; con-
verting a parenthesized phrase to an expression or an extended definition
is the job of the parser presented in Appendix G. Producing parenthesized

S175
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Code for writing
interpreters in CF

S176

Abstract syntax, names, values, functions, and environments

Concept Types & Functions Interface Implementation

Abstract syntax Exp, Def §1.6.1
(pages 43 & 42)

(exposed rep)

Abstract syntax XDef, UnitTest §K.1 (page S288) (exposed rep)
Names Name §1.6.1 (page 43) §K.1.5 (page S293)
Value Value §1.6.1 (page 44) (exposed rep)
Function Func, Userfun §1.6.1

(pages 42 & 44)
(exposed rep)

Environment Valenv §1.6.1 (page 44) §1.6.3 (page 55)
Environment Funenv §1.6.1 (page 44) §K.5 (page S300)

Evaluation

Concept Types & Functions Interface Implementation

Evaluator eval §1.6.1 (page 45) §1.6.2 (page 48)
Evaluator evaldef §1.6.1 (page 45) §1.6.2 (page 54)
Evaluator readevalprint §K.1 (page S289) §K.1.3 (page S291)
Interaction Echo §K.1 (page S289) (exposed rep)

Streams and lists

Concept Types & Functions Interface Implementation

Extended definitions XDefstream, filexdefs,
stringxdefs, getxdef
xdefstream

§§F.1.3 and K.1
(pages S186 & S288)

§F.1.3 (XDef-
stream.impgetxdef.imp)

Parenthesized phrases Par, Parstream, getpar §F.1.2 (page S181) §F.1.2 (page S182)
Lines Linestream, getline_ §F.1.1 (page S178) §F.1.1

(pages S178 & S180)
Lists of Exps, Values, and

others
(not shown) §1.6.1 (page 46) (generated

automatically)

Printing and error signaling

Concept Types & Functions Interface Implementation

Printers print, fprint §1.6.1 (page 46) §F.3.1 (page S190)
Error-signaling printers synerror, runerror,

othererror
§§1.6.1 and K.1
(page S289 and page 47)

§F.4.1 (page S194)

Error helpers checkargc, duplicatename §§1.6.1 and F.4.2
(page 48 and page S196)

§F.4.2
(pages S195 & S196)

Printer extension installprinter, Printer §§F.3 and K.1
(pages S189 & S289)

§F.3.2 (page S191)

Source locations Sourceloc §K.1 (page S289) (exposed rep)
Error formats ErrorFormat §K.1 (page S289) (exposed rep)
Error modes ErrorMode, set_error_mode §F.4 (page S193) §F.4.1 (page S193)

Table F.1: Key ideas, their interfaces, and their implementations (excludes parsing)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.1. Streams

S177

Chapter 1: central ideas and fundamental data structures
Lines Where What

all.h Representations of Exp, Def, XDef, Value, and lists
53 env.c Operations on value environments

369 eval.c Evaluation: eval, evaldef, readevalprint
68 impcore.c The main function (launches the interpreter)
45 name.c Conversion between names and strings, used in many interpreters

Appendix F: (mostly) reusable code for writing interpreters in C
Lines Where What

92 error.c Error functions, formats, modes
176 lex.c Get Par from string, Linestream using getpar, getparlist

18 overflow.c Detect stack overflow
67 print.c The extensible printer
86 linestream.c Build Linestreams from files or strings; getline_
31 tests.c Report test results
33 xdefstream.c Functions xdefstream and getxdef

Appendix G: code for parsing, both reusable and specific to Impcore
Lines Where What

111 parse.c Impcore-specific code and parsing tables, turn Par into Exp or XDef
347 tableparsing.c Reusable infrastructure: tableparse, rowparse, common shift functions

Appendix K: code that is peripheral to the ideas and is specific to Impcore
Lines Where What

50 env.c Operations on function environments
103 printfuns.c Printing functions for Value, Exp, XDef, many others

67 imptests.c Run unit tests using Impcore s̓ dual environments

Table F.2: The implementation of Impcore, as organized into chapters, appendices, and files

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code for writing
interpreters in CF

S178

phrases, however, is done here; function parstream produces a stream of
Pars, called Parstream, and getpar takes a Parstream and produces a Par.

• A Par is found on one or more input lines. (And an input line may contain
more than one Par.) A Parstream is produced from a Linestream, and a
Linestream may be produced either from a string or from an input file.

Each stream follows the same pattern: there are one or more functions to create
streams, and there s̓ a function to get a thing from a stream. Their implementations
are also similar. All the streams and their implementations are presented in this
section. I present streams of lines first, then parenthesized phrases, and finally
extended definitions. That way, as you read each implementation, youʼll be familiar
with what it depends on.

F.1.1 Streams of lines

A Linestream encapsulates a seqeuence of input lines.

Interface to Linestream

To use a Linestream, call getline_.1 The getline_ function prints a prompt, reads
the next line of input from the source, and returns a pointer to the line. You
neednʼt worry about how long the line is; getline_ allocates enough memory to
hold it. Because getline_ reuses the same memory to hold successive lines, it is
an unchecked run-time error to retain a pointer returned by getline_ after a sub-
sequent call to getline_. A client that needs to save input characters must copy
the result of getline_ before calling getline_ again.
S178a. 〈shared type definitions S178a〉≡ (S290) S181b ▷

typedef struct Linestream *Linestream;

S178b. 〈shared function prototypes S178b〉≡ (S290) S178c ▷
char *getline_(Linestream r, const char *prompt);

To create a Linestream, you need a string or a file. And when creating a
Linestream, you name the source; that name is used in error messages.
S178c. 〈shared function prototypes S178b〉+≡ (S290) ◁ S178b S181d ▷

Linestream stringlines(const char *stringname, const char *s);
Linestream filelines (const char *filename, FILE *fin);

If an s passed to stringlines is nonempty, it is a checked run-time error for it to
end in any character except newline. After a call to stringlines, client code must
ensure that pointers into s remain valid until the last call to getline_. If getline_
is called after the memory pointed to by s is no longer valid, it is an unchecked run-
time error.

Implementation of Linestream

A Linestream owns the memory used to store each line. That memory is pointed
to by buf, and its size is stored in bufsize. If no line has been read, buf is NULL and
bufsize is zero.
S178d. 〈shared structure definitions S178d〉≡ (S290)

struct Linestream {
char *buf; /* holds the last line read */
int bufsize; /* size of buf */

1The function is called getline_with a trailing underscore so as not to conflict with getline, a POSIX
standard function. I was using getline for 20 years before the POSIX function was standardized, and
Iʼm too stubborn to change.Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

§F.1. Streams

S179

struct Sourceloc source; /* where the last line came from */
FILE *fin; /* non-NULL if filelines */
const char *s; /* non-NULL if stringlines */

};

The rest of the Linestream structure stores mutable state characterizing the source
from which lines come:

• The source field tracks the location of the line currently in buf.

• The fin field, if the stream is built from a file, contains the pointer to that
file s̓ handle. Otherwise fin is NULL.

• The s field, if the stream is built from a string, points to the characters of that
string that have not yet been converted to lines. Otherwise s is NULL.

The stream-creator functions do the minimum needed to establish the invari-
ants of a Linestream. To clear fields that should be zero, they use the standard
C function calloc.
S179a. 〈linestream.c S179a〉≡ S179b ▷

Linestream stringlines(const char *stringname, const char *s) {
Linestream lines = calloc(1, sizeof(*lines));
assert(lines);
lines->source.sourcename = stringname;
〈check to see that s is empty or ends in a newline S179c〉
lines->s = s;
return lines;

}

S179b. 〈linestream.c S179a〉+≡ ◁ S179a S179d ▷

Linestream filelines(const char *filename, FILE *fin) {
Linestream lines = calloc(1, sizeof(*lines));
assert(lines);
lines->source.sourcename = filename;
lines->fin = fin;
return lines;

}

S179c. 〈check to see that s is empty or ends in a newline S179c〉≡ (S179a)
{ int n = strlen(s);

assert(n == 0 || s[n-1] == '\n');
}

Function getline_ returns a pointer to the next line from the input, which is
held in buf, a buffer that is reused on subsequent calls. Function growbuf makes
sure the buffer is at least n bytes long.
S179d. 〈linestream.c S179a〉+≡ ◁ S179b S180a ▷

static void growbuf(Linestream lines, int n) {
assert(lines);
if (lines->bufsize < n) {

lines->buf = realloc(lines->buf, n);
assert(lines->buf != NULL);
lines->bufsize = n;

}
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

getline_ S180a

Code for writing
interpreters in CF

S180

Here s̓ a hidden trick: Iʼve tweaked getline_ to check and see if the line read
begins with the special string ;#. If so, the line is printed. This string is a special
comment that helps me test all the 〈transcript〉 examples in the book.
S180a. 〈linestream.c S179a〉+≡ ◁ S179d

char* getline_(Linestream lines, const char *prompt) {
assert(lines);
if (prompt)

print("%s", prompt);

lines->source.line++;
if (lines->fin)

〈set lines->buf to next line from file lines->fin, or return NULL if lines are exhausted S180b〉
else if (lines->s)

〈set lines->buf to next line from string lines->s, or return NULL if lines are exhausted S180c〉
else

assert(0);

if (lines->buf[0] == ';' && lines->buf[1] == '#')
print("%s\n", lines->buf);

return lines->buf;
}

To get a line from a file, I call the C standard library function fgets. If the buffer
is big enough, fgets returns exactly the next line. If the buffer isnʼt big enough,
I grow the buffer and call fgets again, to get more of the line. This process iterates
until the last character in the buffer is a newline. I then chop off the newline by
overwriting it with '\0'.
S180b. 〈set lines->buf to next line from file lines->fin, or return NULL if lines are exhausted S180b〉≡ (S180a)

{
int n; /* number of characters read into the buffer */

for (n = 0; n == 0 || lines->buf[n-1] != '\n'; n = strlen(lines->buf)) {
growbuf(lines, n+512);
if (fgets(lines->buf+n, 512, lines->fin) == NULL)

break;
}
if (n == 0)

return NULL;
if (lines->buf[n-1] == '\n')

lines->buf[n-1] = '\0';
}

When reading from a string, I look in lines->s. I find the next newline, copy
the characters into buf, and update lines->s.
S180c. 〈set lines->buf to next line from string lines->s, or return NULL if lines are exhausted S180c〉≡ (S180a)

{
const char *p = strchr(lines->s, '\n');
if (p == NULL)

return NULL;
p++;
int len = p - lines->s;
growbuf(lines, len);
strncpy(lines->buf, lines->s, len);
lines->buf[len-1] = '\0'; /* no newline */
lines->s = p;

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.1. Streams

S181

F.1.2 Streams of parenthesized phrases

Calling a Par a “parenthesized phrase” doesnʼt tell the whole truth: the Par type
includes not only phrases with balanced parentheses but also single atoms like 3,
#t, and gcd. In truth, a parenthesized phrase is one of the following:

• A single atom

• A list of zero or more parenthesized phrases, wrapped in parentheses.

Here s̓ the definition:
S181a. 〈par.t S181a〉≡

Par* = ATOM (Name)
| LIST (Parlist)

S181b. 〈shared type definitions S178a〉+≡ (S290) ◁ S178a S181c ▷
typedef struct Parlist *Parlist; /* list of Par */

This simple structure reflects the concrete syntax of Impcore, µScheme, and the
other bridge languages. It s̓ simple because Iʼve stolen the simple concrete syntax
that John McCarthy developed for Lisp. Simple syntax is represented by a simple
data structure.

Interface to Parstream

A Parstream is an abstract type.
S181c. 〈shared type definitions S178a〉+≡ (S290) ◁ S181b S186d ▷

typedef struct Parstream *Parstream;

To create a Parstream, you specify not only the lines from which Pars will be
read, but also the prompts to be used (page S288). To get a Par from a stream, call
getpar. And for error messages, code can ask a Parstream for its current source
location.
S181d. 〈shared function prototypes S178b〉+≡ (S290) ◁ S178c S181e ▷

Parstream parstream(Linestream lines, Prompts prompts);
Par getpar (Parstream r);
Sourceloc parsource(Parstream pars);

The final part of the interface to aParstream is the global variableread_tick_as_quote.
If read_tick_as_quote is true, getpar turns an input like '(1 2 3) into the paren-
thesized phrase (quote (1 2 3)). When set, this variable makes the tick mark
behave the way µScheme wants it to behave.
S181e. 〈shared function prototypes S178b〉+≡ (S290) ◁ S181d S186e ▷

extern bool read_tick_as_quote;

In Impcore, a tick mark is not read as (quote ...), so read_tick_as_quote is
false.
S181f. 〈impcore.c S181f〉≡

bool read_tick_as_quote = false;

Implementation of Parstream

The representation of a Parstream has three parts:

• The lines field is a source of input lines.

• The input field contains characters from an input line; if a Par has already
been read from that line, input contains only the characters left over.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

getpar S183a
growbuf S179d
type Linestream

S178a
type Par A
parsource S182c
parstream S182b
print 46c
type Prompts S288g
type Sourceloc

S289d

Code for writing
interpreters in CF

S182

• The prompts structure contains strings that are printed every time a line
is taken from lines. When the Parstream is reading a fresh Par, it issues
prompts.ps1 for the first line of that Par. When it has to read a Par that spans
more than one line, like a long function definition, it issues prompts.ps2 for
all the rest of the lines. The names ps1 and ps2 stand for “prompt string”
1 and 2; they come from the Unix shell.

S182a. 〈lex.c S182a〉≡ S182b ▷

struct Parstream {
Linestream lines; /* source of more lines */
const char *input; /* what's not yet read from the most recent input line */
/* invariant: unread is NULL only if lines is empty */

struct {
const char *ps1, *ps2;

} prompts;
};

To create a Parstream, I initialize the fields using the parameters. Initializing
input to an empty string puts the stream into a state with no characters left over.
S182b. 〈lex.c S182a〉+≡ ◁ S182a S182c ▷

Parstream parstream(Linestream lines, Prompts prompts) {
Parstream pars = malloc(sizeof(*pars));
assert(pars);
pars->lines = lines;
pars->input = "";
pars->prompts.ps1 = prompts == STD_PROMPTS ? "-> " : "";
pars->prompts.ps2 = prompts == STD_PROMPTS ? " " : "";
return pars;

}

Function parsource grabs the current source location out of the Linestream.
S182c. 〈lex.c S182a〉+≡ ◁ S182b S182d ▷

Sourceloc parsource(Parstream pars) {
return &pars->lines->source;

}

Function getpar presents a minor problem: the Par type is defined recursively,
so getpar itself must be recursive. But the first call to getpar is distinct from the
others in two ways:

• If the first call prompts, it should use prompts.ps1. Other calls should use
prompts.ps2

• If the first call encounters a right parenthesis, then the right parenthesis is
unbalanced, and getpar should report it as a syntax error. If another call
encounters a right parenthesis, then the right parenthesis marks the end of
a LIST, and getpar should scan past it and return.

I deal with this distinction by writing getpar_in_context, which knows whether
it is the first call or another call. Function getpar attempts to read a Par. If it runs
out of input, it returns NULL. If it sees a right parenthesis, it returns NULL if and only
if is_first is false; otherwise, it calls synerror.
S182d. 〈lex.c S182a〉+≡ ◁ S182c S183a ▷

〈prototypes of private functions that help with getpar S184b〉
static Par getpar_in_context(Parstream pars, bool is_first, char left) {

if (pars->input == NULL)
return NULL;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.1. Streams

S183

else {
char right; // will hold right bracket, if any
〈advance pars->input past whitespace characters S183b〉
switch (*pars->input) {
case '\0': /* on end of line, get another line and continue */
case ';':

pars->input = getline_(pars->lines,
is_first ? pars->prompts.ps1 : pars->prompts.ps2);

return getpar_in_context(pars, is_first, left);
case '(': case '[':

〈read and return a parenthesized LIST S184c〉
case ')': case ']': case '}':

right = *pars->input++; /* pass the bracket so we don't see it again */
if (is_first) {

synerror(parsource(pars), "unexpected right bracket %c", right);
} else if (left == '\'') {

synerror(parsource(pars), "quote ' followed by right bracket %c",
right);

} else if (!brackets_match(left, right)) {
synerror(parsource(pars), "%c does not match %c", right, left);

} else {
return NULL;

}
case '{':

pars->input++;
synerror(parsource(pars), "curly brackets are not supported");

default:
if (read_tick_as_quote && *pars->input == '\'') {

〈read a Par and return that Par wrapped in quote S183c〉
} else {

〈read and return an ATOM S184a〉
}

}
}

}

With this code in hand, getpar is a first call.
S183a. 〈lex.c S182a〉+≡ ◁ S182d S184d ▷

Par getpar(Parstream pars) {
assert(pars);
return getpar_in_context(pars, true, '\0');

}

To scan past whitespace, I use the standard C library function isspace. That
function requires an unsigned character.
S183b. 〈advance pars->input past whitespace characters S183b〉≡ (S182d)

while (isspace((unsigned char)*pars->input))
pars->input++;

When getpar sees a quote mark “',” if it is reading a language that uses a '
operator, it reads the next Par (for example, (1 2 3)) and then returns that Par
wrapped in quote (for example, (quote (1 2 3))).
S183c. 〈read a Par and return that Par wrapped in quote S183c〉≡ (S182d)

{
pars->input++;
Par p = getpar_in_context(pars, false, '\'');
if (p == NULL)

synerror(parsource(pars), "premature end of file after quote mark");
assert(p);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Linestream
S178a

type Par A
parsource S181d
type Parstream

S181c
type Prompts S288g
type Sourceloc

S289d
synerror 48a

Code for writing
interpreters in CF

S184

return mkList(mkPL(mkAtom(strtoname("quote")), mkPL(p, NULL)));
}

Atoms are delegated to function readatom, defined below.
S184a. 〈read and return an ATOM S184a〉≡ (S182d)

return mkAtom(readatom(&pars->input));

S184b. 〈prototypes of private functions that help with getpar S184b〉≡ (S182d) S184e ▷
static Name readatom(const char **ps);

Reading and returning a parenthesized list After a left parenthesis, I read Pars until
I see a right parenthesis, adding each one to the front of elems_reversed. When
I get to the closing right parenthesis, I reverse the elements in place and return the
resulting list.
S184c. 〈read and return a parenthesized LIST S184c〉≡ (S182d)

{
char left = *pars->input++; /* remember the opening left bracket */

Parlist elems_reversed = NULL;
Par q; /* next par read in, to be accumulated into elems_reversed */
while ((q = getpar_in_context(pars, false, left)))

elems_reversed = mkPL(q, elems_reversed);

if (pars->input == NULL)
synerror(parsource(pars),

"premature end of file reading list (missing right parenthesis)");
else

return mkList(reverse_parlist(elems_reversed));
}

To reverse a list, I use a classic trick of imperative programming: I update the
pointers in place. The invariant is exactly the same as the invariant of revapp in
Section 2.3.2 on page 101. But the code in Section 2.3.2 allocates new memory; the
code here only updates pointers, without allocating.
S184d. 〈lex.c S182a〉+≡ ◁ S183a S185a ▷

static Parlist reverse_parlist(Parlist p) {
Parlist reversed = NULL;
Parlist remaining = p;
/* Invariant: reversed followed by reverse(remaining) equals reverse(p) */
while (remaining) {

Parlist next = remaining->tl;
remaining->tl = reversed;
reversed = remaining;
remaining = next;

}
return reversed;

}

S184e. 〈prototypes of private functions that help with getpar S184b〉+≡ (S182d) ◁ S184b S185d ▷

static Parlist reverse_parlist(Parlist p);

Reading and returning an atom A lexical analyzer consumes input one character
at a time. My code works with a pointer to the input characters. A typical function
uses such a pointer to look at the input, converts some of the input to a result,
and updates the pointer to point to the remaining, unconsumed input. To make

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.1. Streams

S185

the update possible, I must pass a pointer to the pointer, which has type char **.2

Here, for example, readatom consumes the characters that form a single atom.
S185a. 〈lex.c S182a〉+≡ ◁ S184d S185b ▷

static Name readatom(const char **ps) {
const char *p, *q;

p = *ps; /* remember starting position */
for (q = p; !isdelim(*q); q++) /* scan to next delimiter */

;
ps = q; / unconsumed input starts with delimiter */
return strntoname(p, q - p); /* the name is the difference */

}

A delimiter is a character that marks the end of a name or a token. In bridge lan-
guages, delimiters include parentheses, semicolon, whitespace, and end of string.
S185b. 〈lex.c S182a〉+≡ ◁ S185a S185c ▷

static int isdelim(char c) {
return c == '(' || c == ')' || c == '[' || c == ']' || c == '{' || c == '}' ||

c == ';' || isspace((unsigned char)c) ||
c == '\0';

}

Function strntoname returns a name built from the first n characters of a string.
S185c. 〈lex.c S182a〉+≡ ◁ S185b S185e ▷

static Name strntoname(const char *s, int n) {
char *t = malloc(n + 1);
assert(t != NULL);
strncpy(t, s, n);
t[n] = '\0';
return strtoname(t);

}

S185d. 〈prototypes of private functions that help with getpar S184b〉+≡ (S182d) ◁ S184e S185f ▷
static int isdelim(char c);
static Name strntoname(const char *s, int n);

S185e. 〈lex.c S182a〉+≡ ◁ S185c
static bool brackets_match(char left, char right) {

switch (left) {
case '(': return right == ')';
case '[': return right == ']';
case '{': return right == '}';
default: assert(0);

}
}

S185f. 〈prototypes of private functions that help with getpar S184b〉+≡ (S182d) ◁ S185d
static bool brackets_match(char left, char right);

F.1.3 Streams of extended definitions

Layered on top of a Parstream is an XDefstream. One Par in the input corresponds
exactly to one XDef, so the only state needed in an XDefstream is the Parstream it
is made from.
S185g. 〈xdefstream.c S185g〉≡ S186a ▷

struct XDefstream {
Parstream pars; /* where input comes from */

};
2In C++, I would instead pass the pointer by reference.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

mkAtom A
mkList A
type Name 43b
type Par A
type Parlist S181b
pars S182d
parsource S181d
type Parstream

S181c
strtoname 43c
synerror 48a

Code for writing
interpreters in CF

S186

To make an XDefstream, allocate and initialize.
S186a. 〈xdefstream.c S185g〉+≡ ◁ S185g S186b ▷

XDefstream xdefstream(Parstream pars) {
XDefstream xdefs = malloc(sizeof(*xdefs));
assert(xdefs);
assert(pars);
xdefs->pars = pars;
return xdefs;

}

The code in Chapter 1 doesnʼt even know that Parstreams exist. It builds
XDefstreams by callingfilexdefsorstringxdefs. Those functions buildXDefstreams
by combining xdefstream and parstream with either filelines or stringlines,
respectively.
S186b. 〈xdefstream.c S185g〉+≡ ◁ S186a S186c ▷

XDefstream filexdefs(const char *filename, FILE *input, Prompts prompts) {
return xdefstream(parstream(filelines(filename, input), prompts));

}
XDefstream stringxdefs(const char *stringname, const char *input) {

return xdefstream(parstream(stringlines(stringname, input), NO_PROMPTS));
}

To get an extended definition from an XDefstream, get a Par and parse it. The
heavy lifting is done by parsexdef, which is the subject of Appendix G.
S186c. 〈xdefstream.c S185g〉+≡ ◁ S186b

XDef getxdef(XDefstream xdr) {
Par p = getpar(xdr->pars);
if (p == NULL)

return NULL;
else

return parsexdef(p, parsource(xdr->pars));
}

F.2 BUFFERING CHARACTERS

A classic abstraction: the resizeable buffer. Function bprint writes to a buffer.
S186d. 〈shared type definitions S178a〉+≡ (S290) ◁ S181c S189b ▷

typedef struct Printbuf *Printbuf;

A buffer is created with printbuf and destroyed with freebuf.
S186e. 〈shared function prototypes S178b〉+≡ (S290) ◁ S181e S186f ▷

Printbuf printbuf(void);
void freebuf(Printbuf *);

We append to a buffer with bufput or bufputs, and we empty the buffer with
bufreset.
S186f. 〈shared function prototypes S178b〉+≡ (S290) ◁ S186e S186g ▷

void bufput(Printbuf, char);
void bufputs(Printbuf, const char*);
void bufreset(Printbuf);

We can do two things with the contents of a buffer: copy them in to a freshly allo-
cated block of memory, or write them to an open file handle.
S186g. 〈shared function prototypes S178b〉+≡ (S290) ◁ S186f S188f ▷

char *bufcopy(Printbuf);
void fwritebuf(Printbuf buf, FILE *output);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.2
Buffering
characters

S187

F.2.1 Implementation of a print buffer

This classic data structure needs no introduction.
S187a. 〈printbuf.c S187a〉≡ S187b ▷

struct Printbuf {
char *chars; // start of the buffer
char *limit; // marks one past end of buffer
char *next; // where next character will be buffered
// invariants: all are non-NULL
// chars <= next <= limit
// if chars <= p < limit, then *p is writeable

};

A buffer initially holds 100 characters.
S187b. 〈printbuf.c S187a〉+≡ ◁ S187a S187c ▷

Printbuf printbuf(void) {
Printbuf buf = malloc(sizeof(*buf));
assert(buf);
int n = 100;
buf->chars = malloc(n);
assert(buf->chars);
buf->next = buf->chars;
buf->limit = buf->chars + n;
return buf;

}

We free a buffer using Hansons̓ (1996) indirection trick.
S187c. 〈printbuf.c S187a〉+≡ ◁ S187b S187d ▷

void freebuf(Printbuf *bufp) {
Printbuf buf = *bufp;
assert(buf && buf->chars);
free(buf->chars);
free(buf);
*bufp = NULL;

}

Calling grow makes a buffer 30% larger, or at least 1 byte larger.
S187d. 〈printbuf.c S187a〉+≡ ◁ S187c S187e ▷

static void grow(Printbuf buf) {
assert(buf && buf->chars && buf->next && buf->limit);
unsigned n = buf->limit - buf->chars;
n = 1 + (n * 13) / 10; // 30% size increase
unsigned i = buf->next - buf->chars;
buf->chars = realloc(buf->chars, n);
assert(buf->chars);
buf->next = buf->chars + i;
buf->limit = buf->chars + n;

}

We write a character, at buf->next, growing if needed.
S187e. 〈printbuf.c S187a〉+≡ ◁ S187d S188a ▷

void bufput(Printbuf buf, char c) {
assert(buf && buf->next && buf->limit);
if (buf->next == buf->limit) {

grow(buf);
assert(buf && buf->next && buf->limit);
assert(buf->limit > buf->next);

}
*buf->next++ = c;

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bufcopy S188d
bufputs S188a
bufreset S188b
fwritebuf S188e
getpar S181d
type Par A
parsexdef S202a
parsource S181d
type Parstream

S181c
parstream S181d
type Prompts S288g
stringlines S178c
type XDef A
type XDefstream

S288d

Code for writing
interpreters in CF

S188

To write a string, we grow until we can call memcpy.
S188a. 〈printbuf.c S187a〉+≡ ◁ S187e S188b ▷

void bufputs(Printbuf buf, const char *s) {
assert(buf);
int n = strlen(s);
while (buf->limit - buf->next < n)

grow(buf);
memcpy(buf->next, s, n);
buf->next += n;

}

To discard all the characters, bufreset.
S188b. 〈printbuf.c S187a〉+≡ ◁ S188a S188c ▷

void bufreset(Printbuf buf) {
assert(buf && buf->next);
buf->next = buf->chars;

}

To use the buffer, we want to know how many characters are in it.
S188c. 〈printbuf.c S187a〉+≡ ◁ S188b S188d ▷

static int nchars(Printbuf buf) {
assert(buf && buf->chars && buf->next);
return buf->next - buf->chars;

}

Copy a buffer to a fresh block.
S188d. 〈printbuf.c S187a〉+≡ ◁ S188c S188e ▷

char *bufcopy(Printbuf buf) {
assert(buf);
int n = nchars(buf);
char *s = malloc(n+1);
assert(s);
memcpy(s, buf->chars, n);
s[n] = '\0';
return s;

}

Write a buffer s̓ characters to an open file handle.
S188e. 〈printbuf.c S187a〉+≡ ◁ S188d

void fwritebuf(Printbuf buf, FILE *output) {
assert(buf && buf->chars && buf->limit);
assert(output);
int n = fwrite(buf->chars, sizeof(*buf->chars), nchars(buf), output);
assert(n == nchars(buf));

}

F.3 THE EXTENSIBLE BUFFER PRINTER

To recapitulate Section 1.6.1, the standard C functions printf and fprintf are
great, but they donʼt know how to print things like values and expressions. And
when you canʼt put a value or an expression in a format string, the code needed to
print an error message becomes awkward and unreadable. My solution is to define
new, custom print functions that know how to print values and expressions:
S188f. 〈shared function prototypes S178b〉+≡ (S290) ◁ S186g S189a ▷

void print (const char *fmt, ...); /* print to standard output */
void fprint(FILE *output, const char *fmt, ...); /* print to given file */
void bprint(Printbuf output, const char *fmt, ...); /* print to given buffer */

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.3
The extensible
buffer printer

S189

I use bprint to write error messages—if an error message is written during the
evaluation of a check-expect or check-error, the message can be captured and
can either be used to explain what went wrong (if an error occurs unexpectedly
during a check-expect) or can be silently discarded (if an error occurs as expected
during a check-error).

Dealing with a variable number of arguments is a hassle, and I may as well do it
only once. So I donʼt just define a couple of print functions that know about values
and expressions in one language. Instead, I make them extensible, so they can deal
with any language.

To extend a printer, you announce a new format specifier with installprinter,
and you provide a function used to print a value so specified.
S189a. 〈shared function prototypes S178b〉+≡ (S290) ◁ S188f S189d ▷

void installprinter(unsigned char specifier, Printer *take_and_print);

The function provided has type Printer. Its specification is that it takes one value
out of the list args, then prints the value to the given buffer.
S189b. 〈shared type definitions S178a〉+≡ (S290) ◁ S186d

〈definition of va_list_box S189c〉
typedef void Printer(Printbuf output, va_list_box *args);

The type va_list_box is almost, but not quite, a standard C type for holding a
variable number of arguments. A function that can accept a variable number of
arguments is called variadic, and according to the C standard, the arguments of a
variadic function are stored in an object of type va_list, which is defined in the
standard library in header file stdarg.h. (If you are not accustomed to variadic
functions and stdarg.h, you may wish to consult Sections 7.2 and 7.3 of Kernighan
and Ritchie 1988.) So what is va_list_box? It s̓ a workaround for a bug that af-
flicts some versions of the GNU C compiler on 64-bit hardware. These compilers
fail when values of type va_list are passed as arguments.3 A workaround for this
problem is to place the va_list in a structure and pass a pointer to the structure.
That structure is called va_list_box, and it is defined here:
S189c. 〈definition of va_list_box S189c〉≡ (S189b)

typedef struct va_list_box {
va_list ap;

} va_list_box;

I encourage you to think of the printing infrastructure as a stack of bricks:

• There are two foundation bricks: the buffer abstraction defined in the pre-
vious section, and the C standard machinery for defining variadic func-
tions: header file stdarg.h, type va_list, and macros va_start, va_arg,
and va_end. Many C programmers havenʼt studied this machinery, and if
youʼre among them, youʼll want either to review it or to skip this section.

• The next brick is my function vbprint and its associated table printertab.
Function vbprint stands in the same relation to bprint as standard function
vfprintf stands to fprintf:
S189d. 〈shared function prototypes S178b〉+≡ (S290) ◁ S189a S191c ▷

void vbprint(Printbuf output, const char *fmt, va_list_box *box);

The printertab table, which is private to the printing module, associates
a Printer function to each possible conversion specifier. This style of pro-
gramming exploits first-class functions in C, drawing on some of the ideas
presented as part of µScheme in Chapter 2. Function installprinter sim-
ply updates printertab.

3Library functions such as vfprintf itself are grandfathered; only users cannot write functions that
take va_list arguments. Feh.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S190a
grow S187d
installprinter

S191b
type Printbuf

S186d
vbprint S191a

Code for writing
interpreters in CF

S190

• The next bricks define bprint, print, and fprint on top of vbprint.

• There are a whole bunch of bricks of type Printfun: one for each conversion
specifier we know how to print (there s̓ a list in Table 1.6 on page 47).

In Section F.4.1 on page S194 below, functionsrunerror, othererror, andsynerror
rest on this stack of bricks as well.

None of the ideas here are new; extensible printers have long popular with so-
phisticated C programmers. If you want to study an especially well-crafted exam-
ple, consult Hanson (1996, Chapter 14).

F.3.1 Building variadic functions on top of vbprint

Function bprint is a wrapper around vbprint. It calls va_start to initialize the list
of arguments in box, passes the arguments to vbprint, and calls va_end to finalize
the arguments. The calls to va_start and va_end are mandated by the C standard.

S190a. 〈print.c S190a〉≡ S190b ▷

void bprint(Printbuf output, const char *fmt, ...) {
va_list_box box;

assert(fmt);
va_start(box.ap, fmt);
vbprint(output, fmt, &box);
va_end(box.ap);

}

Function print buffers, then prints. It keeps a buffer in a cache.
S190b. 〈print.c S190a〉+≡ ◁ S190a S190c ▷

void print(const char *fmt, ...) {
va_list_box box;
static Printbuf stdoutbuf;

if (stdoutbuf == NULL)
stdoutbuf = printbuf();

assert(fmt);
va_start(box.ap, fmt);
vbprint(stdoutbuf, fmt, &box);
va_end(box.ap);
fwritebuf(stdoutbuf, stdout);
bufreset(stdoutbuf);
fflush(stdout);

}

Function fprint caches its own buffer.
S190c. 〈print.c S190a〉+≡ ◁ S190b S191a ▷

void fprint(FILE *output, const char *fmt, ...) {
static Printbuf buf;
va_list_box box;

if (buf == NULL)
buf = printbuf();

assert(fmt);
va_start(box.ap, fmt);
vbprint(buf, fmt, &box);
va_end(box.ap);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.3
The extensible
buffer printer

S191

fwritebuf(buf, output);
fflush(output);
freebuf(&buf);

}

F.3.2 Implementations of vbprint and installprinter

Function vbprint s̓ primary job is to decode the format string and to find all
the conversion specifiers. Each time it sees a conversion specifier, it calls the
corresponding Printer. The Printer for a conversion specifier c is stored in
printertab[(unsigned char)c].
S191a. 〈print.c S190a〉+≡ ◁ S190c S191b ▷

static Printer *printertab[256];

void vbprint(Printbuf output, const char *fmt, va_list_box *box) {
const unsigned char *p;
bool broken = false; /* made true on seeing an unknown conversion specifier */
for (p = (const unsigned char*)fmt; *p; p++) {

if (*p != '%') {
bufput(output, *p);

} else {
if (!broken && printertab[*++p])

printertab[*p](output, box);
else {

broken = true; /* box is not consumed */
bufputs(output, "<pointer>");

}
}

}
}

The va_arg interface is unsafe, and if a printing function takes the wrong thing
from box, a memory error could ensue. So if vbprint ever sees a conversion spec-
ifier that it doesnʼt recognize, it stops calling printing functions.

Function installprinter simply stores to the private table.
S191b. 〈print.c S190a〉+≡ ◁ S191a S191d ▷

void installprinter(unsigned char c, Printer *take_and_print) {
printertab[c] = take_and_print;

}

F.3.3 Printing functions

The most interesting printing functions are language-dependent; they are found in
Appendices K and L. But functions that print percent signs, strings, decimal inte-
gers, characters, and names are shared among all languages, and they are found
here.
S191c. 〈shared function prototypes S178b〉+≡ (S290) ◁ S189d S192d ▷

Printer printpercent, printstring, printdecimal, printchar, printname, printpointer;

As in standard vprintf, the conversion specifier %% just prints a percent sign,
without consuming any arguments.
S191d. 〈print.c S190a〉+≡ ◁ S191b S192a ▷

void printpercent(Printbuf output, va_list_box *box) {
(void)box;
bufput(output, '%');

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bufput S186f
bufputs S186f
bufreset S186f
freebuf S186e
type Printbuf

S186d
printbuf S186e
printchar S192c
printdecimalS192a
type Printer S189b
printname S192b
printpointerS192a
printstring S192a
type va_list_box

S189c
vbprint S189d

Code for writing
interpreters in CF

S192

The printers for strings and numbers are textbook examples of how to use
va_arg.
S192a. 〈print.c S190a〉+≡ ◁ S191d

void printstring(Printbuf output, va_list_box *box) {
const char *s = va_arg(box->ap, char*);
bufputs(output, s);

}

void printdecimal(Printbuf output, va_list_box *box) {
char buf[2 + 3 * sizeof(int)];
snprintf(buf, sizeof(buf), "%d", va_arg(box->ap, int));
bufputs(output, buf);

}

void printpointer(Printbuf output, va_list_box *box) {
char buf[12 + 3 * sizeof(void *)];
snprintf(buf, sizeof(buf), "%p", va_arg(box->ap, void *));
bufputs(output, buf);

}

The printer for names prints a name s̓ string. A Name should never be NULL, but
if something goes drastically wrong and a NULL pointer is printed as a name, the
code wonʼt crash.
S192b. 〈printfuns.c S192b〉≡ S192c ▷

void printname(Printbuf output, va_list_box *box) {
Name np = va_arg(box->ap, Name);
bufputs(output, np == NULL ? "<null>" : nametostr(np));

}

S192c. 〈printfuns.c S192b〉+≡ ◁ S192b S192e ▷
void printchar(Printbuf output, va_list_box *box) {

int c = va_arg(box->ap, int);
bufput(output, c);

}

The print function for parenthesized phrases is surprisingly simple: it just calls
bprint recursively:
S192d. 〈shared function prototypes S178b〉+≡ (S290) ◁ S191c S193a ▷

Printer printpar;

S192e. 〈printfuns.c S192b〉+≡ ◁ S192c
void printpar(Printbuf output, va_list_box *box) {

Par p = va_arg(box->ap, Par);
if (p == NULL) {

bprint(output, "<null>");
return;

}

switch (p->alt){
case ATOM:

bprint(output, "%n", p->atom);
break;

case LIST:
bprint(output, "(%P)", p->list);
break;

}
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.4
Error functions

S193

The %P specifier is associated with function printparlist, which is generated
automatically by the same script that generates all the list codes. Here is a snapshot
of what that code might look like:

void printparlist(Printbuf output, va_list_box *box) {
for (Parlist ps = va_arg(box->ap, Parlist); ps != NULL; ps = ps->tl)

bprint(output, "%p%s", ps->hd, ps->tl ? " " : "");
}

F.4 ERROR FUNCTIONS

The interface in Section 1.6.1 on page 47 shows functions runerror and synerror,
which behave a lot like bprint, but which, after buffering, longjmp to the jmp_buf
errorjmp. To understand Chapter 1, that s̓ all you need to know, but there s̓ more to
the story. When running a unit test, the error infrastructure should not print mes-
sages or transfer control to errorjmp. When a run-time error occurs, a unit test
mustnʼt print a standard message or return control to the read-eval-print loop. In-
stead, it must know that the error has occurred so that it can decide what the error
means: does the unit test pass (check-error) or fail (check-expect)? For unit test-
ing, I therefore provide a second, testing mode in which the error-signaling func-
tions can operate.

In testing mode, runerror buffers an error message and longjmps to testjmp.
S193a. 〈shared function prototypes S178b〉+≡ (S290) ◁ S192d S195b ▷

typedef enum ErrorMode { NORMAL, TESTING } ErrorMode;
void set_error_mode(ErrorMode mode);
extern jmp_buf testjmp; /* if error occurs during a test, longjmp here */
Printbuf errorbuf; /* if error occurs during a test, message is here */

The error mode is initially NORMAL, but it can be changed using set_error_mode.
When the error mode is TESTING, it is an unchecked run-time error to call
synerror, and it is an unchecked run-time error to call runerror except while a
setjmp involving testjmp is active on the C call stack.

F.4.1 Implementation of error signaling

The state of the error module includes the error mode and the two jmp_bufs.
S193b. 〈error.c S193b〉≡ S193c ▷

jmp_buf errorjmp;
jmp_buf testjmp;

static ErrorMode mode = NORMAL;

Function set_error_mode sets the error mode.
S193c. 〈error.c S193b〉+≡ ◁ S193b S194a ▷

void set_error_mode(ErrorMode new_mode) {
assert(new_mode == NORMAL || new_mode == TESTING);
mode = new_mode;

}

Function runerror s̓ behavior depends on the mode:

• In normal mode, it prints a message, then jumps to errorjmp.

• In testing mode, it buffers the message, then silently jumps to testjmp.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
bufput S186f
bufputs S186f
type Name 43b
type Par A
type Printbuf

S186d
type Printer S189b
type va_list_box

S189c

Code for writing
interpreters in CF

S194

S194a. 〈error.c S193b〉+≡ ◁ S193c S194b ▷

Printbuf errorbuf;
void runerror(const char *fmt, ...) {

va_list_box box;

if (!errorbuf)
errorbuf = printbuf();

assert(fmt);
va_start(box.ap, fmt);
vbprint(errorbuf, fmt, &box);
va_end(box.ap);

switch (mode) {
case NORMAL:

fflush(stdout);
char *msg = bufcopy(errorbuf);
fprintf(stderr, "Run-time error: %s\n", msg);
fflush(stderr);
free(msg);
bufreset(errorbuf);
longjmp(errorjmp, 1);

case TESTING:
longjmp(testjmp, 1);

default:
assert(0);

}
}

Function synerror is like runerror, but with additional logic for printing
source-code locations. Source-code locations are printed except from standard in-
put in the WITHOUT_LOCATIONS mode.
S194b. 〈error.c S193b〉+≡ ◁ S194a S195a ▷

static ErrorFormat toplevel_error_format = WITH_LOCATIONS;

void synerror(Sourceloc src, const char *fmt, ...) {
va_list_box box;

switch (mode) {
case NORMAL:

assert(fmt);
fflush(stdout);
if (toplevel_error_format == WITHOUT_LOCATIONS
&& !strcmp(src->sourcename, "standard input"))

fprint(stderr, "syntax error: ");
else

fprint(stderr, "syntax error in %s, line %d: ", src->sourcename, src->line);
Printbuf buf = printbuf();
va_start(box.ap, fmt);
vbprint(buf, fmt, &box);
va_end(box.ap);

fwritebuf(buf, stderr);
freebuf(&buf);
fprintf(stderr, "\n");
fflush(stderr);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.4
Error functions

S195

longjmp(errorjmp, 1);

default:
assert(0);

}
}

Function set_toplevel_error_format sets the error format used for standard
input.
S195a. 〈error.c S193b〉+≡ ◁ S194b S195c ▷

void set_toplevel_error_format(ErrorFormat new_format) {
assert(new_format == WITH_LOCATIONS || new_format == WITHOUT_LOCATIONS);
toplevel_error_format = new_format;

}

Function othererror generalizes runerror
S195b. 〈shared function prototypes S178b〉+≡ (S290) ◁ S193a S196a ▷

void othererror (const char *fmt, ...);

S195c. 〈error.c S193b〉+≡ ◁ S195a S195d ▷

Printbuf errorbuf;
void othererror(const char *fmt, ...) {

va_list_box box;

if (!errorbuf)
errorbuf = printbuf();

assert(fmt);
va_start(box.ap, fmt);
vbprint(errorbuf, fmt, &box);
va_end(box.ap);

switch (mode) {
case NORMAL:

fflush(stdout);
char *msg = bufcopy(errorbuf);
fprintf(stderr, "%s\n", msg);
fflush(stderr);
free(msg);
bufreset(errorbuf);
longjmp(errorjmp, 1);

case TESTING:
longjmp(testjmp, 1);

default:
assert(0);

}
}

F.4.2 Implementations of error helpers

As promised in Section 1.6.1 on page 48, here are auxiliary functions that help de-
tect common errors. Function checkargc checks to see if the number of actual
arguments passed to a function is the number that the function expected.
S195d. 〈error.c S193b〉+≡ ◁ S195c S196b ▷

void checkargc(Exp e, int expected, int actual) {
if (expected != actual)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bufcopy S186g
bufreset S186f
errorbuf S193a
type ErrorFormat

S289e
errorjmp 47
type Exp A
freebuf S186e
longjmp B
mode S193b
type Printbuf

S186d
printbuf S186e
runerror 47
type Sourceloc

S289d
testjmp S193a
type va_list_box

S189c
vbprint S189d

Code for writing
interpreters in CF

S196

runerror("in %e, expected %d argument%s but found %d",
e, expected, expected == 1 ? "" : "s", actual);

}

If a list of names contains duplicates, duplicatename returns a duplicate. It is
used to detect duplicate names in lists of formal parameters. Its cost is quadratic
in the number of parameters, which for any reasonable function, should be very
fast.
S196a. 〈shared function prototypes S178b〉+≡ (S290) ◁ S195b S197a ▷

Name duplicatename(Namelist names);

S196b. 〈error.c S193b〉+≡ ◁ S195d
Name duplicatename(Namelist xs) {

if (xs != NULL) {
Name n = xs->hd;
for (Namelist tail = xs->tl; tail; tail = tail->tl)

if (n == tail->hd)
return n;

return duplicatename(xs->tl);
}
return NULL;

}

The tail call could be turned into a loop, but it hardly seems worth it. (Quirks of the
C standard prevent C compilers from optimizing all tail calls, but any good C com-
piler will identify and optimize a direct tail recursion like this one.)

F.5 TEST PROCESSING AND REPORTING

Code that runs unit tests has to call process_test, which is language-dependent.
That code is found in Appendices K and L. But the code that reports the results is
language-independent and is found here:
S196c. 〈tests.c S196c〉≡

void report_test_results(int npassed, int ntests) {
switch (ntests) {
case 0: break; /* no report */
case 1:

if (npassed == 1)
printf("The only test passed.\n");

else
printf("The only test failed.\n");

break;
case 2:

switch (npassed) {
case 0: printf("Both tests failed.\n"); break;
case 1: printf("One of two tests passed.\n"); break;
case 2: printf("Both tests passed.\n"); break;
default: assert(0); break;
}
break;

default:
if (npassed == ntests)

printf("All %d tests passed.\n", ntests);
else if (npassed == 0)

printf("All %d tests failed.\n", ntests);
else

printf("%d of %d tests passed.\n", npassed, ntests);
break;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.6
Stack-overflow

detection

S197

}
}

F.6 STACK-OVERFLOW DETECTION

If somebody writes a recursive Impcore or µScheme function that calls itself for-
ever, what should the interpreter do? An ordinary recursive eval would call itself
forever, and eventually the C code would run out of resources and would be ter-
minated. There s̓ a better way. My implementation of eval contains a hidden call
to a function called checkoverflow, which detects very deep recursion and calls
runerror.

The implementation uses C trickery with volatile variables: the address of a
volatile local variable c is used as a proxy for the stack pointer. (Because I spent
years writing compilers, I understand a little of how these things work.) The first
call to checkoverflow captures the stack pointer and stores as a “low-water mark.”
Each later call checks the current stack pointer against that low-water mark. If the
distance exceeds limit, checkoverflow calls runerror. Otherwise it returns the
distance.
S197a. 〈shared function prototypes S178b〉+≡ (S290) ◁ S196a S198b ▷

extern int checkoverflow(int limit);
extern void reset_overflow_check(void);

I assume that the stack grows downward.
S197b. 〈overflow.c S197b〉≡

static volatile char *low_water_mark = NULL;

#define N 600 /* fuel in units of 10,000 */

static int default_eval_fuel = N * 10000;
static int eval_fuel = N * 10000;
static bool throttled = 1;
static bool env_checked = 0;

int checkoverflow(int limit) {
volatile char c;
if (!env_checked) {

env_checked = 1;
const char *options = getenv("BPCOPTIONS");
if (options == NULL)

options = "";
throttled = strstr(options, "nothrottle") == NULL;

}
if (low_water_mark == NULL) {
low_water_mark = &c;
return 0;

} else if (low_water_mark - &c >= limit) {
runerror("recursion too deep");

} else if (throttled && eval_fuel-- <= 0) {
eval_fuel = default_eval_fuel;
runerror("CPU time exhausted");

} else {
return (low_water_mark - &c);

}
}

extern void reset_overflow_check(void) {

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Name 43b
type Namelist

43b
runerror 47

Code for writing
interpreters in CF

S198

eval_fuel = default_eval_fuel;
}

Here s̓ an example of a detected overflow:
S198a. 〈transcript S198a〉≡ S198e ▷

-> (define blowstack (n) (+ 1 (blowstack (- n 1))))
-> (blowstack 0)
Run-time error: recursion too deep

F.7 ARITHMETIC-OVERFLOW DETECTION

Unlike standard C arithmetic, the arithmetic in this book detects arithmetic over-
flow: an operation on 32-bit signed integers whose result cannot also be repre-
sented as a 32-bit signed integer. Such arithmetic is defined by the C standard as
“undefined behavior,” so our code needs to detect it before it might happen. Func-
tion checkarith does arithmetic using 64-bit integers, and if the result does not fit
in the specified number of bits, it triggers a checked run-time error.
S198b. 〈shared function prototypes S178b〉+≡ (S290) ◁ S197a S199a ▷

extern void checkarith(char operation, int32_t n, int32_t m, int precision);

Only addition, subtraction, multiplication, and division can cause overflow.
S198c. 〈arith.c S198c〉≡

void checkarith(char operation, int32_t n, int32_t m, int precision) {
int64_t nx = n;
int64_t mx = m;
int64_t result;
switch (operation) {
case '+': result = nx + mx; break;
case '-': result = nx - mx; break;
case '*': result = nx * mx; break;
case '/': result = mx != 0 ? nx / mx : 0; break;
default: return; /* other operations can't overflow */

}
〈if result cannot be represented using precision signed bits, signal overflow S198d〉

}

A 64-bit result fits in k bits if it is unchanged by sign-extending the least signif-
icant k bits. Sign extension is achieved by two shifts. According to the C standard,
shifts on int64_t are defined up to 63 bits.
S198d. 〈if result cannot be represented using precision signed bits, signal overflow S198d〉≡ (S198c)

assert(precision > 0 && precision < 64); // shifts are defined
if ((result << (64-precision)) >> precision != result) {
runerror("Arithmetic overflow");

}

Here s̓ an example of arithmetic overflow:
S198e. 〈transcript S198a〉+≡ ◁ S198a

-> (define one-bits (n) (if (= n 0) 0 (+ 1 (* 2 (one-bits (- n 1))))))
-> (one-bits 30)
1073741823
-> (one-bits 31)
2147483647
-> (one-bits 32)
Run-time error: Arithmetic overflow

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§F.8
Unicode support

S199

F.8 UNICODE SUPPORT

Unicode is a standard that attempts to describe all the world s̓ character sets. In
Unicode, a character is described by a “code point,” which is an unsigned integer.
Example code points include “capital A” (code point 65) and “capital Å with a circle
over it” (code point 197). Most character sets fit in the Basic Multilingual Plane,
whose code points can be expressed as 16-bit unsigned integers.

UTF-8 stands for “Unicode Transfer Format (8 bits).” UTF-8 is a variable-length
binary code in which each 16-bit code point is coded as a one-byte, two-byte, or
three-byte UTF-8 sequence. The coding of code points with values up to 65535 is as
follows:

hex binary UTF-8 binary
0000-007F 00000000 0abcdefg => 0abcdefg
0080-07FF 00000abc defghijk => 110abcde 10fghijk
0800-FFFF abcdefgh ijklmnop => 1110abcd 10efghij 10klmnop

010000-001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Code points from Western languages have short UTF-8 sequences: often one byte,
almost always two.

Here s̓ how we print Unicode characters.
S199a. 〈shared function prototypes S178b〉+≡ (S290) ◁ S198b

void fprint_utf8(FILE *output, unsigned code_point);
void print_utf8 (unsigned u);

This encoder supports code points of up to 21 bits.
S199b. 〈unicode.c S199b〉≡ S199c ▷

void fprint_utf8(FILE *output, unsigned code_point) {
if ((code_point & 0x1fffff) != code_point)

runerror("%d does not represent a Unicode code point", (int)code_point);
if (code_point > 0xffff) { // 21 bits

putc(0xf0 | (code_point >> 18), output);
putc(0x80 | ((code_point >> 12) & 0x3f), output);
putc(0x80 | ((code_point >> 6) & 0x3f), output);
putc(0x80 | ((code_point) & 0x3f), output);

} else if (code_point > 0x7ff) { // 16 bits
putc(0xe0 | (code_point >> 12), output);
putc(0x80 | ((code_point >> 6) & 0x3f), output);
putc(0x80 | ((code_point) & 0x3f), output);

} else if (code_point > 0x7f) { // 12 bits
putc(0xc0 | (code_point >> 6), output);
putc(0x80 | (code_point & 0x3f), output);

} else { // 7 bits
putc(code_point, output);

}
}

S199c. 〈unicode.c S199b〉+≡ ◁ S199b
void print_utf8(unsigned code_point) {

fprint_utf8(stdout, code_point);
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

runerror 47

CHAPTER CONTENTS
G.1 PLANNING AN EXTENSI-

BLE PARSER S202

G.2 COMPONENTS, REDUCE
FUNCTIONS, AND FORM
CODES S204

G.3 PARSER STATE AND
SHIFT FUNCTIONS S206

G.4 REPRESENTING AND
PARSING TABLES AND
ROWS S210

G.5 PARSING TABLES AND
FUNCTIONS S211

G.6 ERROR DETECTION AND
HANDLING S215

G.7 EXTENDING IMPCORE
WITH SYNTACTIC SUGAR S217

GParsing parenthesized phrases (including Impcore)
in C

A key step in the implementation of any programming language is the translation
from the concrete syntax that appears in the input to the abstract syntax of the lan-
guage in question. This translation is typically implemented in two steps: lexical
analysis groups related characters into tokens, and parsing translates a sequence of
tokens into one or more abstract-syntax trees. In the second part of this book, start-
ing with Chapter 5, interpreters are written in Standard ML, and they follow exactly
this model. But in the first part, where interpreters are written in C, we use a differ-
ent model: sequences of lines are turned into parenthesized phrases (Section F.1.2),
and these phrases are what is parsed into abstract syntax. The details are the sub-
ject of this chapter.

The implementation of a parser, although interesting, is not central to what I
hope you get out of this book. Parsing is an art and a science all its own, and it is
the subject of its own learned textbooks. Using parenthesized phrases enables us to
avoid the usual challenges and complexities. In their place, however, we have one
challenge that is central to what I hope you get out of this book—to get the most out
of the Exercises, you have to be able to add new syntactic forms. In the parser I de-
scribe below, adding new syntactic forms is relatively easy: you add new entries to
a couple of tables and a new case to a switch statement in a syntax-building func-
tion. But there is a cost: there s̓ a lot of infrastructure to understand. Infrastructure
is easier to understand if you can see how it s̓ used, so along with the general pars-
ing infrastructure, I present the code used to parse Impcore. But if you want to
avoid studying infrastructure and just get on with adding new syntax, jump to the
example and checklist in Section G.7 on page S217.

The parser in this appendix is easy for you to extend, and it happens to be rea-
sonably efficient, but regrettably, it is not simple. However, it is based on classic
ideas developed by Knuth (1965), so if you study it, you will have a leg up on the
“LR parsers” which so dominated the second half of the twentieth century.1

To make it as easy as possible for you to extend parsers, Iʼve split the code into
two files. File tableparsing.c contains code that can be reused. This file is not
only part of the Impcore interpreter but also part of interpreters for µScheme and
µScheme+. File parse.c contains code that is specific to the language being parsed
(here, Impcore). File tableparsing.c is never modified; if you want to extend a
language, you modify only code from parse.c.

1Given the severe memory constraints imposed by machines of the 1970s, LR-parser generators like
Yacc and Bison were brilliant innovations. In the 21st century, we have memory to burn, and you are
better off choosing a parsing technology that will enable you to spend more time getting work done and
less time engineering your grammar. But I digress.

S201
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Parsing
parenthesized
phrases in CG

S202

G.1 PLANNING AN EXTENSIBLE PARSER

A parser is a function that is given a Par and builds an abstract-syntax tree, which
it then returns. Each of the first three bridge languages (Impcore, µScheme, and
µScheme+) has two major syntactic categories, which means two types of abstract-
syntax trees, which means two parsers.
S202a. 〈shared function prototypes S202a〉≡ (S290) S202b ▷

Exp parseexp (Par p, Sourceloc source);
XDef parsexdef(Par p, Sourceloc source);

Each parser also takes a pointer to a source-code location, which it uses if it has to
report an error.

A parser gets a parenthesized phrase of type Par and builds an abstract-syntax
tree. In this appendix, I call the Par an input and the abstract-syntax tree a com-
ponent. Components include all the elements that go into an abstract-syntax trees;
in Impcore, a component can be a name, a list of names, an expression, or a list of
expressions.

Parsing begins with a look at the input, which is either an ATOM or a LIST of Pars.
And the interpretation of the input depends on whether we are parsing an Exp or
an XDef.

• If the input is an ATOM, we are parsing an expression (in Impcore, a VAR or
LITERAL expression), and the job of making it into an Exp is given to function
exp_of_atom, which is language-dependent.
S202b. 〈shared function prototypes S202a〉+≡ (S290) ◁ S202a S204c ▷

Exp exp_of_atom(Sourceloc loc, Name atom);

• If the input is a LIST, there are two possibilities: the first element of the list
is a reserved word, or it s̓ not.

– A reserved word like val or define identifies the input as a true defini-
tion.
A reserved word like use or check-expect identifies the input as an ex-
tended definition.
A reserved word like set or if identifies the form as an expression.

– If there s̓ no reserved word, the input must be a function application.
(Consult any grammar and youʼll see there s̓ no other choice.)

The LIST inputs require all the technology.

Once the parser sees a keyword, it knows what it s̓ looking for. Each keyword
specifies the construction of a node in an abstract-syntax tree, and the remaining
inputs in the list are parsed to build the children of that node. The specifications are
shown in Tables G.1 and G.2. Lack of a keyword is also a specification; the final row
in the expression table means “if youʼre looking for an expression and you donʼt see
an expression keyword, the input must be a function application.” In the extended-
definition table, it means “if youʼre looking for an extended definition and you donʼt
see an extended-definition keyword, the input must be a top-level expression.”

A parsing function like parseexp or parsexdef is organized around the left-to-
right conversion of Pars to components.

Parsing is organized around syntactic forms. Each syntactic form comes with
its own form of abstract syntax, but they have a lot of structure in common. On
the abstract side, each syntactic form has components and is created with a build
function. For example, a set expression has two components (a name and an ex-
pression) and is built with mkSet. As another example, an if expression has three
components, all of which are expresssions, and is built with mkIfx. Each syntactic
form is identified by a small-integer code, like SET or IFX.

On the concrete side, forms are a little more diverse.Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.1
Planning an

extensible parser

S203

Keyword Code Components

set SET name, exp
if IFX exp, exp, exp
while WHILEX exp, exp
begin BEGIN list of exp

— APPLY name, list of exp

Table G.1: Parsing table for Impcore expressions

Keyword Code Components

val (not shown) name, exp
define (not shown) name, (not shown), exp
use (not shown) name
check-expect (not shown) exp, exp
check-assert (not shown) exp
check-error (not shown) exp

— (not shown) exp

Table G.2: Parsing table for Impcore extended definitions

• Some forms, like VAR or LITERAL, are written syntactically using a single
atom.

• Most forms, including SET and IF, are written syntactically as a sequence of
Pars wrapped in parentheses. And with one exception, the first of these Pars
is a keyword, like set or if. The exception is the function-application form.
(For the extended definitions, the exception is the the top-level expression
form—a top-level expression may begin with a keyword, but it s̓ a keyword
that the extended-definition parser wonʼt recognize.)

With these properties in mind, here is my plan:

1. There will be two parsers: one for expressions and one for extended defini-
tions.

2. If a parser sees an atom, it must know what to do.

3. If a parser sees a parenthesized Parlist, it will consult a table of rows.

• Each row knows how to parse one syntactic form. What does it mean
“to know how to parse”? The row begins with a keyword that the parser
should look for. The row also includes an integer code that identifies
the form, and finally, the row lists the components of the form. To see
some example rows, look at the parsing table for Impcore, in Table G.1.

• A row matches an input Parlist if the row s̓ keyword is equal to the first
element of the Parlist. The parser proceeds through the rows looking
for one that matches its input.

4. Once the parser finds the right row, it gets each component from the input
Parlist, then checks to make sure there are no leftover inputs. Finally it

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
exp_of_atom,

in Impcore S212c
in µScheme (in

GC?!)
S318a

type Name 43b
type Par A
parseexp S212b
parsexdef S213d
type Sourceloc

S289d
type XDef A

Parsing
parenthesized
phrases in CG

S204

passes the components and the integer code to a reduce function. Impcore
uses two such functions: reduce_to_exp and reduce_to_xdef. Each of these
functions takes a sequence of components and reduces it to a single node in
an abstract-syntax tree. (The name reduce comes from shift-reduce parsing,
which refers to a family of parsing techniques of which my parsers are mem-
bers.)

Iʼve designed the parser to work this way so that you can easily add new syntactic
forms. It s̓ as simple as adding a row to a table and a case to a reduce function.
In more detail,

1. Decide whether you wish to add an expression form or a definition form.
That will tell you what table and reduce function to modify. For exam-
ple, if you want to add a new expression form, modify exptable and
reduce_to_exp.

2. Choose a keyword and an unused integer code. As shown below, codes for
extended definitions have to be chosen with a little care.

3. Add a row to your chosen table.

4. Add a case to your chosen reduce function.

I think youʼll like being able to extend languages so easily, but there s̓ a cost—the
table-driven parser needs a lot of infrastructure. That infrastructure, which lives
in file parse.c, is described below.
S204a. 〈tableparsing.c S204a〉≡ S207a ▷

〈private function prototypes for parsing S209b〉

G.2 COMPONENTS, REDUCE FUNCTIONS, AND FORM CODES

A parser consumes inputs and puts components into an array. (Inputs are Pars and
components are abstract syntax.) A reduce function takes the components in the
array and reduces the them to a single node an even bigger abstract-syntax tree
(which may then be stored as a component in another array). “Reduction” is done
by applying the build function for the node to the components that are reduced.
In Impcore, a component is an expression, a list of expressions, a name, or a list of
names.
S204b. 〈structure definitions for Impcore S204b〉≡ (S290)

struct Component {
Exp exp;
Explist exps;
Name name;
Namelist names;

};

If youʼre a seasoned C programmer, you might think that the “right” representa-
tion of the component abstraction is a union, not a struct. But unions are un-
safe. By using a struct, I give myself a fighting chance to debug the code. If I make
a mistake and pick the wrong component, a memory-checking tool like Valgrind
(Section 4.9 on page 292) will detect the error.

The standard reduce functions arereduce_to_exp andreduce_to_xdef. The first
argument codes for what kind of node the components should be reduced to;
the second argument points to an array that holds the components.
S204c. 〈shared function prototypes S202a〉+≡ (S290) ◁ S202b S207b ▷

Exp reduce_to_exp (int alt, struct Component *components);
XDef reduce_to_xdef(int alt, struct Component *components);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.2
Components,

reduce functions,
and form codes

S205

As an example, here s̓ the reduce function for Impcore expressions:
S205a. 〈parse.c S205a〉≡ S205d ▷

Exp reduce_to_exp(int code, struct Component *components) {
switch(code) {
case SET: return mkSet (components[0].name, components[1].exp);
case IFX: return mkIfx (components[0].exp, components[1].exp,

components[2].exp);
case WHILEX: return mkWhilex(components[0].exp, components[1].exp);
case BEGIN: return mkBegin (components[0].exps);
case APPLY: return mkApply (components[0].name, components[1].exps);
〈cases for Impcore’s reduce_to_exp added in exercises S205b〉
default: assert(0); /* incorrectly configured parser */
}

}

To extend this function, just add more cases in the spot marked 〈cases for Impcore’s
reduce_to_exp added in exercises S205b〉.
S205b. 〈cases for Impcore’s reduce_to_exp added in exercises S205b〉≡ (S205a) S218a ▷

/* add your syntactic extensions here */

The trickiest part of writing a reduce function is figuring out the integer codes.
Codes for expressions are easy: all expressions are represented by abstract syn-
tax of the same C type, so we already have the perfect codes—the C enumeration
literals used in the alt field of an Exp. Codes for extended definitions are more
complicated: sometimes an extended definition is an XDef directly, but more of-
ten it is a Def or a UnitTest. And unfortunately, the alt fields for all three forms
overlap. For example, code 1 means EXP as a Def, CHECK_ERROR as a UnitTest, and
USE as an XDef. All three of these forms are ultimately extended definitions, so to
distinguish among them, we need a more elaborate coding scheme. Here it is:

Code Range In C Meaning

0–99 ANEXP(alt) Expressions
100–199 ADEF(alt) Definitions
200–299 ATEST(alt) Unit tests
300–399 ANXDEF(alt) Other extended definitions
400–499 ALET(alt) LET expressions used in Chapter 2
500–599 SUGAR(alt) Syntactic sugar

1000 LATER Syntax used in a later chapter
1001 EXERCISE Syntax to be added for an Exercise

In the table, alt stands for an enumeration literal of the sort to go in an alt field.
To enable the codes to appear as cases in switch statements, I define them using

C macros:
S205c. 〈macro definitions used in parsing S205c〉≡ (S290)

#define ANEXP(ALT) (0+(ALT))
#define ADEF(ALT) (100+(ALT))
#define ATEST(ALT) (200+(ALT))
#define ANXDEF(ALT) (300+(ALT))
#define ALET(ALT) (400+(ALT))
#define SUGAR(CODE) (500+(CODE))
#define LATER 1000
#define EXERCISE 1001

With the codes in place, I can write the reduce function for extended defini-
tions.
S205d. 〈parse.c S205a〉+≡ ◁ S205a S212a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
type Explist S288c
mkApply A
mkBegin A
mkCheckAssert

A
mkCheckErrorA
mkCheckExpect

A
mkDef A
mkDefine S287
mkExp S287
mkIfx A
mkSet A
mkTest A
mkUse A
mkUserfun S287
mkVal S287
mkWhilex A
type Name 43b
type Namelist

43b
reduce_to_exp,
in µScheme S314d
in µScheme (in

GC?!)
S360b

reduce_to_xdef
S315a

type XDef A

Parsing
parenthesized
phrases in CG

S206

XDef reduce_to_xdef(int alt, struct Component *comps) {
switch(alt) {
case ADEF(VAL): return mkDef(mkVal(comps[0].name, comps[1].exp));
case ADEF(DEFINE): return mkDef(mkDefine(comps[0].name,

mkUserfun(comps[1].names, comps[2].exp)));
case ANXDEF(USE): return mkUse(comps[0].name);
case ATEST(CHECK_EXPECT):

return mkTest(mkCheckExpect(comps[0].exp, comps[1].exp));
case ATEST(CHECK_ASSERT):

return mkTest(mkCheckAssert(comps[0].exp));
case ATEST(CHECK_ERROR):

return mkTest(mkCheckError(comps[0].exp));
case ADEF(EXP): return mkDef(mkExp(comps[0].exp));
default: assert(0); /* incorrectly configured parser */

return NULL;
}

}

G.3 PARSER STATE AND SHIFT FUNCTIONS

A table-driven parser converts an input Parlist into components. There are at
most MAXCOMPS components. (The value of MAXCOMPS must be at least the number
of children that can appear in any node of any abstract-syntax tree. To support Ex-
ercise 30 on page 88, which has four components in the define form, I set MAXCOMPS
to 4.) Inputs and components both go into a data structure. And if no programmer
ever made a mistake, inputs and components would be enough. But because pro-
grammers do make mistakes, the data structure includes additional context, which
can be added to an error message. The context I use includes the syntax we are try-
ing to parse, the location where it came from, and if there s̓ a keyword or function
name involved, what it is.
S206a. 〈shared structure definitions S206a〉≡ (S290) S210d ▷

#define MAXCOMPS 4 /* max # of components in any syntactic form */
struct ParserState {

int nparsed; /* number of components parsed so far */
struct Component components[MAXCOMPS]; /* those components */
Parlist input; /* the part of the input not yet parsed */

struct ParsingContext { /* context of this parse */
Par par; /* the original thing we are parsing */
struct Sourceloc {

int line; /* current line number */
const char *sourcename; /* where the line came from */

} *source;
Name name; /* a keyword, or name of a function being defined */

} context;
};

The important invariant of this data structure is that components[i] is meaningful
if and only if 0 ≤ i < nparsed.

I define type abbreviations for ParserState and ParsingContext.
S206b. 〈shared type definitions S206b〉≡ (S290) S207c ▷

typedef struct ParserState *ParserState;
typedef struct ParsingContext *ParsingContext;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.3
Parser state and
shift functions

S207

When we create a new parser state, all we know is what Par weʼre trying to
parse. That gives us the input and part of the context. The output is empty.
S207a. 〈tableparsing.c S204a〉+≡ ◁ S204a S208a ▷

struct ParserState mkParserState(Par p, Sourceloc source) {
assert(p->alt == LIST);
assert(source != NULL && source->sourcename != NULL);
struct ParserState s;
s.input = p->list;
s.context.par = p;
s.context.source = source;
s.context.name = NULL;
s.nparsed = 0;
return s;

}

S207b. 〈shared function prototypes S202a〉+≡ (S290) ◁ S204c S207e ▷
struct ParserState mkParserState(Par p, Sourceloc source);

Each form of component is parsed by its own shift function. Why “shift”? Think
of the ParserState as the state of a machine that puts components on the left and
the input on the right. A shift function removes initial inputs and appends to com-
ponents; this action “shifts” information from right to left. Shifting plays a role in
several varieties of parsing technology.

A shift function normally updates the inputs and components in the parser
state. A shift function also returns one of these results:
S207c. 〈shared type definitions S206b〉+≡ (S290) ◁ S206b S207d ▷

typedef enum ParserResult {
PARSED, /* some input was parsed without any errors */
INPUT_EXHAUSTED, /* there aren't enough inputs */
INPUT_LEFTOVER, /* there are too many inputs */
BAD_INPUT, /* an input wasn't what it should have been */
STOP_PARSING /* all the inputs have been parsed; it's time to stop */

} ParserResult;

When a shift function runs out of input or sees input left over, it returnsINPUT_EXHAUSTED
or INPUT_LEFTOVER. Returning one of these error results is better than simply call-
ing synerror, because the calling function knows what row it s̓ trying to parse and
so can issue a better error message. But for other error conditions, shift functions
can call synerror directly.

The C type of a shift function is ShiftFun.
S207d. 〈shared type definitions S206b〉+≡ (S290) ◁ S207c S211b ▷

typedef ParserResult (*ShiftFun)(ParserState);

Here are the four basic shift functions.
S207e. 〈shared function prototypes S202a〉+≡ (S290) ◁ S207b S208b ▷

ParserResult sExp (ParserState state); /* shift 1 input into Exp */
ParserResult sExps (ParserState state); /* shift all inputs into Explist */
ParserResult sName (ParserState state); /* shift 1 input into Name */
ParserResult sNamelist(ParserState state); /* shift 1 input into Namelist */

The names are abbreviated because I represent a syntactic form’s components as an
array of shift functions. This dirty trick is inspired by the functional-programming
techniques described in Chapter 2. But we donʼt need those techniques just yet.
For now, let s̓ just implement shift functions.

The shift operation itself is implemented in two halves. The first half removes
an input and ensures that there is room for a component. The second half writes

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Name 43b
type Par A
type Parlist S181b
sExp S208c
sExps S208d
sName S208f
sNamelist S209a
type Sourceloc

S289d

Parsing
parenthesized
phrases in CG

S208

the component and updates nparsed. The first half is the same for every shift func-
tion, and it looks like this:
S208a. 〈tableparsing.c S204a〉+≡ ◁ S207a S208c ▷

void halfshift(ParserState s) {
assert(s->input);
s->input = s->input->tl;
assert(s->nparsed < MAXCOMPS);

}

S208b. 〈shared function prototypes S202a〉+≡ (S290) ◁ S207e S208e ▷
void halfshift(ParserState state); /* advance input, check for room in output */

Here s̓ a full shift for an expression. It calls parseexp, with which it is mutually
recursive.
S208c. 〈tableparsing.c S204a〉+≡ ◁ S208a S208d ▷

ParserResult sExp(ParserState s) {
if (s->input == NULL) {

return INPUT_EXHAUSTED;
} else {

Par p = s->input->hd;
halfshift(s);
s->components[s->nparsed++].exp = parseexp(p, s->context.source);
return PARSED;

}
}

Function sExps converts the entire input into an Explist. The halfshift isnʼt
useful here. And a NULL input is OK; it just parses into an empty Explist.
S208d. 〈tableparsing.c S204a〉+≡ ◁ S208c S208f ▷

ParserResult sExps(ParserState s) {
Explist es = parseexplist(s->input, s->context.source);
assert(s->nparsed < MAXCOMPS);
s->input = NULL;
s->components[s->nparsed++].exps = es;
return PARSED;

}

Function parseexplist is defined below with the other parsing functions.
S208e. 〈shared function prototypes S202a〉+≡ (S290) ◁ S208b S208g ▷

Explist parseexplist(Parlist p, Sourceloc source);

Function sName is structured just like sExp; the only difference is that where
sExp calls parseexp, sName calls parsename.
S208f. 〈tableparsing.c S204a〉+≡ ◁ S208d S209a ▷

ParserResult sName(ParserState s) {
if (s->input == NULL) {

return INPUT_EXHAUSTED;
} else {

Par p = s->input->hd;
halfshift(s);
s->components[s->nparsed++].name = parsename(p, &s->context);
return PARSED;

}
}

Notice that parsename, which is defined below, takes the current context as an ex-
tra parameter. That context enables parsename to give a good error message if it
encounters an input that is not a valid name.
S208g. 〈shared function prototypes S202a〉+≡ (S290) ◁ S208e S209d ▷

Name parsename(Par p, ParsingContext context);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.3
Parser state and
shift functions

S209

A Namelist appears in parenthesis and is used only in the define form.
S209a. 〈tableparsing.c S204a〉+≡ ◁ S208f S209c ▷

ParserResult sNamelist(ParserState s) {
if (s->input == NULL) {

return INPUT_EXHAUSTED;
} else {

Par p = s->input->hd;
switch (p->alt) {
case ATOM:

synerror(s->context.source, "%p: usage: (define fun (formals) body)",
s->context.par);

case LIST:
halfshift(s);
s->components[s->nparsed++].names = parsenamelist(p->list, &s->context);
return PARSED;

}
assert(0);

}
}

S209b. 〈private function prototypes for parsing S209b〉≡ (S204a) S211f ▷
static Namelist parsenamelist(Parlist ps, ParsingContext context);

These shift functions arenʼt used just to move information from input to com-
ponents. A sequence of shift functions represents what components are expected to
be part of a syntactic form. (This technique of using functions as data is developed
at length in Chapter 2.) To parse a syntactic form, I call the functions in sequence.
As an end-of-sequence marker, I use the function stop. It checks to be sure all in-
put is consumed and signals that it is time to stop parsing. Unlike the other shift
functions, it does not change the state.
S209c. 〈tableparsing.c S204a〉+≡ ◁ S209a S209e ▷

ParserResult stop(ParserState state) {
if (state->input == NULL)

return STOP_PARSING;
else

return INPUT_LEFTOVER;
}

S209d. 〈shared function prototypes S202a〉+≡ (S290) ◁ S208g S209f ▷
ParserResult stop(ParserState state);

Finally, I have a special shift function that doesnʼt do any shifting. Instead, it
sets the context for parsing a function definition. Right after calling sName with the
function name, I call setcontextname.
S209e. 〈tableparsing.c S204a〉+≡ ◁ S209c S210a ▷

ParserResult setcontextname(ParserState s) {
assert(s->nparsed > 0);
s->context.name = s->components[s->nparsed-1].name;
return PARSED;

}

S209f. 〈shared function prototypes S202a〉+≡ (S290) ◁ S209d S210c ▷
ParserResult setcontextname(ParserState state);

Exercise 30 asks you to add local variables to Impcore. Shift function sLocals
looks for the keyword locals. If found, the keyword marks a list of the names of
local variables. This list of names is shifted into the s->components array. If the

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Explist,
in Impcore S288c
in µScheme (in

GC?!)
S303b

type Name 43b
type Namelist

43b
type Par A
type Parlist S181b
parseexp S202a
parseexplistS214d
parsename S214c
parsenamelist

S214e
type ParserResult

S207c
type ParserState

S206b
type

ParsingContext
S206b

type Sourceloc
S289d

synerror 48a

Parsing
parenthesized
phrases in CG

S210

keyword locals is not found, there are no local variables, and a NULL pointer is
shifted into the s->components array.
S210a. 〈tableparsing.c S204a〉+≡ ◁ S209e S210e ▷

ParserResult sLocals(ParserState s) {
Par p = s->input ? s->input->hd : NULL; // useful abbreviation
if (〈Par p represents a list beginning with keyword locals S210b〉) {

struct ParsingContext context;
context.name = strtoname("locals");
context.par = p;
halfshift(s);
s->components[s->nparsed++].names = parsenamelist(p->list->tl, &context);
return PARSED;

} else {
s->components[s->nparsed++].names = NULL;
return PARSED;

}
}

The keyword test is just complicated enough that it warrants being put in a
named code chunk.
S210b. 〈Par p represents a list beginning with keyword locals S210b〉≡ (S210a)

p != NULL && p->alt == LIST && p->list != NULL &&
p->list->hd->alt == ATOM && p->list->hd->atom == strtoname("locals")

S210c. 〈shared function prototypes S202a〉+≡ (S290) ◁ S209f S211a ▷
ParserResult sLocals(ParserState state); // shift locals if (locals x y z ...)

G.4 REPRESENTING AND PARSING TABLES AND ROWS

As shown in Tables G.1 and G.2 on page S203, a row needs a keyword, a code, and a
sequence of components. The sequence of components is represented as an array
of shift functions ending in stop.
S210d. 〈shared structure definitions S206a〉+≡ (S290) ◁ S206a

struct ParserRow {
const char *keyword;
int code;
ShiftFun *shifts; /* points to array of shift functions */

};

To parse an input using a row, function rowparse calls shift functions until a
shift function says to stop—or detects an error.
S210e. 〈tableparsing.c S204a〉+≡ ◁ S210a S211c ▷

void rowparse(struct ParserRow *row, ParserState s) {
ShiftFun *f = &row->shifts[0];

for (;;) {
ParserResult r = (*f)(s);
switch (r) {
case PARSED: f++; break;
case STOP_PARSING: return;
case INPUT_EXHAUSTED:
case INPUT_LEFTOVER:
case BAD_INPUT: usage_error(row->code, r, &s->context);
}

}
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.5
Parsing tables and

functions

S211

S211a. 〈shared function prototypes S202a〉+≡ (S290) ◁ S210c S211d ▷

void rowparse(struct ParserRow *table, ParserState s);
void usage_error(int alt, ParserResult r, ParsingContext context);

The usage_error function is discussed below. Meanwhile, rowparse is called
by tableparse, which looks for a keyword in the input, and if it finds one, uses the
matching row to parse. Otherwise, it uses the final row, which it identifies by the
NULL keyword.
S211b. 〈shared type definitions S206b〉+≡ (S290) ◁ S207d S217a ▷

typedef struct ParserRow *ParserTable;

S211c. 〈tableparsing.c S204a〉+≡ ◁ S210e S211e ▷
struct ParserRow *tableparse(ParserState s, ParserTable t) {

if (s->input == NULL)
synerror(s->context.source, "%p: unquoted empty parentheses", s->context.par);

Name first = s->input->hd->alt == ATOM ? s->input->hd->atom : NULL;
// first Par in s->input, if it is present and an atom

unsigned i; // to become the index of the matching row in ParserTable t
for (i = 0; !rowmatches(&t[i], first); i++)

;
〈adjust the state s so it’s ready to start parsing using row t[i] S211g〉
rowparse(&t[i], s);
return &t[i];

}

S211d. 〈shared function prototypes S202a〉+≡ (S290) ◁ S211a S214b ▷

struct ParserRow *tableparse(ParserState state, ParserTable t);

A row matches if the row s̓ keyword is NULL or if the keyword stands for the same
name as first.
S211e. 〈tableparsing.c S204a〉+≡ ◁ S211c S212b ▷

static bool rowmatches(struct ParserRow *row, Name first) {
return row->keyword == NULL || strtoname(row->keyword) == first;

}

S211f. 〈private function prototypes for parsing S209b〉+≡ (S204a) ◁ S209b S216c ▷
static bool rowmatches(struct ParserRow *row, Name first);

Once a row has matched, what we do with it depends on whether it was a NULL
match or a keyword match. If row t[i] has a keyword, then the first Par in the
input is that keyword, and it needs to be consumed—so we adjust s->input. And
we set the context.
S211g. 〈adjust the state s so it’s ready to start parsing using row t[i] S211g〉≡ (S211c)

if (t[i].keyword) {
assert(first != NULL);
s->input = s->input->tl;
s->context.name = first;

}

G.5 PARSING TABLES AND FUNCTIONS

Every language has two parsing tables: one for expressions and one for extended
definitions.
S211h. 〈declarations of global variables used in lexical analysis and parsing S211h〉≡ (S290) S215b ▷

extern struct ParserRow exptable[];
extern struct ParserRow xdeftable[];

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

halfshift S208b
type Name 43b
type Par A
parsenamelist

S209b
type ParserResult

S207c
type ParserState

S206b
type

ParsingContext
S206b

type ShiftFun
S207d

strtoname 43c
synerror 48a
usage_error S215d

Parsing
parenthesized
phrases in CG

S212

Here, as promised from Table G.1 on page S203, is exptable: the parsing table
for Impcore expressions. Each row of exptable refers to an array of shift functions,
which must be defined separately and given its own name.
S212a. 〈parse.c S205a〉+≡ ◁ S205d S212c ▷

static ShiftFun setshifts[] = { sName, sExp, stop };
static ShiftFun ifshifts[] = { sExp, sExp, sExp, stop };
static ShiftFun whileshifts[] = { sExp, sExp, stop };
static ShiftFun beginshifts[] = { sExps, stop };
static ShiftFun applyshifts[] = { sName, sExps, stop };

〈arrays of shift functions added to Impcore in exercises S213a〉

struct ParserRow exptable[] = {
{ "set", SET, setshifts },
{ "if", IFX, ifshifts },
{ "while", WHILEX, whileshifts },
{ "begin", BEGIN, beginshifts },
〈rows added to Impcore’s exptable in exercises S213b〉
{ NULL, APPLY, applyshifts } /* must come last */

};

And here is the corresponding parsing function. The parsing function del-
egates the heavy lifting to other functions: exp_of_atom deals with atoms, and
tableparse and reduce_to_exp deal with lists.
S212b. 〈tableparsing.c S204a〉+≡ ◁ S211e S213c ▷

Exp parseexp(Par p, Sourceloc source) {
switch (p->alt) {
case ATOM:

〈if p->atom is a reserved word, call synerror with source S215a〉
return exp_of_atom(source, p->atom);

case LIST:
{ struct ParserState s = mkParserState(p, source);

struct ParserRow *row = tableparse(&s, exptable);
if (row->code == EXERCISE) {

synerror(source, "implementation of %n is left as an exercise",
s.context.name);

} else {
Exp e = reduce_to_exp(row->code, s.components);
check_exp_duplicates(source, e);
return e;

}
}

}
assert(0);

}

In later chapters, functionparseexp is resued with different versions ofexp_of_atom,
exptable, and reduce_to_exp.

In Impcore, exp_of_atom classifies each atom as either an integer literal or a
variable.
S212c. 〈parse.c S205a〉+≡ ◁ S212a S215c ▷

Exp exp_of_atom(Sourceloc loc, Name atom) {
const char *s = nametostr(atom);
char *t; // to point to the first non-digit in s
long l = strtol(s, &t, 10);
if (*t != '\0') // the number is just a prefix

return mkVar(atom);
else if (((l == LONG_MAX || l == LONG_MIN) && errno == ERANGE) ||

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.5
Parsing tables and

functions

S213

l > (long)INT32_MAX || l < (long)INT32_MIN)
{

synerror(loc, "arithmetic overflow in integer literal %s", s);
return NULL; // unreachable

} else { // the number is the whole atom, and not too big
return mkLiteral(l);

}
}

More syntax can be added in exercises.
S213a. 〈arrays of shift functions added to Impcore in exercises S213a〉≡ (S212a) S218b ▷

/* for each new row added to exptable, add an array of shift functions here */

S213b. 〈rows added to Impcore’s exptable in exercises S213b〉≡ (S212a) S218c ▷
/* add a row here for each new syntactic form of Exp */

Next, here are the parsing table and function for extended definitions. The
extended-definition table is shared among several languages. Because it is shared,
I put it in tableparsing.c, not in parse.c.
S213c. 〈tableparsing.c S204a〉+≡ ◁ S212b S213d ▷

static ShiftFun valshifts[] = { sName, sExp, stop };
static ShiftFun defineshifts[] = { sName, setcontextname, sNamelist, sExp, stop };
static ShiftFun useshifts[] = { sName, stop };
static ShiftFun checkexpshifts[] = { sExp, sExp, stop };
static ShiftFun checkassshifts[] = { sExp, stop };
static ShiftFun checkerrshifts[] = { sExp, stop };
static ShiftFun expshifts[] = { use_exp_parser };

void extendDefine(void) { defineshifts[3] = sExps; }

struct ParserRow xdeftable[] = {
{ "val", ADEF(VAL), valshifts },
{ "define", ADEF(DEFINE), defineshifts },
{ "use", ANXDEF(USE), useshifts },
{ "check-expect", ATEST(CHECK_EXPECT), checkexpshifts },
{ "check-assert", ATEST(CHECK_ASSERT), checkassshifts },
{ "check-error", ATEST(CHECK_ERROR), checkerrshifts },
〈rows added to xdeftable in exercises S218e〉
{ NULL, ADEF(EXP), expshifts } /* must come last */

};

S213d. 〈tableparsing.c S204a〉+≡ ◁ S213c S214a ▷
XDef parsexdef(Par p, Sourceloc source) {

switch (p->alt) {
case ATOM:

return mkDef(mkExp(parseexp(p, source)));
case LIST:;

struct ParserState s = mkParserState(p, source);
struct ParserRow *row = tableparse(&s, xdeftable);
XDef d = reduce_to_xdef(row->code, s.components);
if (d->alt == DEF)

check_def_duplicates(source, d->def);
return d;

}
assert(0);

}

The case for a top-level EXP node has just one component, an Exp. I canʼt use
sExphere, because that consumes just a single item from the input, as an Exp. What
I need is to treat the entire input as an Exp. Shift function use_exp_parser does the

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

check_def_
duplicates

S217c
check_exp_

duplicates
S217c

type Exp A
exp_of_atom S202b
exptable S211h
mkDef A
mkExp,
in Impcore S287
in µScheme (in

GC?!)
A

mkLiteral A
mkParserState

S207b
mkVar A
type Name 43b
nametostr 43c
type Par A
parseexp S202a
reduce_to_exp

S204c
reduce_to_xdef

S204c
setcontextname

S209f
sExp S207e
sExps S207e
type ShiftFun

S207d
sName S207e
sNamelist S207e
type Sourceloc

S289d
stop S209d
synerror 48a
tableparse S211d
use_exp_parser

S214b
type XDef A
xdeftable S211h

Parsing
parenthesized
phrases in CG

S214

work. This function ignores s->input; instead it uses s->context.par, which gets
passed to parseexp.
S214a. 〈tableparsing.c S204a〉+≡ ◁ S213d S214c ▷

ParserResult use_exp_parser(ParserState s) {
Exp e = parseexp(s->context.par, s->context.source);
halfshift(s);
s->components[s->nparsed++].exp = e;
return STOP_PARSING;

}

S214b. 〈shared function prototypes S202a〉+≡ (S290) ◁ S211d S217b ▷

ParserResult use_exp_parser(ParserState state);

Whenever I expect a name, I actually parse a full expression. Then, if it isnʼt a
name, I complain. This technique allows maximum latitude in case the program-
mer makes a mistake. The error-handling function name_error is described below.
S214c. 〈tableparsing.c S204a〉+≡ ◁ S214a S214d ▷

Name parsename(Par p, ParsingContext context) {
Exp e = parseexp(p, context->source);
if (e->alt != VAR)

return name_error(p, context);
else

return e->var;
}

In addition to the two main parsing functions, there are others. A list of expres-
sions is parsed recursively.
S214d. 〈tableparsing.c S204a〉+≡ ◁ S214c S214e ▷

Explist parseexplist(Parlist input, Sourceloc source) {
if (input == NULL) {

return NULL;
} else {

Exp e = parseexp (input->hd, source);
Explist es = parseexplist(input->tl, source);
return mkEL(e, es);

}
}

A list of names is also parsed recursively, with context information in case of
an error.
S214e. 〈tableparsing.c S204a〉+≡ ◁ S214d S215d ▷

static Namelist parsenamelist(Parlist ps, ParsingContext context) {
if (ps == NULL) {

return NULL;
} else {

Exp e = parseexp(ps->hd, context->source);
if (e->alt != VAR)

synerror(context->source,
"in %p, formal parameters of %n must be names, "
"but %p is not a name", context->par, context->name, ps->hd);

return mkNL(e->var, parsenamelist(ps->tl, context));
}

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.6
Error detection
and handling

S215

G.6 ERROR DETECTION AND HANDLING

My code handles four classes of errors: misuse of a reserved word like if or while,
wrong number of components, failure to deliver a name when a name is expected,
and a duplicate name where distinct names are expected.

Misuse of reserved words is detected by the following check, which prevents
such oddities as a user-defined function named if. A word is reserved if it appears
in exptable or xdeftable.
S215a. 〈if p->atom is a reserved word, call synerror with source S215a〉≡ (S212b)

for (struct ParserRow *entry = exptable; entry->keyword != NULL; entry++)
if (p->atom == strtoname(entry->keyword))

synerror(source, "%n is a reserved word and may not be used "
"to name a variable or function", p->atom);

for (struct ParserRow *entry = xdeftable; entry->keyword != NULL; entry++)
if (p->atom == strtoname(entry->keyword))

synerror(source, "%n is a reserved word and may not be used "
"to name a variable or function", p->atom);

When a parser sees input with the wrong number of components, as in
(if p (set x 5)) or (set x y z), it calls usage_error with a code, a ParserResult,
and a context. The code is looked up in usage_table, which contains a sample
string showing what sort of syntax was expected.
S215b. 〈declarations of global variables used in lexical analysis and parsing S211h〉+≡ (S290) ◁ S211h

extern struct Usage {
int code; /* codes for form in reduce_to_exp or reduce_to_xdef */
const char *expected; /* shows the expected usage of the identified form */

} usage_table[];

S215c. 〈parse.c S205a〉+≡ ◁ S212c S217d ▷

struct Usage usage_table[] = {
{ ADEF(VAL), "(val x e)" },
{ ADEF(DEFINE), "(define fun (formals) body)" },
{ ANXDEF(USE), "(use filename)" },
{ ATEST(CHECK_EXPECT), "(check-expect exp-to-run exp-expected)" },
{ ATEST(CHECK_ASSERT), "(check-assert exp)" },
{ ATEST(CHECK_ERROR), "(check-error exp)" },
{ SET, "(set x e)" },
{ IFX, "(if cond true false)" },
{ WHILEX, "(while cond body)" },
{ BEGIN, "(begin exp ... exp)" },
〈Impcore usage_table entries added in exercises S218d〉
{ -1, NULL } /* marks end of table */

};

Strictly speaking, if you add new syntax to a language, you should extend not only
the parsing table and the reduce function, but also the usage_table. If there is no
usage string for a given code, function usage_error canʼt say what the expected
usage is.
S215d. 〈tableparsing.c S204a〉+≡ ◁ S214e S216a ▷

void usage_error(int code, ParserResult why_bad, ParsingContext context) {
for (struct Usage *u = usage_table; u->expected != NULL; u++)

if (code == u->code) {
const char *message;
switch (why_bad) {
case INPUT_EXHAUSTED:

message = "too few components in %p; expected %s";
break;

case INPUT_LEFTOVER:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
type Explist,
in Impcore S288c
in µScheme (in

GC?!)
S303b

halfshift S208b
mkEL A
mkNL A
type Name 43b
name_error S216c
type Namelist

43b
type Par A
type Parlist S181b
parseexp S202a
parseexplistS208e
parsenamelist

S209b
type ParserResult

S207c
type ParserState

S206b
type

ParsingContext
S206b

type Sourceloc
S289d

synerror 48a

Parsing
parenthesized
phrases in CG

S216

message = "too many components in %p; expected %s";
break;

default:
message = "badly formed input %p; expected %s";
break;

}
synerror(context->source, message, context->par, u->expected);

}
synerror(context->source, "something went wrong parsing %p", context->par);

}

Finally, if a name was expected but we saw something else instead, the parser
calls name_error. The error message says more about what went wrong and what
the context is. To make extending name_error as easy as possible, I first convert
the offending name to an integer code, so that the proper code can be chosen using
a switch statement.
S216a. 〈tableparsing.c S204a〉+≡ ◁ S215d S216b ▷

void *name_error(Par bad, struct ParsingContext *c) {
switch (code_of_name(c->name)) {
case ADEF(VAL):

synerror(c->source, "in %p, expected (val x e), but %p is not a name",
c->par, bad);

case ADEF(DEFINE):
synerror(c->source, "in %p, expected (define f (x ...) e), but %p is not a name",

c->par, bad);
case ANXDEF(USE):

synerror(c->source, "in %p, expected (use filename), but %p is not a filename",
c->par, bad);

case SET:
synerror(c->source, "in %p, expected (set x e), but %p is not a name",

c->par, bad);
case APPLY:

synerror(c->source, "in %p, expected (function-name ...), but %p is not a name",
c->par, bad);

default:
synerror(c->source, "in %p, expected a name, but %p is not a name",

c->par, bad);
}

}

To discover the proper code, function code_of_name does a reverse lookup in
exptable and xdeftable.
S216b. 〈tableparsing.c S204a〉+≡ ◁ S216a

int code_of_name(Name n) {
struct ParserRow *entry;
for (entry = exptable; entry->keyword != NULL; entry++)

if (n == strtoname(entry->keyword))
return entry->code;

if (n == NULL)
return entry->code;

for (entry = xdeftable; entry->keyword != NULL; entry++)
if (n == strtoname(entry->keyword))

return entry->code;
assert(0);

}

S216c. 〈private function prototypes for parsing S209b〉+≡ (S204a) ◁ S211f
void *name_error(Par bad, struct ParsingContext *context);

/* expected a name, but got something else */

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.7
Extending Impcore

with syntactic
sugar

S217

Here are integer codes for all the syntactic forms that are suggested to be im-
plemented as syntactic sugar.
S217a. 〈shared type definitions S206b〉+≡ (S290) ◁ S211b

enum Sugar {
CAND, COR, /* short-circuit Boolean operators */

WHILESTAR, DO_WHILE, FOR, /* bonus loop forms */

WHEN, UNLESS, /* single-sided conditionals */

RECORD, /* record-type definition */

COND /* McCarthy's conditional from Lisp */

};

Figure G.3: Codes used for syntactic sugar in Chapters 1 to 3

S217b. 〈shared function prototypes S202a〉+≡ (S290) ◁ S214b S217c ▷
int code_of_name(Name n);

In Impcore, there are no expressions that bind names, so expressions need not
be checked; only define needs to be checked.
S217c. 〈shared function prototypes S202a〉+≡ (S290) ◁ S217b

void check_exp_duplicates(Sourceloc source, Exp e);
void check_def_duplicates(Sourceloc source, Def d);

The operational semantics requires that in every function definition, the names
of the formal parameters be distinct.

x1, . . . , xn all distinct
〈DEFINE(f, 〈x1, . . . , xn〉, e), ξ, ϕ〉 → 〈ξ, ϕ{f 7→ USER(〈x1, . . . , xn〉, e)}〉

(DEFINEFUNCTION)
I implement this check here, in the parser, so if there s̓ an error, I can give the
source-code location.
S217d. 〈parse.c S205a〉+≡ ◁ S215c

void check_exp_duplicates(Sourceloc source, Exp e) {
(void)source; (void)e;

}
void check_def_duplicates(Sourceloc source, Def d) {

if (d->alt == DEFINE && duplicatename(d->define.userfun.formals) != NULL)
synerror(source,

"Formal parameter %n appears twice in definition of function %n",
duplicatename(d->define.userfun.formals), d->define.name);

}

G.7 EXTENDING IMPCORE WITH SYNTACTIC SUGAR

Design for extension is all very well, but examples are even better. In this section
I add short-circuit && and || operators, like those found in C. Unlike the functions
and and or, the syntactic operators && and || donʼt always evaluate all their argu-
ments. For example, in code chunk 〈Par p represents a list beginning with keyword
locals S210b〉, it is absolutely critical that p->alt be evaluated only when p is not

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

check_def_
duplicates

S326c
check_exp_

duplicates
S326c

type Def A
duplicatename

S196a
type Exp A
type Name 43b
type Par A
type Sourceloc

S289d
synerror 48a

Parsing
parenthesized
phrases in CG

S218

NULL. (Dereferencing a null pointer typically causes a fault that crashes the pro-
gram.) In Impcore, these operators can be defined by syntactic sugar:

(&& e1 e2)
△
= (if e1 e2 0)

(|| e1 e2)
△
= (if e1 1 e2)

Operator && evaluates e2 only if e1 is nonzero; dually, || evaluates e2 only if e1 is
zero. These versions behave differently from the basis functions and and or, which
always evaluate both arguments.

For && and ||, as for any other new expression, I have to add five things:

1. Integer codes for the new expressions

2. New cases for the reduce_to_exp function

3. New arrays of shift functions (unless an existing array can be reused)

4. New rows for exptable

5. New rows for usage_table

The most interesting of these is the reduce function, which expands the new form
into existing syntax. The new codes are named CAND and COR, which stand for “con-
ditional and” and “conditional or”; these names were used in the programming lan-
guage Algol W and in Dijkstra s̓ (1976) unnamed language of “guarded commands.”
S218a. 〈cases for Impcore’s reduce_to_exp added in exercises S205b〉+≡ (S205a) ◁ S205b

case SUGAR(CAND): return mkIfx(components[0].exp, components[1].exp, mkLiteral(0));
case SUGAR(COR): return mkIfx(components[0].exp, mkLiteral(1), components[1].exp);

The components of a short-circuit conditional are the two subexpressions
e1 and e2, so I need an array of shift functions that shifts two expressions and then
stops.
S218b. 〈arrays of shift functions added to Impcore in exercises S213a〉+≡ (S212a) ◁ S213a

static ShiftFun conditionalshifts[] = { sExp, sExp, stop };

The exptable rows use the given shift functions, and the usage_table entries show
the expected syntax.
S218c. 〈rows added to Impcore’s exptable in exercises S213b〉+≡ (S212a) ◁ S213b

{ "&&", SUGAR(CAND), conditionalshifts },
{ "||", SUGAR(COR), conditionalshifts },

S218d. 〈Impcore usage_table entries added in exercises S218d〉≡ (S215c)
{ SUGAR(CAND), "(&& exp exp)" },
{ SUGAR(COR), "(|| exp exp)" },

The conditional sugar doesnʼt require any new definition forms.
S218e. 〈rows added to xdeftable in exercises S218e〉≡ (S213c)

/* add new forms for extended definitions here */

Finally, here is a short demonstration showing how && and || differ from and
and or:
S218f. 〈transcript S218f〉≡

-> (|| 1 (println 99))
1
-> (or 1 (println 99))
99
1
-> (&& 0 (println 33))
0
-> (|| 0 (println 33))
33
33

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§G.7
Extending Impcore

with syntactic
sugar

S219

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

components S205a
mkIfx A
mkLiteral A
or 27a
sExp S207e
type ShiftFun

S207d
stop S209d

CHAPTER CONTENTS
H.1 LEXICAL ANALYSIS S221
H.2 ABSTRACT SYNTAX AND

PARSING S222
H.3 INTERFACE TO A GENERAL-

PURPOSE PRETTYPRINTER S224
H.4 C TYPES S225
H.5 PRETTYPRINTING C

TYPES S226
H.6 CREATING C TYPES FROM

SUMS AND PRODUCTS S227

H.7 CREATING CONSTRUC-
TOR FUNCTIONS AND
PROTOTYPES S229

H.8 WRITING THE OUTPUT S231
H.9 IMPLEMENTATION OF

THE PRETTYPRINTER S232
H.10 PUTTING EVERYTHING

TOGETHER S234

HSupporting discriminated unions in C

This appendix presents an ML program that reads the data descriptions from Chap-
ters 1 to 4 and produces C declarations of types that represent the data and C func-
tions that operate on the data. The format of the descriptions, which is inspired
the Zephyr Abstract Syntax Description Language (Wang et al. 1997), is like this:
S221. 〈example input S221〉≡

Lambda = (Namelist formals, Exp body)
Def* = VAL (Name name, Exp exp)

| EXP (Exp)
| DEFINE (Name name, Lambda lambda)
| USE (Name)

For a name like Lambda, which defines a product (record), the program pro-
duces declarations like these:

typedef struct Lambda Lambda;
struct Lambda { Namelist formals; Exp body; };
Lambda mkLambda(Namelist formals, Exp body);

For a name like Def, which defines a sum, C code needs to identify which alter-
native of the sum is meant. This program creates a type Defalt, which identifies
an alternative, as well as other declarations related to Def:

typedef struct Def *Def;
typedef enum { VAL, EXP, DEFINE, USE } Defalt;

Def mkVal(Name name, Exp exp);
Def mkExp(Exp exp);
Def mkDefine(Name name, Lambda lambda);
Def mkUse(Name use);

struct Def {
Defalt alt;
union {

struct { Name name; Exp exp; } val;
Exp exp;
struct { Name name; Lambda lambda; } define;
Name use;

};
};

H.1 LEXICAL ANALYSIS

There are a few reserved symbols, a token in all upper case is a constructor, and
anything else is a name. Constructors, like ML constructors, identify the alterna-
tives in a sum type.

S221
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S222

S222a. 〈lexical analysis for µASDL S222a〉≡ (S222b S234c) S222c ▷
datatype pretoken
= RESERVED of char
| CONSTR of name (* constructor *)
| NAME of name

type token = pretoken plus_brackets

Conversion to strings is typical.
S222b.

pretokenString : pretoken -> string
〈definitions of type token and function tokenString for µASDL S222b〉≡

〈lexical analysis for µASDL S222a〉
fun pretokenString (RESERVED c) = str c
| pretokenString (NAME n) = n
| pretokenString (CONSTR c) = c

The lexer converts a string to a sequence of tokens. Unlike the other languages
in this book, this input language uses a C-like definition of identifiers. It also uses
the C++ comment convention: a comment starts with two slashes and goes to the
end of the line.
S222c.

asdlToken : token lexer
〈lexical analysis for µASDL S222a〉+≡ (S222b S234c) ◁ S222a

val asdlToken =
let fun validate NONE = NONE

| validate (SOME (c, cs)) =
case (c, streamGet cs)
of (#"/", SOME (#"/", _)) => NONE (* comment to end of line *)
| _ =>

let val msg = "invalid initial character in `" ^
implode (c::listOfStream cs) ^ "'"

in SOME (ERROR msg, EOS)
end

fun or_ p c = c = #"_" orelse p c
val alpha = sat (or_ Char.isAlpha) one
val alphanum = sat (or_ Char.isAlphaNum) one
fun constrOrName cs =
(if List.all (or_ Char.isUpper) cs then CONSTR else NAME) (implode cs)

val token =
RESERVED <$> sat (Char.contains ",*=|") one

<|> constrOrName <$> (curry op :: <$> alpha <*> many alphanum)
<|> (validate o streamGet)

in whitespace *> bracketLexer token
end

H.2 ABSTRACT SYNTAX AND PARSING

There are two kinds of definitions: sums and products. The left-hand side of a
definition gives a name and lets us know if the thing being defined is a pointer.
S222d.

defName : def -> name
〈abstract syntax for µASDL S222d〉≡ (S234d)

type name = string
type ty = string

type lhs = name * {ptr:bool}
datatype rhs = SUM of alt list

| PRODUCT of arg list
and alt = ALT of name * arg list option

withtype def = lhs * rhs
and arg = name * ty

fun defName ((n, _), _) = n

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.2
Abstract syntax
and parsing

S223

Our problem domain (generating C) is full of separators: for example, a func-
tions̓ arguments are separated by commas; assignments are separated by line
breaks; and declarations are also separated by line breaks. To insert separators,
we use a utility function we call foldr1. Function foldr1 is a bit like the standard
foldr, except that it inserts a binary operator between elements of a list. If a list con-
tains a single element, foldr1 returns that element unchanged. If a list is empty,
and only then, foldr1 uses its second argument.
S223a.

foldr1 : ('a * 'a -> 'a) -> 'a -> 'a list -> 'a
〈parsers for µASDL S223a〉≡ (S234c) S223b ▷

fun foldr1 f z [] = z
| foldr1 f _ [x] = x
| foldr1 f z (x::xs) = f (x, foldr1 f z xs)

Our first use of foldr1 will be to take a sequence of tokens like char * or char
*name and turn the sequence into a string where adjacent tokens are separated by
spaces. This problem is part of our first parsing function, which takes a sequence
of tokens and turns it into a field. Because we permit a lone field to be anonymous,
we use a heuristic to turn the sequence into a “pre-argument,” which is like an arg
except that it may not be named.
S223b.

preArg : string list -> pre_arg error
〈parsers for µASDL S223a〉+≡ (S234c) ◁ S223a S223c ▷

type pre_arg = name option * ty
fun preArg [x] = OK (NONE, x)
| preArg strings =

case reverse strings
of tys as "*" :: _ => OK (NONE, space (reverse tys))
| name :: tys => OK (SOME name, space (reverse tys))
| [] => ERROR "Empty argument"

and space tys = foldr1 (fn (s, s') => s ^ " " ^ s') "" tys

If a constructor carries multiple fields or arguments, every one must be named.
The function is Curried so that we can partially apply it, then pass the result to map.
S223c.

nameRequired : string -> pre_arg -> arg error
〈parsers for µASDL S223a〉+≡ (S234c) ◁ S223b S223d ▷

fun nameRequired thing (SOME x, tau) = OK (x, tau)
| nameRequired thing (NONE, tau) =

ERROR ("All arguments of " ^ thing ^ " must be named")

A constructor carries an optional list of arguments, and for each argument, a
name is also optional. If there is only one argument, and if it has no name, the
argument gets the same name as the constructor, except forced to all lower case.
If there is more than one argument, all the arguments have to have names.
S223d.

toAlt : name -> pre_arg list option -> alt error
〈parsers for µASDL S223a〉+≡ (S234c) ◁ S223c S223f ▷

fun toAlt c (NONE) = OK (ALT (c, NONE))
| toAlt c (SOME args) =

let fun nameArgs [(NONE, tau)] = OK [(lower c, tau)]
| nameArgs args = errorList (map (nameRequired c) args)

in nameArgs args >>=+ (fn args => ALT (c, SOME args))
end

S223e. 〈utility functions for string manipulation and printing S223e〉≡
val lower = String.map Char.toLower
val upper = String.map Char.toUpper

Finally, our parser:
S223f.

name : name parser
alt : alt parser
arg : pre_arg parser
def : def parser

〈parsers for µASDL S223a〉+≡ (S234c) ◁ S223d

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S224

type 'a parser = (token, 'a) polyparser
val token : token parser = token (* make it monomorphic *)
val pretoken = (fn (PRETOKEN p) => SOME p | _ => NONE) <$>? token
val name = (fn (NAME n) => SOME n | _ => NONE) <$>? pretoken
val constructor = (fn (CONSTR c) => SOME c | _ => NONE) <$>? pretoken
val reservedChar= (fn (RESERVED c) => SOME c | _ => NONE) <$>? pretoken

fun res c = eqx c reservedChar

fun commas p = curry op :: <$> p <*> many (res #"," *> p)
fun bars p = curry op :: <$> p <*> many (res #"|" *> p)

fun leftRound tokens =
let fun check (_, ROUND) = OK ROUND

| check (loc, shape) =
errorAt ("don't use " ^ leftString shape ^ "; use (") loc

in (check <$>! left) tokens
end

fun product (args : pre_arg list) =
errorList (map (nameRequired "defined type") args) >>=+ PRODUCT

val arg = preArg <$>! (many (name <|> "*" <$ res #"*"))
val type' = pair <$> name <*> ((fn t => {ptr = isSome t}) <$> optional (res #"*"))
val args = leftRound <&> bracket ("(arg, ...)", commas (arg <?> "arg"))
val alt = toAlt <$> constructor <*>! optional args
val def = pair <$> type' <*> (res #"=" *> (product <$>! args <|> SUM <$> bars alt))

H.3 INTERFACE TO A GENERAL-PURPOSE PRETTYPRINTER

We want to generate C code with reasonable indentation and line breaks. Laying
out text with suitable indentation and line breaks is called prettyprinting. The prob-
lem has a long history (Oppen 1980; Hughes 1995; Wadler 1999). The code here is
based on Christian Lindig s̓ adaptation of Wadler s̓ prettyprinter.

The prettyprinter s̓ central abstraction is the document, of type doc. The most
basic documents are formed from strings. Subdocuments may be concatenated
(^^) to form larger documents, and subdocuments may also be indented. (Inden-
tation is relative to surrounding documents.) Finally, the creator of the document
controls exactly where a line break may be introduced: the BREAK indicates that
a break is permissible, but if the break is not taken, the prettyprinter inserts the
selected string instead.
S224a.

type doc
doc : string -> doc
^^ : doc * doc -> doc
empty : doc
brk : doc
indent : int * doc -> doc
empty : doc

〈algebraic laws for the prettyprinting combinators S224a〉≡ S224b ▷

doc (s ^ t) = doc s ^^ doc t
doc "" = empty
empty ^^ d = d
d ^^ empty = d

indent (0, d) = d
indent (i, indent (j, d)) = indent (i+j, d)
indent (i, doc s) = doc s
indent (i, d ^^ d') = indent (i, d) ^^ indent (i, d')

There are also laws relating to layout:
S224b.

layout : int -> doc -> string
〈algebraic laws for the prettyprinting combinators S224a〉+≡ ◁ S224a

layout (d ^^ d') = layout d ^ layout d'
layout empty = ""

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.4. C types

S225

layout (doc s) = s
layout (indent (i, brk)) = "\n" ^ copyChar i " "

The last law, together with the laws for indent, are the keys to understanding the
prettyprinter: indent affects only what happens to brk. In other words, strings
arenʼt indented; instead, indentation is attached to line breaks.

And the last law for layout is a bit of a lie; the truth about brk is that it is not
always converted to a newline (plus indentation):

• When brk is in a vertical group, it always converts to a newline followed by
the number of spaces specified by its indentation.

• When brk is in a horizontal group, it never converts to a newline; instead it
converts to a space.

• When brk is in an automatic group, it converts to a space only if the entire
group will the width available; otherwise the brk, and all brks in the group,
convert to newline-indents.

• When brk is in a fill group, it might convert to a space. Each brk is free to
convert to newline-indent or to space independently of all the other brks;
the layout engine uses only as many newlines as are needed to fit the text
into the space available.

Groups are created by grouping functions, and for our convenience we add a line-
breaking concatenate (^/) and some support for adding breaks and semicolons:
S225a.

vgrp : doc -> doc
hgrp : doc -> doc
agrp : doc -> doc
fgrp : doc -> doc
^/ : doc * doc -> doc
addBrk : doc -> doc
semi : doc
addSemi : doc -> doc

〈prettyprinting combinators S225a〉≡ (S234d)
〈definition of doc and functions S232a〉
infix 2 ^/
fun l ^/ r = l ^^ brk ^^ r
fun addBrk d = d ^^ brk
val semi = doc ";"
fun addSemi d = d ^^ semi

H.4 C TYPES

The main C types we are interested in are

• Structs and unions, which represent products and sums

• Enumerations, which tag alternatives in a sum

• Pointer types

• Opaque named types (CTY)

• “Named” types, which behave just like unnamed types, except we emit type-
defs for them.

A “field” of a struct or union has a type and a name. It also does double duty as an
argument to a function.
S225b.

fieldName : field -> name
〈C types S225b〉≡ (S234d) S226a ▷

type kind = string (* struct or union *)
type tag = string (* struct, union, or enum tag *)
datatype ctype
= SU of kind * tag option * field list (* struct or union *)
| ENUM of tag option * name list
| PTR of ctype

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S226

| CTY of string
| NAMED of typedef

and field = FIELD of ctype * name
withtype typedef = ctype * name
fun fieldName (FIELD (_, f)) = f

Named types can be extracted so we can emit typedefs:
S226a.

namedTypes : ctype -> typedef list
〈C types S225b〉+≡ (S234d) ◁ S225b S226b ▷

fun namedTypes tau =
let fun walk (NAMED (ty, name)) tail = walk ty ((ty, name)::tail)

| walk (SU (_, _, fields)) tail = foldr addField tail fields
| walk (PTR ty) tail = walk ty tail
| walk (CTY _) tail = tail
| walk (ENUM _) tail = tail

and addField (FIELD (ty, _), tail) = walk ty tail
in walk tau []
end

Tagged types, which must be defined exactly once, can also be extracted.
S226b.

taggedTypes : ctype -> ctype list
〈C types S225b〉+≡ (S234d) ◁ S226a

fun taggedTypes tau =
let fun walk (NAMED (ty, _)) tail = walk ty tail

| walk (t as SU (_, SOME _, fields)) tail = foldr addField (t::tail) fields
| walk (t as SU (_, NONE, fields)) tail = foldr addField tail fields
| walk (PTR ty) tail = walk ty tail
| walk (CTY _) tail = tail
| walk (t as ENUM (SOME _, _)) tail = t :: tail
| walk (ENUM (NONE, _)) tail = tail

and addField (FIELD (ty, _), tail) = walk ty tail
in walk tau []
end

H.5 PRETTYPRINTING C TYPES

We have two ways of prettyprinting a C type:

• The short method refers to a struct, union, or enum by its tag, omitting the
fields.

• The long method includes the fields of a struct, union, or enum.

The long method is used for definition, and the short method is used for everything
else. The functions are mutually recursive, so they go into one big nest.
S226c.

shortTypeDoc : ctype -> doc
longTypeDoc : ctype -> doc
fieldDoc : field -> doc

〈prettyprinting C types S226c〉≡ (S234d) S227a ▷

fun shortTypeDoc (SU (kind, SOME n, _)) = doc (kind ^ " " ^ n)
| shortTypeDoc (ENUM (SOME n, _)) = doc ("enum" ^ " " ^ n)
| shortTypeDoc (PTR ty) = shortTypeDoc ty ^^ doc " *"
| shortTypeDoc (CTY ty) = doc ty
| shortTypeDoc (NAMED (_, name)) = doc name
| shortTypeDoc (t as (SU (_, NONE, _))) = longTypeDoc t
| shortTypeDoc (t as ENUM (NONE, _)) = longTypeDoc t

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.6
Creating C types
from sums and

products

S227

When weʼre writing a field declaration, we want the code to look nice, so if the
type ends in a star (i.e., it s̓ a pointer type), we donʼt put a space between the type
and the field name. That way we get declarations like “Value v;” and “Exp *e;”,
but never anything like “Exp * e;”, which is ugly.
S227a. 〈prettyprinting C types S226c〉+≡ (S234d) ◁ S226c S227b ▷

and fieldDoc (FIELD (ty, name)) =
let fun nonptrSpace (PTR _) = empty

| nonptrSpace (CTY ty) = (case reverse (explode ty) of #"*" :: _ => empty
| _ => doc " ")

| nonptrSpace _ = doc " "
in shortTypeDoc ty ^^ nonptrSpace ty ^^ doc name
end

In a long type declaration, we give the literals of enums and the fields of structs
and unions. Otherwise it s̓ just like a short type declaration. Auxiliary function
embrace arranges indentation and groups so that a newline after an opening brace
has extra indentation, but a newline before a closing brace does not.
S227b. 〈prettyprinting C types S226c〉+≡ (S234d) ◁ S227a S227c ▷

and longTypeDoc (ENUM (tag, n :: ns)) =
let val lits = foldl (fn (n, p) => p ^^ doc "," ^/ doc n) (doc n) ns
in agrp (doc "enum" ^^ tagDoc tag ^^ doc " " ^^ embrace (fgrp lits))
end

| longTypeDoc (SU (kind, tag, fs)) =
let val fields = foldr1 (op ^/) empty (map (addSemi o fieldDoc) fs)
in agrp (doc kind ^^ tagDoc tag ^^ doc " " ^^ embrace (agrp fields))
end

| longTypeDoc (NAMED (ty, _)) = longTypeDoc ty
| longTypeDoc ty = shortTypeDoc ty

and embrace d = indent(4, doc "{" ^/ d) ^/ doc "}"
and tagDoc (SOME n) = doc (" " ^ n)
| tagDoc (NONE) = empty

The prototype for a constructor is associated with a constructor name, and it
contains a result type, a function name, and a list of arguments. Function foldr1
easily implements the C convention that an empty list of arguments is given by a
prototype like f(void).
S227c.

protodoc : cons_proto -> doc
〈prettyprinting C types S226c〉+≡ (S234d) ◁ S227b

type cons_proto = name * (ctype * name * field list)

fun protodoc (_, (result, fname, args)) =
let fun bracket d = doc "(" ^^ d ^^ doc ")"
in fieldDoc (FIELD (result, fname)) ^^

agrp (indent (4, bracket (foldr1 (fn (x, y) => x ^^ doc "," ^/ y)
(doc "void")
(map fieldDoc args))))

end

H.6 CREATING C TYPES FROM SUMS AND PRODUCTS

Once we have a sum or product in the form of a def, we convert a sum to a tagged
union, which means “struct containing enum and union,” and we convert a product
to a struct.

Because the ctype representation is set up to be easy to prettyprint, not to be
easy to create, we proved convenience functions for creating struct, union, and
pointer types.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S228

S228a.

anonstruct : field list -> ctype
anonunion : field list -> ctype
struct' : name * field list -> ctype
union : name * field list -> ctype
withPtr : ptr:bool * ctype -> ctype

〈converting sums and products to C types S228a〉≡ (S234d) S228b ▷

fun anonstruct fields = SU ("struct", NONE, fields)
fun anonunion fields = SU ("union", NONE, fields)
fun struct' (name, fields) = SU ("struct", SOME name, fields)
fun union (name, fields) = SU ("union", SOME name, fields)
fun withPtr ({ptr}, ty) = if ptr then PTR ty else ty

One function is called struct' because struct is a reserved word of ML.
An argument can be converted to a field. And if an alternative in a sum carries

arguments, a field is reserved to hold those arguments—for a single argument, a
single field, and for multiple arguments, a structure containing them all.
S228b.

argToField : arg -> field
altToFieldOption : alt -> field option

〈converting sums and products to C types S228a〉+≡ (S234d) ◁ S228a S228c ▷
fun argToField (f, ty) =

FIELD (CTY ty, f)

fun altToFieldOption (ALT (name, NONE)) = NONE
| altToFieldOption (ALT (name, SOME [])) = NONE
| altToFieldOption (ALT (_, SOME [arg])) = SOME (argToField arg)
| altToFieldOption (ALT (name, SOME args)) =

SOME (FIELD (anonstruct (map argToField args), lower name))

A product and a sum with a single alternative are treated almost identically:
each becomes a structure with fields for the arguments.

• For a product, we get the fields from the arguments.

• For a sum, we have two fields: a named enumeration alt, which identifies
which element of the sum is represented, and an anonymous union, which
holds the arguments (if any) carried by each alternative.

Because the enumeration in a sum is named, it will be typedef d̓.
S228c.

toCtype : def -> ctype
mapOption : ('a -> 'b option) -> 'a list -> 'b list

〈converting sums and products to C types S228a〉+≡ (S234d) ◁ S228b S229a ▷

〈definitions of functions mapOption and camelCase S228d〉
val altsuffix = "alt"

fun toCtype ((n, ptr), PRODUCT args) = withPtr (ptr, struct'(n, map argToField args))
| toCtype ((n, ptr), SUM alts) =

let val enumname = n ^ altsuffix
val enum = NAMED (ENUM (NONE, map (fn (ALT (n, _)) => n) alts), enumname)
val u = anonunion (mapOption altToFieldOption alts)

in withPtr (ptr, struct' (n, [FIELD (enum, altsuffix), FIELD (u, "")]))
end

Function mapOption f applies f to a list of values and returns only the results
that are not NONE.
S228d.

mapOption : ('a -> 'b option) -> 'a list -> 'b list
〈definitions of functions mapOption and camelCase S228d〉≡ (S228c) S229b ▷

fun mapOption f =
let fun add (x, tail) = case f x of NONE => tail | SOME y => y :: tail
in foldr add []
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.7
Creating

constructor
functions and
prototypes

S229

H.7 CREATING CONSTRUCTOR FUNCTIONS AND PROTOTYPES

Because C provides no convenient way of creating values of struct types, it s̓ not
enough just to emit definitions of the types: we also emit constructor functions for
creating values of the types. Given a PRODUCT, we create a single constructor func-
tion. Given a SUM, we create a constructor function for each alternative in the sum.
In both cases, when we create a function, we also create a prototype.
S229a.

toConsProtos : def -> cons_proto list
〈converting sums and products to C types S228a〉+≡ (S234d) ◁ S228c

fun toConsProtos (lhs as (n, {ptr}), rhs) =
let val struct_ty = CTY ("struct " ^ n)

val result_ty = if ptr then NAMED (PTR struct_ty, n) else CTY n
fun toConsProto suffix rty (ALT (altname, args)) =

(altname, (rty, "mk" ^ camelCase altname ^ suffix,
map argToField (getOpt (args, []))))

fun altProtos alts suffix ty = map (toConsProto suffix ty) alts
fun fieldProtos fields suffix ty = [toConsProto suffix ty (ALT (n, SOME fields))]
fun dualProtos protos =

protos "" result_ty @ (if ptr then protos "Struct" struct_ty else [])
in case rhs

of SUM alts => dualProtos (altProtos alts)
| PRODUCT fields => dualProtos (fieldProtos fields)

end

To get the name of the constructor function, we start with mk, followed by the name
of the constructor in “camel case:” the first letter is upper case, as is every let-
ter that follows an underscore. Other letters are lower case, and underscores are
dropped. For example, BOOLV is built by mkBoolv, and USER_METHOD would be built
by mkUserMethod.
S229b. 〈definitions of functions mapOption and camelCase S228d〉+≡ (S228c) ◁ S228d

fun camelCase n =
let fun cap (#"_" :: cs) = cap cs

| cap (c :: cs) = Char.toUpper c :: lower cs
| cap [] = []

and lower (#"_" :: cs) = cap cs
| lower (c :: cs) = Char.toLower c :: lower cs
| lower [] = []

in (implode o cap o explode) n
end

Code that emits code is always complex. We begin with some auxiliary func-
tions. Functions isPtr tells if a C type is a pointer type, and defSum tells if it is a
sum.
S229c.

isPtr : ctype -> bool
defSum : def -> bool

〈auxiliary functions for emitting a constructor function S229c〉≡ (S230d) S229d ▷

fun isPtr (NAMED (ty, _)) = isPtr ty
| isPtr (PTR _) = true
| isPtr _ = false

fun defSum (_, SUM _) = true
| defSum (_, PRODUCT _) = false

The value returned by a constructor function is called the answer. Normally the
answer is called n, but if the name n conflicts with an argument, we keep adding
more n s̓ until we get a name that doesnʼt conflict. Value argfields is in scope and
contains the fields that represent the arguments to the constructor function.
S229d.

argfields : field list
answer : string

〈auxiliary functions for emitting a constructor function S229c〉+≡ (S230d) ◁ S229c S230a ▷
val answer =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S230

let fun isArg x =
List.exists (fn f => fieldName f = x) argfields

fun answerName x = if isArg x then answerName "n" ^ x else x
in answerName "n"
end

We d̓ like to write code that manipulates the answer, but we donʼt know what
the answer is going to be called. Function ans enables us to refer to the answer as
% within a string.
S230a.

ans : string -> doc
〈auxiliary functions for emitting a constructor function S229c〉+≡ (S230d) ◁ S229d S230b ▷

val ans =
doc o String.translate (fn #"%" => answer | c => str c)

Function outerfield names a field of the answer, and innerfield names the
subfield of the inner, anonymous union that is associated with an argument (for a
sum type only).
S230b.

outerfield : name -> string
innerfield : field -> string

〈auxiliary functions for emitting a constructor function S229c〉+≡ (S230d) ◁ S230a S230c ▷
fun outerfield f =
answer ^ (if isPtr result then "->" else ".") ^ f

val udot = "" (* anonymous union; was "u." *)
fun innerfield arg =
let val single = case argfields of [_] => true | _ => false

fun select s =
outerfield (if defSum def then

if single then udot ^ s else udot ^ lower cname ^ "." ^ s
else s)

in select (fieldName arg)
end

Finally, fieldAssignments assigns each argument to a field of the answer.
S230c.

fieldAssignments : doc
〈auxiliary functions for emitting a constructor function S229c〉+≡ (S230d) ◁ S230b

val fieldAssignments =
let fun assignTo arg = concat [innerfield arg, " = ", fieldName arg, ";"]
in foldr1 (op ^/) empty (map (doc o assignTo) argfields)
end

With these auxiliary functions in place, here is the prettyprinting document
that represents the definition of a constructor function:
S230d.

consFunDoc : def -> cons_proto -> doc
〈functions that build documents to be emitted S230d〉≡ (S234d) S231a ▷

fun consFunDoc def (proto as (cname, (result, fname, argfields))) =
let 〈auxiliary functions for emitting a constructor function S229c〉
in vgrp (protodoc proto ^^ doc " " ^^ embrace (

fieldDoc (FIELD (result, answer)) ^^ semi ^/ (* declare answer *)
(if isPtr result then

ans "% = malloc(sizeof(*%));" ^/ (* allocate answer *)
ans "assert(% != NULL);" ^^ brk

else
empty) ^^

empty ^/
(if defSum def then (* if sum, set tag for this constructor *)

doc (concat [outerfield altsuffix, " = ", upper cname, ";"]) ^^ brk
else
empty) ^^

fieldAssignments ^/ (* initialize all the fields *)
ans "return %;")) (* and return the answer *)

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.8
Writing the output

S231

H.8 WRITING THE OUTPUT

This programs̓ output includes chunk definitions for noweb. The root may be
something like "type definitions", the language is the language into whose im-
plementation the generated code will be incorporated, and the name identifies the
exact source of the chunk. (In general a language will have many sets of type defi-
nitions; the name identifies the source of these definitions.)
S231a. 〈functions that build documents to be emitted S230d〉+≡ (S234d) ◁ S230d S231b ▷

fun chunkdefn (root, language, name) =
let fun defn s = concat ["<<", s, " ((", name, "))>>="]

fun shared "par" = true
| shared _ = false

in if shared name then defn ("shared " ^ root)
else defn (root ^ " for \\" ^ language)

end

A C typedef uses the same concrete syntax as a field definition, so we reuse
fieldDoc.
S231b.

typedefdoc : typedef -> doc
〈functions that build documents to be emitted S230d〉+≡ (S234d) ◁ S231a S231c ▷

fun typedefdoc (ty, name) =
agrp (doc "typedef " ^^ fieldDoc (FIELD (ty, name)) ^^ semi)

We emit a typedef for every definition, plus additional typedefs for internal,
named types.
S231c. 〈functions that build documents to be emitted S230d〉+≡ (S234d) ◁ S231b S231d ▷

fun typedefs d =
let val ty = toCtype d

val typedefs = map typedefdoc ((ty, defName d) :: namedTypes ty)
in vgrp (foldr1 (op ^/) empty typedefs) ^^ brk
end

We emit definitions for every tagged type, which in practice includes only
struct types.
S231d. 〈functions that build documents to be emitted S230d〉+≡ (S234d) ◁ S231c S231e ▷

fun structDefs d =
let val defs = map (agrp o addBrk o addSemi o longTypeDoc) (taggedTypes (toCtype d))
in vgrp (foldr1 (op ^/) empty defs)
end

For a function declaration, every prototype is followed by a semicolon. For
a function definition, we call consFunDoc. Function definitions are separated by
blank lines.
S231e. 〈functions that build documents to be emitted S230d〉+≡ (S234d) ◁ S231d

fun constructProto d =
vgrp (foldr1 (op ^/) empty (map (addSemi o protodoc) (toConsProtos d)))

fun constructorFunction d =
let val funs = map (consFunDoc d) (toConsProtos d)
in vgrp (foldr1 (fn (x, y) => x ^/ empty ^/ y) empty funs) ^^ brk
end

We write constructor functions to a C file, and we write definitions of four noweb
chunks to a .xnw file.
S231f. 〈function process, which reads input and writes output S231f〉≡ (S234d)

fun process cname webname name lang defstream =
let val cfile = TextIO.openOut cname

val webout = TextIO.openOut webname
fun printdoc file s = TextIO.output(file, layout 75 (vgrp (agrp s^^brk)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S232

val (printc, printw) = (printdoc cfile, printdoc webout)
val defs = listOfStream defstream
fun chunk (c, mkDoc) =

(printw (doc (chunkdefn (c, lang, name)))
; app (printw o mkDoc) defs
)

in (printc (doc "#include \"all.h\"")
; app (printc o constructorFunction) defs

; chunk ("type definitions", typedefs)
; chunk ("structure definitions", structDefs)
; chunk ("type and structure definitions",

(fn d => typedefs d ^^ structDefs d ^^ brk))
; chunk ("function prototypes", constructProto)
; app TextIO.closeOut [cfile, webout]
)

end

H.9 IMPLEMENTATION OF THE PRETTYPRINTER

The prettyprinter is derived from one written by Christian Lindig for the C--
project, which in turn is based on Wadler s̓ (1999) prettyprinter. The definition of
doc simply gives the alternatives.
S232a. 〈definition of doc and functions S232a〉≡ (S225a) S232b ▷

datatype doc
= ^^ of doc * doc
| TEXT of string
| BREAK of string
| INDENT of int * doc
| GROUP of break_line or_auto * doc

The grouping mechanisms is defined two layers. The inner layer, break_line,
includes the three basic ways of deciding whether BREAK should be turned into
newline-plus-indentation. The outer layer adds AUTO, which is converted to either
YES or NO inside the implementation:
S232b. 〈definition of doc and functions S232a〉+≡ (S225a) ◁ S232a S232c ▷

and break_line
= NO (* hgrp -- every break is a space *)
| YES (* vgrp -- every break is a newline *)
| MAYBE (* fgrp -- paragraph fill (break is newline only when needed) *)

and 'a or_auto
= AUTO (* agrp -- NO if the whole group fits; otherwise YES *)
| B of 'a

Because the ML constructors can be awkward to use, we provide convenience
functions.
S232c. 〈definition of doc and functions S232a〉+≡ (S225a) ◁ S232b S233 ▷

val doc = TEXT
val brk = BREAK " "
val indent = INDENT
val empty = TEXT ""
infix 2 ^^

fun hgrp d = GROUP (B NO, d)
fun vgrp d = GROUP (B YES, d)
fun agrp d = GROUP (AUTO, d)
fun fgrp d = GROUP (B MAYBE, d)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.9
Implementation of
the prettyprinter

S233

The layout function converts a document into a string. It turns out to be easier
to understand the code if we solve a more general problem: convert a list of docu-
ments, each of which is tagged with a current indentation and a breakmode.1 Making
the input a tagged list makes most of the operations easy:

• If we remove a d ^^ d' from the head of the list, we put back d and d' sepa-
rately.

• If we remove a TEXT s from the head of the list, we add s to the result list.

• If we remove an INDENT (i, d) from the head of the list, we replace it with d,
appropriately tagged with the additional indentation.

• If we remove a BREAK from the head of the list, we may or may not add a
newline and indentation to the result, depending on the break mode and the
space available.

• If we remove a GROUP(AUTO, d) from the head of the list, we tag dwith either
Flat or Break, depending on space available, and we put it back on the head
of the list.

• If we remove any other kind of GROUP(B mode, d) from the head of the list,
we tag d with mode and put it back on the head of the list.

Function format takes a total line width, the number of characters consumed on
the current line, and a list of tagged docs. “Putting an item back on the head of the
list” is accomplished with internal function reformat.
S233.

format : int -> int -> (int * break_line * doc) list -> string list
〈definition of doc and functions S232a〉+≡ (S225a) ◁ S232c S234a ▷

fun format w k [] = []
| format w k (tagged_doc :: z) =

let fun copyChar 0 c = [] | copyChar n c = c :: copyChar (n-1) c
fun addString s = s :: format w (k + size s) z
fun breakAndIndent i = implode (#"\n" :: copyChar i #" ") :: format w i z
fun reformat item = format w k (item::z)

in case tagged_doc
of (i,b, x ^^ y) => format w k ((i,b,x)::(i,b,y)::z)
| (i,b,TEXT s) => addString s
| (i,b,INDENT(j,x)) => reformat (i+j,b,x)
| (i,NO, BREAK s) => addString s
| (i,YES,BREAK _) => breakAndIndent i
| (i,MAYBE, BREAK s) => if fits (w - k - size s, z)

then addString s
else breakAndIndent i

| (i,b,GROUP(AUTO, x)) => if fits (w - k, (i,NO,x) :: z)
then reformat (i,NO,x)
else reformat (i,YES,x)

| (i,b,GROUP(B break,x)) => reformat (i,break,x)
end

1And for efficiency, I make the result a list of strings, which are concatenated at the very end. This
trick is important because repeated concatenation has costs that are quadratic in the size of the result;
the cost of a single concatenation at the end is linear.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting
discriminated
unions in CH

S234

Decisions about whether space is available are made by the fits function. It looks
ahead at a list of documents and says whether everything up to the next possible
break will fit in w characters.
S234a.

fits : int * (int * break_line * doc) list -> bool
〈definition of doc and functions S232a〉+≡ (S225a) ◁ S233 S234b ▷

and fits (w, []) = w >= 0
| fits (w, tagged_doc::z) =

w >= 0 andalso
case tagged_doc
of (i, m, x ^^ y) => fits (w, (i,m,x)::(i,m,y)::z)
| (i, m, TEXT s) => fits (w - size s, z)
| (i, m, INDENT(j,x)) => fits (w, (i+j,m,x)::z)
| (i, NO, BREAK s) => fits (w - size s, z)
| (i, YES, BREAK _) => true
| (i, MAYBE, BREAK _) => true
| (i, m, GROUP(_,x)) => fits (w, (i,NO,x)::z)

If we reach a mandatory or optional BREAK before running out of space, the input
fits. The interesting policy decision is for GROUP: for purposes of deciding whether
to break a line, all groups are considered without line breaks (mode NO). This policy
ensures that we will break a line in an outer group in order to try to keep documents
in an inner group together on a single line.

The layout function takes the problem of laying a single document and con-
verts it to an instance of the more general problem: wrap the document in an AUTO
group (so that lines are broken optionally); tag it in NO-break mode with no inden-
tation; put it in a singleton list; and format it on a line of width w with no characters
consumed.
S234b. 〈definition of doc and functions S232a〉+≡ (S225a) ◁ S234a

fun layout w doc = concat (format w 0 [(0, NO, GROUP (AUTO, doc))])

H.10 PUTTING EVERYTHING TOGETHER

S234c. 〈lexical analysis and parsing for µASDL S234c〉≡ (S234d)
〈lexical analysis for µASDL S222a〉
〈parsers for µASDL S223a〉

S234d. 〈asdl.sml S234d〉≡
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization generated automatically〉

〈abstract syntax for µASDL S222d〉

〈lexical analysis and parsing for µASDL S234c〉

〈prettyprinting combinators S225a〉
〈C types S225b〉
〈prettyprinting C types S226c〉
〈converting sums and products to C types S228a〉
〈functions that build documents to be emitted S230d〉
〈function process, which reads input and writes output S231f〉
val defstream = interactiveParsedStream (asdlToken, def <?> "definition")
val defs = defstream ("standard input", filelines TextIO.stdIn, noPrompts)

val usage = concat ["Usage: ", CommandLine.name(), " cfile nwfile name language"]

val _ = case CommandLine.arguments ()
of [c, web, name, lang] => process c web name lang defs
| [base, name, lang] => (* legacy usage *)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§H.10
Putting everything

together

S235

process (base ^ "-code.c") (base ^ ".xnw") name lang defs
| _ => eprintln usage

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
I.1 REUSABLE UTILITY

FUNCTIONS S237
I.1.1 Utility functions for

printing S238
I.1.2 Utility functions for re-

naming variables S240
I.1.3 Utility functions for

sets, collections, and
lists S240

I.1.4 Utility function for lim-
iting the depth of recur-
sion S242

I.1.5 Utility function for mu-
tual recursion S242

I.2 REPRESENTING ERROR
OUTCOMES AS VALUES S243

I.3 UNIT TESTING S245
I.4 POLYMORPHIC, EFFECT-

FUL STREAMS S247

I.4.1 Suspensions: repeat-
able access to the result
of one action S249

I.4.2 Streams: results of a se-
quence of actions S249

I.4.3 Streams of extended
definitions S254

I.5 TRACKING AND REPORT-
ING SOURCE-CODE LOCA-
TIONS S254

I.6 FURTHER READING S256

ICode for writing interpreters in ML

Just as Appendix F presents reusable infrastructure for building interpreters in C,
this appendix presents reusable infrastructure for building interpreters in ML. This
code is shared among many interpreters, but the abstractions and implementations
presented here are not as closely connected to the study of programming languages
as the ones in the main text. (The shared infrastructure that is closely connected is
presented in Chapter 5.)

Each interpreter that is written in ML incorporates all the following code
chunks, some of which are defined in Chapter 5 and some of which are defined
below.
S237a. 〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉≡ (S373a)

〈for working with curried functions: id, fst, snd, pair, curry, and curry3 S263d〉
〈support for names and environments 310a〉
〈support for detecting and signaling errors detected at run time S366c〉
〈list functions not provided by Standard ML’s initial basis S241b〉
〈utility functions for string manipulation and printing S238a〉
〈support for representing errors as ML values S243b〉
〈type interactivity plus related functions and value S368a〉
〈simple implementations of set operations S240b〉
〈collections with mapping and combining functions S240c〉
〈suspensions S249a〉
〈streams S250a〉
〈stream transformers and their combinators S261a〉
〈support for source-code locations and located streams S254d〉
〈streams that track line boundaries S272a〉
〈support for lexical analysis S268b〉
〈common parsing code S260〉
〈shared utility functions for initializing interpreters S372b〉
〈function application with overflow checking S242b〉
〈function forward, for mutual recursion through mutable reference cells S243a〉
exception LeftAsExercise of string

All interpreters that include type checkers incorporate this code:
S237b. 〈exceptions used in languages with type checking S237b〉≡

exception TypeError of string
exception BugInTypeChecking of string

And all interpreters that implement type inference incorporate this code:
S237c. 〈exceptions used in languages with type inference S237c〉≡

exception TypeError of string
exception BugInTypeInference of string

I.1 REUSABLE UTILITY FUNCTIONS

This section includes small utility functions for printing, for manipulating auto-
matically generated names, and for manipulating sets.

S237
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Code for writing
interpreters in MLI

S238

I.1.1 Utility functions for printing

For writing values and other information to standard output, Standard ML pro-
vides a simple printprimitive, which writes a string. Anything more sophisticated,
such as writing to standard error, requires using the the TextIO module, which is
roughly analogous to C s̓ <stdio.h>. Using TextIO can be awkward, so I define
three convenience functions. Function println is like print, but writes a string
followed by a newline. Functions eprint and eprintln are analogous to print and
println, but they write to standard error. It would be nice to be able to define more
sophisticated printing functions like the ones in Section 1.6.1 on page 46, but mak-
ing such functions type-safe requires code that beginning ML programmers would
find baffling.
S238a. 〈utility functions for string manipulation and printing S238a〉≡ (S237a) S238b ▷

fun println s = (print s; print "\n")
fun eprint s = TextIO.output (TextIO.stdErr, s)
fun eprintln s = (eprint s; eprint "\n")

CLOSING IN ON CHECK-PRINT:
S238b. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238a S238c ▷

val xprinter = ref print
fun xprint s = !xprinter s
fun xprintln s = (xprint s; xprint "\n")

S238c. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238b S238d ▷

fun tryFinally f x post =
(f x handle e => (post (); raise e)) before post ()

fun withXprinter xp f x =
let val oxp = !xprinter

val () = xprinter := xp
in tryFinally f x (fn () => xprinter := oxp)
end

S238d. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238c S238e ▷
fun bprinter () =
let val buffer = ref []

fun bprint s = buffer := s :: !buffer
fun contents () = concat (rev (!buffer))

in (bprint, contents)
end

To help you diagnose problems that may arise if you decide to implement type
checking, type inference, or large integers, I also provide a function for reporting
errors that are detected while reading predefined functions.
S238e. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238d S238f ▷

fun predefinedFunctionError s = eprintln ("while reading predefined functions, " ^ s)

Standard MLs̓ built-in support for converting integers to strings uses the ~ char-
acter as a minus sign. We want the hyphen.
S238f.

intString : int -> string
〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238e S238g ▷

fun intString n =
String.map (fn #"~" => #"-" | c => c) (Int.toString n)

Plurals!
S238g. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238f S239a ▷

fun plural what [x] = what
| plural what _ = what ^ "s"

fun countString xs what =
intString (length xs) ^ " " ^ plural what xs

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.1
Reusable utility

functions

S239

Lists! Functions spaceSep and commaSep are special cases of the more general
function separate.
S239a.

spaceSep : string list -> string
commaSep : string list -> string
separate : string * string -> string list -> string

〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S238g S239b ▷

fun separate (zero, sep) =
(* list with separator *)
let fun s [] = zero

| s [x] = x
| s (h::t) = h ^ sep ^ s t

in s
end
val spaceSep = separate ("", " ") (* list separated by spaces *)
val commaSep = separate ("", ", ") (* list separated by commas *)

Here s̓ how we print Unicode characters.
S239b. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S239a S239c ▷

fun printUTF8 code =
let val w = Word.fromInt code

val (&, >>) = (Word.andb, Word.>>)
infix 6 & >>
val _ = if (w & 0wx1fffff) <> w then

raise RuntimeError (intString code ^
" does not represent a Unicode code point")

else
()

val printbyte = xprint o str o chr o Word.toInt
fun prefix byte byte' = Word.orb (byte, byte')

in if w > 0wxffff then
app printbyte [prefix 0wxf0 (w >> 0w18)

, prefix 0wx80 ((w >> 0w12) & 0wx3f)
, prefix 0wx80 ((w >> 0w6) & 0wx3f)
, prefix 0wx80 ((w) & 0wx3f)
]

else if w > 0wx7ff then
app printbyte [prefix 0wxe0 (w >> 0w12)

, prefix 0wx80 ((w >> 0w6) & 0wx3f)
, prefix 0wx80 ((w) & 0wx3f)
]

else if w > 0wx7f then
app printbyte [prefix 0wxc0 (w >> 0w6)

, prefix 0wx80 ((w) & 0wx3f)
]

else
printbyte w

end

To hash strings, I use an algorithm by Glenn Fowler, Phong Vo, and Landon
Curt Noll. The “offset basis” has been adjusted by removing the high bit, so
the computation works using 31-bit integers. http://tools.ietf.org/html/
draft-eastlake-fnv-03 http://www.isthe.com/chongo/tech/comp/fnv/
S239c.

fnvHash : string -> int
〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S239b S240a ▷

fun fnvHash s =
let val offset_basis = 0wx011C9DC5 : Word.word (* trim the high bit *)

val fnv_prime = 0w16777619 : Word.word
fun update (c, hash) = Word.xorb (hash, Word.fromInt (ord c)) * fnv_prime
fun int w = Word.toIntX w handle Overflow => Word.toInt (Word.andb (w, 0wxffffff))

in int (foldl update offset_basis (explode s))
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

RuntimeErrorS366c

http://tools.ietf.org/html/draft-eastlake-fnv-03
http://tools.ietf.org/html/draft-eastlake-fnv-03
http://www.isthe.com/chongo/tech/comp/fnv/

Code for writing
interpreters in MLI

S240

I.1.2 Utility functions for renaming variables

In the theory of programming languages, it s̓ fairly common to talk about fresh
names, where “fresh” means “different from any name in the program or its en-
vironment.” And if you implement a type checker for a polymorphic language like
Typed µScheme, or if you implement type inference, or if you ever implement the
lambda calculus, you will need code that generates fresh names. You can always
try names like t1, t2, and so on. But if you want to debug, it s̓ usually helpful to
relate the fresh name to a name already in the program. I like to do this by tack-
ing on a numeric suffix; for example, to get a fresh name that s̓ like x, I might try
x-1, x-2, and so on. But if the process iterates, I donʼt want to generate a name like
x-1-1-1; I d̓ much rather generate x-3. This utility function helps by stripping off
any numeric suffix to recover the original x.
S240a. 〈utility functions for string manipulation and printing S238a〉+≡ (S237a) ◁ S239c

fun stripNumericSuffix s =
let fun stripPrefix [] = s (* don't let things get empty *)

| stripPrefix (#"-"::[]) = s
| stripPrefix (#"-"::cs) = implode (reverse cs)
| stripPrefix (c ::cs) = if Char.isDigit c then stripPrefix cs

else implode (reverse (c::cs))
in stripPrefix (reverse (explode s))
end

I.1.3 Utility functions for sets, collections, and lists

Quite a few analyses of programs, including a type checker in Chapter 6 and the type
inference in Chapter 7, need to manipulate sets of variables. In small programs,
such sets are usually small, so I provide a simple implementation that represents a
set using a list with no duplicate elements. It s̓ essentially the same implementation
that you see in µScheme in Chapter 2.1

S240b.

type 'a set
emptyset : 'a set
member : ''a -> ''a set -> bool
insert : ''a * ''a set -> ''a set
union : ''a set * ''a set -> ''a set
inter : ''a set * ''a set -> ''a set
diff : ''a set * ''a set -> ''a set

〈simple implementations of set operations S240b〉≡ (S237a)
type 'a set = 'a list
val emptyset = []
fun member x =
List.exists (fn y => y = x)

fun insert (x, ys) =
if member x ys then ys else x::ys

fun union (xs, ys) = foldl insert ys xs
fun inter (xs, ys) =
List.filter (fn x => member x ys) xs

fun diff (xs, ys) =
List.filter (fn x => not (member x ys)) xs

In the functions above, a set has the same representation as a list, and they can
be used interchangeably. Sometimes, however, the thing youʼre collecting is itself
a set, and you want to distinguish (for an example, see Exercise 38 on page 530).
Here is a type collection that is distinct from the set/list type.
S240c.

type 'a collection
elemsC : 'a collection -> 'a set
singleC : 'a -> 'a collection
emptyC : 'a collection

〈collections with mapping and combining functions S240c〉≡ (S237a) S241a ▷
datatype 'a collection = C of 'a set
fun elemsC (C xs) = xs
fun singleC x = C [x]
val emptyC = C []
1The ML types of the set operations include type variables with double primes, like ''a. The type

variable ''a can be instantiated only with an “equality type.” Equality types include base types like
strings and integers, as well as user-defined types that do not contain functions. Functions cannot be
compared for equality.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.1
Reusable utility

functions

S241

The really useful functions are below: together with singleC, functions joinC
and mapC form a monad. (If youʼve heard of monads, you may know that they are a
useful abstraction for containers and collections of all kinds; they also have more
exotic uses, such as expressing input and output as pure functions. The collection
type is the monad for nondeterminism, which is to say, all possible combinations or
outcomes. If you know about monads, you may have picked up some programming
tricks you can reuse. But you donʼt need to know monads to do any of the exercises
in this book.)

Here are the key functions:

• Functions mapC and filterC do for collections what map and filter do for
lists.

• Function joinC takes a collection of collections of τ s̓ and reduces it to a sin-
gle collection of τ s̓. When mapC is used with a function that itself returns a
collection, joinC usually follows, as exemplified in the implementation of
mapC2 below.

• Function mapC2 is the most powerful of all—its type resembles the type of
Standard MLs̓ListPair.map, but it works quite differently: whereListPair.map
takes elements pairwise, mapC2 takes all possible combinations. In particu-
lar, if you give ListPair.map two lists containing N and M elements respec-
tively, the number of elements in the result is min(N,M). If you give col-
lections of size N and M to mapC2, the resulting collection has size N ×M .

S241a.

joinC : 'a collection collection -> 'a collection
mapC : ('a -> 'b) -> ('a collection -> 'b collection)
filterC : ('a -> bool) -> ('a collection -> 'a collection)
mapC2 : ('a * 'b -> 'c) -> ('a collection * 'b collection -> 'c collection)

〈collections with mapping and combining functions S240c〉+≡ (S237a) ◁ S240c

fun joinC (C xs) = C (List.concat (map elemsC xs))
fun mapC f (C xs) = C (map f xs)
fun filterC p (C xs) = C (List.filter p xs)
fun mapC2 f (xc, yc) = joinC (mapC (fn x => mapC (fn y => f (x, y)) yc) xc)

Sometimes we need to zip together three lists of equal length.
S241b.

zip3 : 'a list * 'b list * 'c list -> ('a * 'b * 'c) list
unzip3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list

〈list functions not provided by Standard ML’s initial basis S241b〉≡ (S237a) S241c ▷

fun zip3 ([], [], []) = []
| zip3 (x::xs, y::ys, z::zs) = (x, y, z) :: zip3 (xs, ys, zs)
| zip3 _ = raise ListPair.UnequalLengths

fun unzip3 [] = ([], [], [])
| unzip3 (trip::trips) =

let val (x, y, z) = trip
val (xs, ys, zs) = unzip3 trips

in (x::xs, y::ys, z::zs)
end

Standard MLs̓ list-reversal function is called rev, but in this book I use reverse.
S241c. 〈list functions not provided by Standard ML’s initial basis S241b〉+≡ (S237a) ◁ S241b S242a ▷

val reverse = rev

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code for writing
interpreters in MLI

S242

S242a.

optionList : 'a option list -> 'a list option
〈list functions not provided by Standard ML’s initial basis S241b〉+≡ (S237a) ◁ S241c

fun optionList [] = SOME []
| optionList (NONE :: _) = NONE
| optionList (SOME x :: rest) =

(case optionList rest
of SOME xs => SOME (x :: xs)
| NONE => NONE)

I.1.4 Utility function for limiting the depth of recursion

If there s̓ no other overhead, MLton delivers 25 million evals per second. Finding
all solutions to a Boolean formula requires on the order of 200.
S242b. 〈function application with overflow checking S242b〉≡ (S237a)

local
val throttleCPU = case OS.Process.getEnv "BPCOPTIONS"

of SOME "nothrottle" => false
| _ => true

val defaultRecursionLimit = 6000 (* about 1/5 of 32,000? *)
val recursionLimit = ref defaultRecursionLimit
val evalFuel = ref 1000000
datatype checkpoint = RECURSION_LIMIT of int

in
val defaultEvalFuel = ref (!evalFuel)
fun withFuel n f x =
let val old = !evalFuel

val _ = evalFuel := n
in (f x before evalFuel := old) handle e => (evalFuel := old; raise e)
end

fun fuelRemaining () = !evalFuel

fun checkpointLimit () = RECURSION_LIMIT (!recursionLimit)
fun restoreLimit (RECURSION_LIMIT n) = recursionLimit := n

fun applyCheckingOverflow f =
if !recursionLimit <= 0 then
raise RuntimeError "recursion too deep"

else if throttleCPU andalso !evalFuel <= 0 then
(evalFuel := !defaultEvalFuel; raise RuntimeError "CPU time exhausted")

else
let val _ = recursionLimit := !recursionLimit - 1

val _ = evalFuel := !evalFuel - 1
in fn arg => f arg before (recursionLimit := !recursionLimit + 1)
end

fun resetOverflowCheck () = (recursionLimit := defaultRecursionLimit
; evalFuel := !defaultEvalFuel
)

end

I.1.5 Utility function for mutual recursion

In Standard ML, mutually recursive functions are typically defined using the and
keyword. But such a definition requires that the functions be adjacent in the source
code. When there are large mutual recursions in which many functions partici-
pate, it is often simpler to implement mutual recursion the way a C programmer
does: put each function in a mutable reference cell and call indirectly through the

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.2
Representing error
outcomes as values

S243

contents of that cell. But how is the cell to be initialized? In C, initialization is han-
dled by the linker. In ML, we have to initialize the reference cell when we create it;
the cell doesnʼt get its final value until the function it refers to is defined. To ini-
tialize such a cell, I use function forward to create an initial function. That initial
function, if ever called, causes a fatal error.
S243a. 〈function forward, for mutual recursion through mutable reference cells S243a〉≡ (S237a)

fun forward what _ =
let exception UnresolvedForwardDeclaration of string
in raise UnresolvedForwardDeclaration what
end

For an example of forward, see \chunkref: chunk.first-use-of-forward. (THIS
COULD POSSIBLY BE ELIMINATED.)

I.2 REPRESENTING ERROR OUTCOMES AS VALUES

When an error occurs, especially during evaluation, the best and most convenient
thing to do is often to raise an ML exception, which can be caught in a handler. But
it s̓ not always easy to put a handler exactly where it s̓ needed to make the control
transfer work out the way it should. If you need to get the code right, sometimes it s̓
better to represent an error outcome as a value. Like any other value, such a value
can be passed and returned until it reaches a place where a decision is made.

• When representing the outcome of a unit test, an error means failure for
check-expect but success for check-error. Rather than juggle “exception”
versus “non-exception,” I treat both outcomes on the same footing, as values.
Successful evaluation to produce bridge-language value v is represented as
ML value OK v. Evaluation that signals an error with message m is repre-
sented as ML value ERRORm. Constructors OK and ERROR are the value con-
structors of the algebraic data type error, defined here:
S243b. 〈support for representing errors as ML values S243b〉≡ (S237a) S244a ▷

datatype 'a error = OK of 'a | ERROR of string

• My parsers, which use technology described in Appendix J below, are clear
and easy to write, but their execution is hopelessly simple-minded. For ex-
ample, when trying to read an expression, my parser is continually posing
very simple questions to its input: Are you an if? Are you a while? Are you
a set? And so on. But although the questions are simple, the answers are
not. Each question, like the if question for example, can be answered three
ways:

– Iʼm an if, and here s̓ my abstract-syntax tree e.

– Iʼm not an if.

– I thought I was an if, but something went wrong—I must be a syntax
error.

The following transcript gives an example of each case:

-> (if (< it 0) 'negative 'nonnegative) ; I'm an if
nonnegative
-> (+ 2 2) ; I'm not an if
4
-> (if (symbol? it) 99) ; I'm a syntax error
syntax error: expected (if e1 e2 e3)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

RuntimeErrorS366c

Code for writing
interpreters in MLI

S244

If I tried to signal the error case with an exception, I would find it very diffi-
cult to build parsers that actually work, and to make sure every exception is
caught. Instead, I represent each form of answer as follows:

– An answer of the form “Iʼm what you asked for, and here is my abstract-
syntax tree e” is represented roughly as SOME (OK e).2

– An answer of the form “Iʼm not what you asked for” is represented as
NONE.

– An answer of the form “I thought I was what you asked for, but some-
thing went wrong—I must be a syntax error” is represented roughly as
SOME (ERRORm), where m is an error message.

Functions that return values like this can be composed using higher-order
functions described below.

What if we have a function f that could return an 'a or an error, and another
function g that expects an 'a? Standard function composition and the expression
g (f x) donʼt exactly make sense, but the idea of composition is good. This form
of composition poses a standard problem, and it has a standard solution. The so-
lution relies on a sequencing operator written >>=, which uses a special form of
continuation-passing style. (The >>= operator is traditionally called “bind,” but you
might wish to pronounce it “and then.”) The idea is that we apply f to x, and if the
result is OK y, we can continue by applying g to y. But if the result of applying (f
x) is an error, that error is the result of the whole computation. The >>= operator
sequences the possibly erroneous result (f x) with the continuation g, so where
we might wish to write g (f x), we instead write

f x >>= g.

In the definition of >>=, I write the second function as k, not g, because k is tradi-
tional for a continuation.
S244a.

>>= : 'a error * ('a -> 'b error) -> 'b error
〈support for representing errors as ML values S243b〉+≡ (S237a) ◁ S243b S244b ▷

infix 1 >>=
fun (OK x) >>= k = k x
| (ERROR msg) >>= k = ERROR msg

A very common special case occurs when the continuation always succeeds; that is,
the continuation k' has type 'a -> 'b instead of 'a -> b error. In this case, the
execution plan is that when (f x) succeeds, continue by applying k' to the result;
otherwise propagate the error. I know of no standard way to write this operator,3,
so I use >>=+, which you might also choose to pronounce “and then.”
S244b.

>>=+ : 'a error * ('a -> 'b) -> 'b error
〈support for representing errors as ML values S243b〉+≡ (S237a) ◁ S244a S244c ▷

infix 1 >>=+
fun e >>=+ k' = e >>= (OK o k')

Sometimes we map an error-producing function over a list of values to get a
list of 'a error results. Such a list is hard to work with, and the right thing to do
with it is to convert it to a single value that s̓ either an 'a list or an error. I call the
conversion operation errorList.4 I implement it by folding over the list of possibly
erroneous results, concatenating all error messages.
S244c.

errorList : 'a error list -> 'a list error
〈support for representing errors as ML values S243b〉+≡ (S237a) ◁ S244b S245a ▷

fun errorList es =
let fun cons (OK x, OK xs) = OK (x :: xs)

2“Roughly” because in truth, the answer also includes unread input.
3Haskell uses flip fmap.
4Haskell calls it sequence.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.3. Unit testing

S245

| cons (ERROR m1, ERROR m2) = ERROR (m1 ^ "; " ^ m2)
| cons (ERROR m, OK _) = ERROR m
| cons (OK _, ERROR m) = ERROR m

in foldr cons (OK []) es
end

These functions are used in parsing and elsewhere.

S245a. 〈support for representing errors as ML values S243b〉+≡ (S237a) ◁ S244c
fun errorLabel s (OK x) = OK x
| errorLabel s (ERROR msg) = ERROR (s ^ msg)

I.3 UNIT TESTING

When running a unit test, we have to account for the possibility that evaluating
an expression causes a run-time error. Just as in Chapters 1 and 2, such an error
shouldnʼt result in an error message; it should just cause the test to fail. (Or if the
test expects an error, it should cause the test to succeed.) To manage errors in C,
we had to fool around with set_error_mode. In ML, things are simpler: we convert
the result of evaluation either to OK v, where v is a value, or to ERRORm, where m is
an error message, as described above. On top of this representation, I build some
shared utility functions.

When a check-expect fails, function whatWasExpected reports what was ex-
pected. If the thing expected was a syntactic value, I show just the value. Other-
wise I show the syntax, plus whatever the syntax evaluated to. The definition of
asSyntacticValue is language-dependent.
S245b.

whatWasExpected : exp * value error -> string
asSyntacticValue : exp -> value option

〈shared whatWasExpected S245b〉≡ (S246c)

fun whatWasExpected (e, outcome) =
case asSyntacticValue e
of SOME v => valueString v
| NONE =>

case outcome
of OK v => valueString v ^ " (from evaluating " ^ expString e ^ ")"
| ERROR _ => "the result of evaluating " ^ expString e

Function checkExpectPasses runs a check-expect test and tells if the test
passes. If the test does not pass, checkExpectPasses also writes an error message.
Error messages are written using failtest, which, after writing the error message,
indicates failure by returning false.
S245c.

checkExpectPassesWith : (value * value -> bool) -> exp * exp -> bool
outcome : exp -> value error
failtest : string list -> bool

〈shared checkExpectPassesWith, which calls outcome S245c〉≡ (S246c)

val cxfailed = "check-expect failed: "
fun checkExpectPassesWith equals (checkx, expectx) =
case (outcome checkx, outcome expectx)
of (OK check, OK expect) =>

equals (check, expect) orelse
failtest [cxfailed, " expected ", expString checkx, " to evaluate to ",

whatWasExpected (expectx, OK expect), ", but it's ",
valueString check, "."]

| (ERROR msg, tried) =>
failtest [cxfailed, " expected ", expString checkx, " to evaluate to ",

whatWasExpected (expectx, tried), ", but evaluating ",

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

asSyntacticValue,
in molecule S528a
in Typed µScheme

S378b
in µML S450a
ERROR S243b
expString,
in molecule S532d
in nano-ML S417a
in Typed Impcore

S385b
in Typed µScheme

S402b
in µScheme S378c
failtest S246d
OK S243b
outcome,
in molecule S526e
in nano-ML S414c
in Typed Impcore

S383c
in Typed µScheme

S401e
in µML S449e
in µScheme S378a
valueString,

in molecule S507a
in Typed Impcore

S386b
in Typed µScheme

314
in µML S448b

Code for writing
interpreters in MLI

S246

Unit-testing functions provided by each language

outcome : exp -> value error
ty : exp -> ty error
testEqual : value * value -> bool
valueString : value -> string
expString : exp -> string
testIsGood : unit_test list * basis -> bool

Shared functions for unit testing

whatWasExpected : exp * value error -> string
checkExpectPasses : exp * exp -> bool
checkErrorPasses : exp -> bool
numberOfGoodTests : unit_test list * basis -> int
processTests : unit_test list * basis -> unit

Table I.1: Unit-testing functions

expString checkx, " caused this error: ", msg]
| (_, ERROR msg) =>

failtest [cxfailed, " expected ", expString checkx, " to evaluate to ",
whatWasExpected (expectx, ERROR msg), ", but evaluating ",
expString expectx, " caused this error: ", msg]

Function checkAssertPasses does the analogous job for check-assert.
S246a.

checkAssertPasses : exp -> bool
〈shared checkAssertPasses and checkErrorPasses, which call outcome S246a〉≡ (S246c) S246b ▷

val cafailed = "check-assert failed: "
fun checkAssertPasses checkx =

case outcome checkx
of OK check => projectBool check orelse

failtest [cafailed, " expected assertion ", expString checkx,
" to hold, but it doesn't"]

| ERROR msg =>
failtest [cafailed, " expected assertion ", expString checkx,

" to hold, but evaluating it caused this error: ", msg]

Function checkErrorPasses does the analogous job for check-error.
S246b.

checkErrorPasses : exp -> bool
〈shared checkAssertPasses and checkErrorPasses, which call outcome S246a〉+≡ (S246c) ◁ S246a

val cefailed = "check-error failed: "
fun checkErrorPasses checkx =

case outcome checkx
of ERROR _ => true
| OK check =>

failtest [cefailed, " expected evaluating ", expString checkx,
" to cause an error, but evaluation produced ",
valueString check]

S246c. 〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉≡ (S378a)
〈shared whatWasExpected S245b〉
〈shared checkExpectPassesWith, which calls outcome S245c〉
〈shared checkAssertPasses and checkErrorPasses, which call outcome S246a〉
fun checkExpectPasses (cx, ex) = checkExpectPassesWith testEqual (cx, ex)

Here is the promised failtest.
S246d. 〈shared unit-testing utilities S246d〉≡ (S369b) S247a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.4
Polymorphic,

effectful streams

S247

fun failtest strings = (app eprint strings; eprint "\n"; false)

In each bridge language, test results are reported the same way. If there are no
tests, there is no report. (The report s̓ format is stolen from the DrRacket program-
ming environment.)
S247a. 〈shared unit-testing utilities S246d〉+≡ (S369b) ◁ S246d

fun reportTestResultsOf what (npassed, nthings) =
case (npassed, nthings)
of (_, 0) => () (* no report *)
| (0, 1) => println ("The only " ^ what ^ " failed.")
| (1, 1) => println ("The only " ^ what ^ " passed.")
| (0, 2) => println ("Both " ^ what ^ "s failed.")
| (1, 2) => println ("One of two " ^ what ^ "s passed.")
| (2, 2) => println ("Both " ^ what ^ "s passed.")
| _ => if npassed = nthings then

app print ["All ", intString nthings, " " ^ what ^ "s passed.\n"]
else if npassed = 0 then

app print ["All ", intString nthings, " " ^ what ^ "s failed.\n"]
else

app print [intString npassed, " of ", intString nthings,
" " ^ what ^ "s passed.\n"]

val reportTestResults = reportTestResultsOf "test"

Function processTests is shared among all bridge languages. For each test,
it calls the language-dependent testIsGood, adds up the number of good tests, and
reports the result.
S247b.

processTests : unit_test list * basis -> unit
〈shared definition of processTests S247b〉≡ (S369b)

fun numberOfGoodTests (tests, rho) =
foldr (fn (t, n) => if testIsGood (t, rho) then n + 1 else n) 0 tests

fun processTests (tests, rho) =
reportTestResults (numberOfGoodTests (tests, rho), length tests)

S247c. 〈global variables and exception for counting assertions S247c〉≡
exception AssertionFailure of srcloc * string
val assertionsPassed = ref 0
val assertionsChecked = ref 0

S247d. 〈other handlers that catch non-fatal exceptions and pass messages to caught [[assertions]] S247d〉≡
| AssertionFailure (loc, expstring) =>

if !toplevel_error_format = WITHOUT_LOCATIONS andalso fst loc = "standard input"
then
caught ("Assertion " ^ expstring ^ " failed")

else
caught ("Assertion " ^ expstring ^ " failed at " ^ srclocString loc)

S247e. 〈code that reports on assertions, just before exit S247e〉≡
val () = reportTestResultsOf "assertion" (!assertionsPassed, !assertionsChecked)

I.4 POLYMORPHIC STREAMS, WITH OPTIONAL SIDE EFFECTS

A parser defines a function from a sequence of input lines to a sequence of ex-
tended definitions. In ML, as in C, a sequence of input lines is available only by ex-
ecuting imperative code. In C, the imperative library function is fgets, from which
we build getline_. In ML, the imperative library function is TextIO.inputLine.
But in both languages, once you get the line, it s̓ gone, and you canʼt get it again. But
it is possible to choose another representation of sequences that turns a sequence

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

checkExpectPasses-
With

S245c
eprint S238a
ERROR S243b
expString,
in molecule S532d
in nano-ML S417a
in Typed Impcore

S385b
in Typed µScheme

S402b
in µScheme S378c
intString S238f
OK S243b
outcome,
in molecule S526e
in nano-ML S414c
in Typed Impcore

S383c
in Typed µScheme

S401e
in µML S449e
in µScheme S378a
println S238a
projectBool,

in molecule S433d
in Typed Impcore

S388e
in Typed µScheme

315b
in µML S433e
testEqual,
in nano-ML S366b
in Typed Impcore

S383b
in Typed µScheme

S401d
in µML S432c
testIsGood,

in molecule S526e
in nano-ML S414c
in Typed Impcore

S383c
in Typed µScheme

S401e
in µML S449e
in µScheme S378a
in µSmalltalk

S568b
valueString,

in molecule S507a
in Typed Impcore

S386b
in Typed µScheme

314
in µML S448b

Code for writing
interpreters in MLI

S248

Suspensions

type 'a susp
delay : (unit -> 'a) -> 'a susp
demand : 'a susp -> 'a

Polymorphic streams and stream functions
type 'a stream
streamGet : 'a stream -> ('a * 'a stream) option

streamOfList : 'a list -> 'a stream
listOfStream : 'a stream -> 'a list

delayedStream : (unit -> 'a stream) -> 'a stream
streamOfEffects : (unit -> 'a option) -> 'a stream
streamRepeat : 'a -> 'a stream
streamOfUnfold : ('b -> ('a * 'b) option) -> 'b -> 'a stream

preStream : (unit -> unit) * 'a stream -> 'a stream
postStream : 'a stream * ('a -> unit) -> 'a stream

streamMap : ('a -> 'b) -> 'a stream -> 'b stream
streamFilter : ('a -> bool) -> 'a stream -> 'a stream
streamFold : ('a * 'b -> 'b) -> 'b -> 'a stream -> 'b
streamZip : 'a stream * 'b stream -> ('a * 'b) stream
streamConcat : 'a stream stream -> 'a stream
streamConcatMap : ('a -> 'b stream) -> 'a stream -> 'b stream
@@@ : 'a stream * 'a stream -> 'a stream
streamTake : int * 'a stream -> 'a list
streamDrop : int * 'a stream -> 'a list

Streams of numbers, lines, or extended definitions
type line = string
type xdef
naturals : int stream
filelines : TextIO.instream -> line stream
xdefstream : string * line stream * prompts -> xdef stream
filexdefs : string * TextIO.instream * prompts -> xdef stream
stringsxdefs : string * string list -> xdef stream

Table I.2: Stream-related types and functions

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.4
Polymorphic,

effectful streams

S249

of imperative operations into an actual sequence data structure. That data struc-
ture is called a stream. By hiding the action of reading behind the stream abstrac-
tion, we can treat an input as an immutable sequence of lines… or characters… or
extended definitions. The stream puts ephemeral results of unrepeatable actions
into a data structure that we can hold onto as long as we like and examine as many
times as we like.

Streams, like lists, are a powerful abstraction that admits of sophisticated ma-
nipulation via higher-order functions, including some of the same functions we use
on lists. The stream-related functions defined below are listed in Table I.2.

I.4.1 Suspensions: repeatable access to the result of one action

Streams are built around a single abstraction: the suspension, which is also called a
thunk. A suspension of type 'a susp represents a value of type 'a that is produced
by an action, like reading a line of input. The action is not performed until the sus-
pensions̓ value is demanded by function demand.5 The action itself is represented by
a function of type unit -> 'a. The suspension is created by passing the action to the
function delay; at that point, the action is “pending.” If demand is never called, the
action is never performed and remains pending. The first time demand is called, the
action is performed, and the suspension saves the result that is produced. If demand
is called multiple times, the action is still performed just once—later calls to demand
donʼt repeat the action but simply return the value previously produced.

To implement suspensions, I use a standard combination of imperative and
functional code. A suspension is a reference to an action, which can be pending
or can have produced a result.
S249a.

type 'a susp
〈suspensions S249a〉≡ (S237a) S249b ▷

datatype 'a action
= PENDING of unit -> 'a
| PRODUCED of 'a

type 'a susp = 'a action ref

Functions delay and demand convert to and from suspensions.
S249b.

delay : (unit -> 'a) -> 'a susp
demand : 'a susp -> 'a

〈suspensions S249a〉+≡ (S237a) ◁ S249a
fun delay f = ref (PENDING f)
fun demand cell =
case !cell
of PENDING f => let val result = f ()

in (cell := PRODUCED result; result)
end

| PRODUCED v => v

I.4.2 Streams: results of a sequence of actions

An interpreter has to perform not just one action but a whole sequence. If the goal
is to read definitions, then the low-level action on top of which other actions are
built is “read a line of input.” But an interactive interpreter doesnʼt just read all the
input and then convert it all to definitions. Instead, it reads just as much input as
is needed to make the first definition, then evaluates the definition and prints the
result. To orchestrate all these actions, I use streams.

5If youʼre familiar with suspensions or with lazy computation in general, you know that the func-
tion demand is traditionally called force. But I use the name force to refer to a similar function in the
µHaskell interpreter, which implements a full language around the idea of lazy computation. It is possi-
ble to have two functions called force—they can coexist peacefully—but I think it s̓ too confusing. So the
less important function, which is presented here, is called demand.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code for writing
interpreters in MLI

S250

A stream behaves much like a list, except that the first time we look at each
element, some action might be taken. And unlike a list, a stream can be infinite.
My code uses streams of lines, streams of characters, streams of definitions, and
even streams of source-code locations. In this section I define streams and a large
collection of related utility functions. Many of the utility functions are directly in-
spired by list functions like map, filter, concat, zip, and foldl.

Stream representation and basic functions

My representation of streams uses three cases:6

• The EOS constructor represents an empty stream.

• The ::: constructor (pronounced “cons”), which I intend should remind you
of MLs̓ :: constructor for lists, represents a stream in which an action has
already been taken, and the first element of the stream is available (as are the
remaining elements). Like the standard :: constructor, the ::: constructor
is written as an infix operator.

• The SUSPENDED constructor represents a stream in which the action need to
produce the next element may not yet have been taken. Getting the element
requires demanding a value from a suspension, and if the action in the sus-
pension is pending, it is performed at that time.

S250a. 〈streams S250a〉≡ (S237a) S250b ▷

datatype 'a stream
= EOS
| ::: of 'a * 'a stream
| SUSPENDED of 'a stream susp

infixr 3 :::

Even though its representation uses mutable state (the suspension), the stream is an
immutable abstraction.7 To observe that abstraction, call streamGet. This function
performs whatever actions are needed either to produce a pair holding an element
an a stream (represented as SOME (x, xs) or to decide that the stream is empty and
no more elements can be produced (represented as NONE).
S250b.

streamGet : 'a stream -> ('a * 'a stream) option
〈streams S250a〉+≡ (S237a) ◁ S250a S250c ▷

fun streamGet EOS = NONE
| streamGet (x ::: xs) = SOME (x, xs)
| streamGet (SUSPENDED s) = streamGet (demand s)

The simplest way to create a stream is by using the ::: or EOS constructors.
It can also be convenient to create a stream from a list. When such a stream is
read, no new actions are performed.
S250c.

streamOfList : 'a list -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S250b S250d ▷

fun streamOfList xs =
foldr (op :::) EOS xs

Function listOfStream creates a list from a stream. It is useful for debugging.
S250d.

listOfStream : 'a stream -> 'a list
〈streams S250a〉+≡ (S237a) ◁ S250c S251a ▷

fun listOfStream xs =
case streamGet xs
of NONE => []
| SOME (x, xs) => x :: listOfStream xs

6There are representations that use fewer cases, but this one has the merit that I can define a poly-
morphic empty stream without running afoul of MLs̓ “value restriction.”

7To help with debugging, I sometimes violate the abstraction and look at the state of a SUSPENDED
stream.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.4
Polymorphic,

effectful streams

S251

The more interesting streams are those that result from actions. To help create
such streams, I define delayedStream as a convenience abbreviation for creating a
stream from one action.
S251a.

delayedStream : (unit -> 'a stream) -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S250d S251b ▷

fun delayedStream action =
SUSPENDED (delay action)

Creating streams using actions and functions

Function streamOfEffects produces the stream of results obtained by repeatedly
performing a single action (like reading a line of input). The action must have
type unit -> 'a option; the stream performs the action repeatedly, producing
a stream of 'a values until performing the action returns NONE.
S251b.

streamOfEffects : (unit -> 'a option) -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S251a S251c ▷

fun streamOfEffects action =
delayedStream (fn () => case action () of NONE => EOS

| SOME a => a ::: streamOfEffects action)

I use streamOfEffects to produce a stream of lines from an input file:
S251c.

type line
filelines : TextIO.instream -> line stream

〈streams S250a〉+≡ (S237a) ◁ S251b S251d ▷

type line = string
fun filelines infile =
streamOfEffects (fn () => TextIO.inputLine infile)

Where streamOfEffects produces the results of repeating a single action again
and again, streamRepeat simply repeats a single value again and again. This oper-
ation might sound useless, but here s̓ an example: suppose we read a sequence of
lines from a file, and for error reporting, we want to tag each line with its source
location, i.e., file name and line number. Well, the file names are all the same,
and one easy way to associate the same file name with every line is to repeat
the file name indefinitely, then join the two streams using streamZip. Function
streamRepeat creates an infinite stream that repeats a value of any type:
S251d.

streamRepeat : 'a -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S251c S251e ▷

fun streamRepeat x =
delayedStream (fn () => x ::: streamRepeat x)

A more sophisticated way to produce a stream is to use a function that depends
on an evolving state of some unknown type 'b. The function is applied to a state
(of type 'b) and may produce a pair containing a value of type 'a and a new state.
By repeatedly applying the function, we produce a sequence of results of type 'a.
This operation, in which a function is used to expand a value into a sequence, is the
dual of the fold operation, which is used to collapse a sequence into a value. The
new operation is therefore called unfold.
S251e.

streamOfUnfold : ('b -> ('a * 'b) option) -> 'b -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S251d S252a ▷

fun streamOfUnfold next state =
delayedStream (fn () => case next state

of NONE => EOS
| SOME (a, state') => a ::: streamOfUnfold next state')

Function streamOfUnfold can turn any “get” function into a stream. In fact, the
standard unfold and get operations should obey the following algebraic law:

streamOfUnfold streamGet xs ≡ xs.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

delay S249b
demand S249b

Code for writing
interpreters in MLI

S252

Another useful “get” function is (fn n => SOME (n, n+1)); passing this function
to streamOfUnfold results in an infinite stream of increasing integers.
S252a.

naturals : int stream
〈streams S250a〉+≡ (S237a) ◁ S251e S252b ▷

val naturals =
streamOfUnfold (fn n => SOME (n, n+1)) 0 (* 0 to infinity *)

(Streams, like lists, support not only unfolding but also folding. FunctionstreamFold
is defined below in chunk S253b.)

Attaching extra actions to streams

A stream built with streamOfEffects or filelines has an imperative action
built in. But in an interactive interpreter, the action of reading a line should be
preceded by another action: printing the prompt. And deciding just what prompt
to print requires orchestrating other actions. One option, which I use below, is
to attach an imperative action to a “get” function used with streamOfUnfold. An-
other option, which is sometimes easier to understand, is to attach an action to the
stream itself. Such an action could reasonably be performed either before or after
the action of getting an element from the stream.

Given an action called pre and a stream xs , I define a stream preStream (pre,
xs) that adds pre () to the action performed by the stream. Roughly speaking,

streamGet (preStream (pre, xs)) = (pre (); streamGet xs).

(The equivalence is only rough because the pre action is performed lazily, only
when an action is needed to get a value from xs .)
S252b.

preStream : (unit -> unit) * 'a stream -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S252a S252c ▷

fun preStream (pre, xs) =
streamOfUnfold (fn xs => (pre (); streamGet xs)) xs

It s̓ also useful to be able to perform an action immediately after getting an element
from a stream. In postStream, I perform the action only if streamGet succeeds.
By performing the post action only when streamGet succeeds, I make it possible
to write a post action that has access to the element just gotten. Post-get actions
are especially useful for debugging.
S252c.

postStream : 'a stream * ('a -> unit) -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S252b S252d ▷

fun postStream (xs, post) =
streamOfUnfold (fn xs => case streamGet xs

of NONE => NONE
| head as SOME (x, _) => (post x; head)) xs

Standard list functions ported to streams

Functions like map, filter, fold, zip, and concat are every bit as useful on streams
as they are on lists.
S252d.

streamMap : ('a -> 'b) -> 'a stream -> 'b stream
〈streams S250a〉+≡ (S237a) ◁ S252c S253a ▷

fun streamMap f xs =
delayedStream (fn () => case streamGet xs

of NONE => EOS
| SOME (x, xs) => f x ::: streamMap f xs)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.4
Polymorphic,

effectful streams

S253

S253a.

streamFilter : ('a -> bool) -> 'a stream -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S252d S253b ▷

fun streamFilter p xs =
delayedStream (fn () => case streamGet xs

of NONE => EOS
| SOME (x, xs) => if p x then x ::: streamFilter p xs

else streamFilter p xs)

The only sensible order in which to fold the elements of a stream is the order
in which the actions are taken and the results are produced: from left to right.
S253b.

streamFold : ('a * 'b -> 'b) -> 'b -> 'a stream -> 'b
〈streams S250a〉+≡ (S237a) ◁ S253a S253c ▷

fun streamFold f z xs =
case streamGet xs of NONE => z

| SOME (x, xs) => streamFold f (f (x, z)) xs

Function streamZip returns a stream that is as long as the shorter of the two
argument streams. In particular, if streamZip is applied to a finite stream and an
infinite stream, the result is a finite stream.
S253c.

streamZip : 'a stream * 'b stream -> ('a * 'b) stream
〈streams S250a〉+≡ (S237a) ◁ S253b S253d ▷

fun streamZip (xs, ys) =
delayedStream
(fn () => case (streamGet xs, streamGet ys)

of (SOME (x, xs), SOME (y, ys)) => (x, y) ::: streamZip (xs, ys)
| _ => EOS)

Concatenation turns a stream of streams of A s̓ into a single stream of A s̓.
I define it using a streamOfUnfold with a two-part state: the first element of the
state holds an initial xs, and the second part holds the stream of all remaining
streams, xss. To concatenate the stream of streams xss, I use an initial state of
(EOS, xss).
S253d.

streamConcat : 'a stream stream -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S253c S253e ▷

fun streamConcat xss =
let fun get (xs, xss) =

case streamGet xs
of SOME (x, xs) => SOME (x, (xs, xss))
| NONE => case streamGet xss

of SOME (xs, xss) => get (xs, xss)
| NONE => NONE

in streamOfUnfold get (EOS, xss)
end

The composition of concat with map f is very common in list and stream pro-
cessing, so I give it a name.
S253e.

streamConcatMap : ('a -> 'b stream) -> 'a stream -> 'b stream
〈streams S250a〉+≡ (S237a) ◁ S253d S253f ▷

fun streamConcatMap f xs = streamConcat (streamMap f xs)

The code used to append two streams is much like the code used to concatenate
arbitrarily many streams. To avoid duplicating the tricky manipulation of states,
I simply implement append using concatenation.
S253f.

@@@ : 'a stream * 'a stream -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S253e S254a ▷

infix 5 @@@
fun xs @@@ xs' = streamConcat (streamOfList [xs, xs'])

Whenever I rename bound variables, for example in a type ∀α1, . . . , αn . τ ,
I have to choose new names that donʼt conflict with existing names in τ or in the
environment. The easiest way to get good names to build an infinite stream of
names by using streamMap on naturals, then use streamFilter to choose only

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

::: S250a
delayedStream

S251a
EOS S250a
streamGet S250b
streamOfListS250c
streamOfUnfold

S251e

Code for writing
interpreters in MLI

S254

the good ones, and finally to take exactly as many good names as I need by calling
streamTake, which is defined here.
S254a.

streamTake : int * 'a stream -> 'a list
〈streams S250a〉+≡ (S237a) ◁ S253f S254b ▷

fun streamTake (0, xs) = []
| streamTake (n, xs) =

case streamGet xs
of SOME (x, xs) => x :: streamTake (n-1, xs)
| NONE => []

If I want “take,” sooner or later Iʼm sure to want “drop” (chunk S256b).
S254b.

streamDrop : int * 'a stream -> 'a stream
〈streams S250a〉+≡ (S237a) ◁ S254a

fun streamDrop (0, xs) = xs
| streamDrop (n, xs) =

case streamGet xs
of SOME (_, xs) => streamDrop (n-1, xs)
| NONE => EOS

I.4.3 Streams of extended definitions

Every language has its own parser, called xdefstream, which converts a stream
of lines to a stream of xdefs. But as in Section F.1.3, the convenience functions
filexdefs and stringsxdefs are shared.
S254c.

xdefstream : string * line stream * prompts -> xdef stream
filexdefs : string * TextIO.instream * prompts -> xdef stream
stringsxdefs : string * string list -> xdef stream

〈shared definitions of filexdefs and stringsxdefs S254c〉≡ (S373b)

fun filexdefs (filename, fd, prompts) = xdefstream (filename, filelines fd, prompts)
fun stringsxdefs (name, strings) = xdefstream (name, streamOfList strings, noPrompts)

I.5 TRACKING AND REPORTING SOURCE-CODE LOCATIONS

An error message is more informative if it says where the error occurred. “Where”
means a source-code location. Compilers that take themselves seriously report
source-code locations right down to the individual character: file broken.c, line 12,
column 17. In production compilers, such precision is admirable. But in a peda-
gogical interpreter, the desire for precision has to be balanced against the need for
simplicity. The best compromise is to track only source file and line number. That s̓
good enough to help programmers find errors, and it eliminates bookkeeping that
would otherwise be needed to track column numbers.
S254d.

type srcloc
srclocString : srcloc -> string

〈support for source-code locations and located streams S254d〉≡ (S237a) S254e ▷
type srcloc = string * int
fun srclocString (source, line) =
source ^ ", line " ^ intString line

Source-code locations are useful when reading code from a file. When reading
code interactively, however, a message that says the error occurred “in standard
input, line 12,” is more annoying than helpful. As in the C code in Section F.4.1 on
page S193, I use an error format to control when error messages include source-code
locations. The format is initially set to include them.
S254e. 〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S254d S255a ▷

datatype error_format = WITH_LOCATIONS | WITHOUT_LOCATIONS
val toplevel_error_format = ref WITH_LOCATIONS

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.5
Tracking and
reporting

source-code
locations

S255

The format is consulted by function synerrormsg, which produces the message
that accompanies a syntax error.
S255a. 〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S254e S255b ▷

fun synerrormsg (source, line) strings =
if !toplevel_error_format = WITHOUT_LOCATIONS andalso source = "standard input"
then
concat ("syntax error: " :: strings)

else
concat ("syntax error in " :: srclocString (source, line) :: ": " :: strings)

Source locations are also used at run time. Any exception can be marked with
a location by converting it to the Located exception:
S255b. 〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255a S255c ▷

exception Located of srcloc * exn

To keep track of the source location of a line, token, expression, or other datum,
I put the location and the datum together in a pair. To make it easier to read the
types, I define a type abbreviation which says that a value paired with a location is
“located.”
S255c.

type 'a located
〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255b S255d ▷

type 'a located = srcloc * 'a

To raise the Located exception, we use function atLoc. Calling atLoc f x applies f
to xwithin the scope of handlers that convert recognized exceptions to the Located
exception:
S255d.

atLoc : srcloc -> ('a -> 'b) -> ('a -> 'b)
〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255c S255e ▷

fun atLoc loc f a =
f a handle e as RuntimeError _ => raise Located (loc, e)

| e as NotFound _ => raise Located (loc, e)
〈more handlers for atLoc S255f〉

And we can call atLoc easily by using the higher-order function located:
S255e.

located : ('a -> 'b) -> ('a located -> 'b)
leftLocated : ('a * 'b -> 'c) -> ('a located * 'b -> 'c)

〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255d S255g ▷

fun located f (loc, a) = atLoc loc f a
fun leftLocated f ((loc, a), b) = atLoc loc f (a, b)

Here are handlers for more exceptions we recognize. These handlers can be aug-
mented by other, language-specific handlers.
S255f. 〈more handlers for atLoc S255f〉≡ (S255d)

| e as IO.Io _ => raise Located (loc, e)
| e as Div => raise Located (loc, e)
| e as Overflow => raise Located (loc, e)
| e as Subscript => raise Located (loc, e)
| e as Size => raise Located (loc, e)

Once we have a location, we use it to fill in a template for an error message. The
location replaces the string "<at loc>". The necessary string processing is done
by fillComplaintTemplate, which relies on Standard MLs̓ Substring module.
S255g.

fillComplaintTemplate : string * srcloc option -> string
〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255e S256a ▷

fun fillComplaintTemplate (s, maybeLoc) =
let val string_to_fill = " <at loc>"

val (prefix, atloc) = Substring.position string_to_fill (Substring.full s)
val suffix = Substring.triml (size string_to_fill) atloc
val splice_in =
Substring.full (case maybeLoc

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

EOS S250a
filelines S251c
intString S238f
noPrompts S280a
NotFound 311b
RuntimeErrorS366c
streamGet S250b
streamOfListS250c
xdefstream,

in molecule S526c
in nano-ML S414b
in Typed Impcore

S388a
in Typed µScheme

S397d
in µML S441d
in µScheme S377f
in µSmalltalk

S565a

Code for writing
interpreters in MLI

S256

of NONE => ""
| SOME (loc as (file, line)) =>

if !toplevel_error_format = WITHOUT_LOCATIONS
andalso file = "standard input"
then
""

else
" in " ^ srclocString loc)

in if Substring.size atloc = 0 then (* <at loc> is not present *)
s

else
Substring.concat [prefix, splice_in, suffix]

end
fun fillAtLoc (s, loc) = fillComplaintTemplate (s, SOME loc)
fun stripAtLoc s = fillComplaintTemplate (s, NONE)

To signal an error at a given location, code calls errorAt.
S256a.

errorAt : string -> srcloc -> 'a error
〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S255g S256b ▷

fun errorAt msg loc =
ERROR (synerrormsg loc [msg])

All locations originate in a located stream of lines. The locations share a file-
name, and the line numbers are 1, 2, 3, . . . and so on.
S256b.

locatedStream : string * line stream -> line located stream
〈support for source-code locations and located streams S254d〉+≡ (S237a) ◁ S256a

fun locatedStream (streamname, inputs) =
let val locations = streamZip (streamRepeat streamname, streamDrop (1, naturals))
in streamZip (locations, inputs)
end

I.6 FURTHER READING

The 'a error abstraction is an old functional-programming trick, first described by
Spivey (1990). Ramsey (1999) demonstrates the use of this abstraction to suppress
error messages in compilers.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§I.6
Further reading

S257

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ERROR S243b
naturals S252a
streamDrop S254b
streamRepeatS251d
streamZip S253c
synerrormsg S255a

CHAPTER CONTENTS
J.1 STREAM TRANSFORM-

ERS, WHICH ACT AS
PARSERS S260

J.1.1 Error-free transformers
and their composition S261

J.1.2 Ignoring results pro-
duced by transformers S264

J.1.3 At last, transformers
that look at the input
stream S265

J.1.4 Parsing combinators S265
J.1.5 Error-detecting trans-

formers and their com-
position S268

J.2 LEXICAL ANALYZERS:
TRANSFORMERS OF
CHARACTERS S268

J.3 PARSERS: READING TO-
KENS AND SOURCE-CODE
LOCATIONS S271

J.3.1 Flushing bad tokens S272
J.3.2 Parsing located, in-line

tokens S272
J.3.3 Parsers that report er-

rors S273
J.3.4 Parsers for common

programming-language
idioms S274

J.3.5 Code used to debug
parsers S277

J.4 STREAMS THAT LEX,
PARSE, AND PROMPT S278

J.5 FURTHER READING S281

JLexical analysis, parsing, and reading input using
ML

How is a program represented? If you have worked through this book, you will
believe (I hope) that the most fundamental and most useful representation of a
program is its abstract-syntax tree. But syntax trees arenʼt easy to create or spec-
ify directly, so unless they have access to a special-purpose language-based editor
(perhaps as part of an integrated development environment), programmers have
to specify an abstract-syntax tree indirectly, by writing a sequence of characters.
The process of turning a sequence of characters into syntax is called parsing.

Wait! It gets better. Quite often characters are turned into syntax in two stages:
first characters are grouped together into tokens. Then, a parser turns a sequence of
tokens into syntax. Think of a token as a word or a symbol or a punctuation mark.

Parsing is a deep, broad, well-developed topic with many interesting intellec-
tual byways. A 500-page monograph on parsing was already famous in the 1970s,
and clever minds have invented plenty of new techniques since then. Many tech-
niques rely on a separate tool called a parser generator. The technique I use in this
book requires no separate tools: I use hand-written, recursive-descent parsers. To help
me write parsers by hand, I have created1 a set of higher-order functions designed
especially to manipulate parsers. Such functions are known as parsing combinators.
My parsing combinators appear in this appendix.

Most parsing techniques have been invented for use in compilers. and a typical
compiler swallows programs in large gulps, one file at a time. Unlike these typical
compilers, the interpreters in this book are interactive, and they swallow just one
line at a time. Interactivity imposes additional requirements:

• A parser might cooperate with the I/O routines to arrange that a suitable
prompt is issued before each line is read. The prompt should tell the user
whether the parser is waiting for a new definition or is in the middle of pars-
ing a current definition.

• If a parser encounters an error, it canʼt just give up. It needs get itself back
into a state where the user can continue to interact.

These requirements make my parsing combinators a bit different from standard
ones. In particular, in order to be sure that the actions of printing a prompt and
reading a line of input occur in the proper sequence, I manage these actions using
the lazy streams defined in Section I.4.2. Unlike the lazy streams built into Haskell,
these lazy streams can do input and output and can perform other actions. Parsing
is about turning a stream of lines (from a file or from a list of strings) into a stream
of extended definitions. It happens in stages:

• In a stream of lines, each line is split into characters.
1I say “created,” but a more accurate term would be “stolen.”

S259
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Lexical analysis,
parsing, and

reading using MLJ
S260

• A lexical analyzer turns a stream of characters into a stream of tokens. Using
streamConcatMap with the lexical analyzer then turns a stream of lines into
a stream of tokens.

• A parser turns a stream of tokens into a stream of syntax. I define parsers for
expressions, true definitions, unit tests, and extended definitions.

The fundamental parser is one, which takes one token from a stream and produces
that token. Other parsers are built on top of one, usually using higher-order func-
tions. Functions <$> and <*> act like map for parsers, applying a function the result
a parser returns. Function sat acts like filter, allowing a parser to fail if it doesnʼt
recognize its input. Functions <*>, <*, and *> combine parsers in sequence, and
function <|> defines a parser as a choice between two other parsers. Functions
many and many1 turn a parser for a thing into a parser for a list of things; function
optional does the same thing for MLs̓ option type. These functions are known
collectively as parsing combinators, and together they form a powerful language for
defining lexical analyzers and parsers.

I divide parsers and parsing combinators into three groups:

• A stream transformer doesnʼt care what comes in or goes out; it is polymorphic
in both the input and output type. Stream transformers used to build both
lexical analyzers and parsers.

• A lexer is a stream transformer that is specialized to take a stream of charac-
ters as input. Lexers may be defined with any output type, but the ultimate
goal of a lexer is to produce a stream of tokens.

• A parser is a stream transformer that is specialized to take a stream of tokens
as input. A parser s̓ input stream also includes source-code locations and
end-of-line markers. Parsers may be defined with any output type, but the
ultimate goal of a lexer is to produce a stream of abstract-syntax trees.

The polymorphic functions are described in Table J.1 on page S262; the specialized
functions are described in Table J.2 on page S269.

The code is divided among these chunks:
S260. 〈common parsing code S260〉≡

〈combinators and utilities for parsing located streams S272c〉
〈transformers for interchangeable brackets S274〉
〈code used to debug parsers S277d〉
〈streams that issue two forms of prompts S279a〉

The functions defined in this appendix are useful for reading all kinds of input, not
just computer programs, and I encourage you to use them in your own projects.
But here are two words of caution: with so many abstractions in the mix, the parsers
are tricky to debug. And while some parsers built from combinators are very effi-
cient, mine arenʼt.

J.1 STREAM TRANSFORMERS, WHICH ACT AS PARSERS

Our ultimate goal is to turn streams of input lines into streams of definitions. Along
the way we may also have streams of characters, tokens, types, expressions, and
more. To handle all these different kinds of streams using a single set of operators,
I define a type representing a stream transformer. A stream transformer fromA toB
takes a stream of A s̓ as input and either succeeds, fails, or detects an error:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.1
Stream

transformers,
which act as

parsers

S261

• If it succeeds, it consumes zero or more A s̓ from the input stream and pro-
duces exactly one B. It returns a pair containing OK B plus whatever A s̓
were not consumed.

• If it fails, it returns NONE.

• If it detects an error, it returns a pair containing ERRORm, where m is a mes-
sage, plus whatever A s̓ were not consumed.

S261a.

type ('a, 'b) xformer
〈stream transformers and their combinators S261a〉≡ S261b ▷

type ('a, 'b) xformer =
'a stream -> ('b error * 'a stream) option

If we apply streamOfUnfold, from Section I.4.2, to an ('a, 'b) xformer, we get a
function that maps a stream of A s̓ to a stream of B s̓-with-error.

The stream-transformer abstraction supports many, many operations. These
operations, known as parsing combinators, have been refined by functional pro-
grammers for over two decades, and they can be expressed in a variety of guises.
The guise I have chosen uses notation from applicative functors and from the ParSec
parsing library.

I begin very abstractly, by presenting combinators that donʼt actually consume
any inputs. The next two sections present only “constant” transformers and “glue”
functions that build transformers from other transformers. With those functions in
place, I proceed to real, working parsing combinators. These combinators are split
into two groups: “universal” combinators that work with any stream, and “parsing”
combinators that expect a stream of tokens with source-code locations.

J.1.1 Error-free transformers and their composition

The pure combinator takes a value h of type B as argument. It returns an A-to-B
transformer that consumes no A s̓ as input and produces y.
S261b.

pure : 'b -> ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S261a S263a ▷

fun pure y = fn xs => SOME (OK y, xs)

To build a stream transformer that reads inputs in sequence, we compose
smaller stream transformers that read parts of the input. The sequential composi-
tion operator, if you have not seen it before, may look quite strange. To compose
tx_f and tx_b in sequence, you use the infix operator <*>, which is pronounced
“applied to.” The composition is written tx_f <*> tx_b, and here s̓ how it works:

1. First tx_f reads some A s̓ and produces a function f of type B → C.

2. Next tx_b reads some more A s̓ and produces a value y which is a B.

3. The combination tx_f <*> tx_b reads no more input but simply applies f
to y and returns f y (of type C) as its result.

This idea may seem crazy. How can reading a sequence of A s̓ produce a function?
The secret is that almost always, the function is produced by pure, without actu-
ally reading any A s̓, or it s̓ the result of using the <*> operator to apply a Curried
function. But the read-and-produce-a-function idiom is a great way to do business,
because when the parser is written using the pure and <*> combinators, the code
resembles a Curried function application.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type error S243b
OK S243b
type stream S250a

Lexical analysis,
parsing, and

reading using MLJ
S262

Stream transformers; applying functions to transformers

type ('a, 'b) xformer
pure : 'b -> ('a, 'b) xformer
<*> : ('a, 'b -> 'c) xformer * ('a, 'b) xformer

-> ('a, 'c) xformer
<$> : ('b -> 'c) * ('a, 'b) xformer -> ('a, 'c) xformer
<$>? : ('b -> 'c option) * ('a, 'b) xformer -> ('a, 'c) xformer
<*>! : ('a, 'b -> 'c error) xformer * ('a, 'b) xformer

-> ('a, 'c) xformer
<$>! : ('b -> 'c error) * ('a, 'b) xformer -> ('a, 'c) xformer

Functions useful with <$> and <*>
fst : ('a * 'b) -> 'a
snd : ('a * 'b) -> 'b
pair : 'a -> 'b -> 'a * 'b
curry : ('a * 'b -> 'c) -> ('a -> 'b -> 'c)
curry3 : ('a * 'b * 'c -> 'd) -> ('a -> 'b -> 'c -> 'd)

Combining transformers in sequence, alternation, or conjunction
<* : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'b) xformer
*> : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'c) xformer
<$: 'b * ('a, 'c) xformer -> ('a, 'b) xformer
<|> : ('a, 'b) xformer * ('a, 'b) xformer -> ('a, 'b) xformer
pzero : ('a, 'b) xformer
anyParser : ('a, 'b) xformer list -> ('a, 'b) xformer
<&> : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'c) xformer

Transformers useful for both lexical analysis and parsing
one : ('a, 'a) xformer
eos : ('a, unit) xformer
sat : ('b -> bool) -> ('a, 'b) xformer -> ('a, 'b) xformer
eqx : ''b -> ('a, ''b) xformer -> ('a, ''b) xformer
notFollowedBy : ('a, 'b) xformer -> ('a, unit) xformer
many : ('a, 'b) xformer -> ('a, 'b list) xformer
many1 : ('a, 'b) xformer -> ('a, 'b list) xformer
optional : ('a, 'b) xformer -> ('a, 'b option) xformer
peek : ('a, 'b) xformer -> 'a stream -> 'b option
rewind : ('a, 'b) xformer -> ('a, 'b) xformer

Table J.1: Stream transformers and their combinators

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.1
Stream

transformers,
which act as

parsers

S263

For the combination tx_f <*> tx_b to succeed, both tx_f and tx_b must suc-
ceed. Ensuring that two transformers succeed requires a nested case analysis.
S263a.

<*> : ('a, 'b -> 'c) xformer * ('a, 'b) xformer -> ('a, 'c) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S261b S263b ▷

infix 3 <*>
fun tx_f <*> tx_b =
fn xs => case tx_f xs

of NONE => NONE
| SOME (ERROR msg, xs) => SOME (ERROR msg, xs)
| SOME (OK f, xs) =>

case tx_b xs
of NONE => NONE
| SOME (ERROR msg, xs) => SOME (ERROR msg, xs)
| SOME (OK y, xs) => SOME (OK (f y), xs)

The common case of creating tx_f using pure is normally written using the
special operator <$>, which is also pronounced “applied to.” It combines a B-to-C
function with an A-to-B transformer to produce an A-to-C transformer.
S263b.

<$> : ('b -> 'c) * ('a, 'b) xformer -> ('a, 'c) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S263a S263c ▷

infixr 4 <$>
fun f <$> p = pure f <*> p

NEW!
S263c. 〈stream transformers and their combinators S261a〉+≡ ◁ S263b S264a ▷

infixr 3 <~>
fun f <~> a = curry fst <$> f <*> a

There are a variety of ways to create useful functions in the f position. Many
such functions are Curried. Here are some of them.
S263d.

fst : ('a * 'b) -> 'a
snd : ('a * 'b) -> 'b
pair : 'a -> 'b -> 'a * 'b
curry : ('a * 'b -> 'c) -> ('a -> 'b -> 'c)
curry3 : ('a * 'b * 'c -> 'd) -> ('a -> 'b -> 'c -> 'd)

〈for working with curried functions: id, fst, snd, pair, curry, and curry3 S263d〉≡

fun id x = x
fun fst (x, y) = x
fun snd (x, y) = y
fun pair x y = (x, y)
fun curry f x y = f (x, y)
fun curry3 f x y z = f (x, y, z)

As an example, if name parses a name and exp parses an expression then in a
let binding we can parse a name * exp pair by

pair <$> name <*> exp

(To parse µScheme, we would need also to parse the surrounding parentheses.)
As another example, if in µScheme we have seen the keyword if, we can follow it
by the parser

curry3 IFX <$> exp <*> exp <*> exp

which creates the syntax for an if expression.
The combinator <*> creates parsers that read things in sequence; but it canʼt

make a choice. If any parser in the sequence fails, the whole sequence fails.
To make a choice, as in “val or expression or define or use,” we use a choice oper-
ator. The choice operator is written <|> and pronounced “or.” If t1 and t2 are both
A-to-B transformers, then t1 <|> t2 is an A-to-B transformer that first tries t1,
then tries t2, succeeding if either succeeds, detecting an error if either detects an

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ERROR S243b
OK S243b
pure S261b

Lexical analysis,
parsing, and

reading using MLJ
S264

error, and failing only if both fail. To assure that the result has a predictable type
no matter which transformer is used, both t1 and t2 have to have the same type.
S264a.

<|> : ('a, 'b) xformer * ('a, 'b) xformer -> ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S263c S264b ▷

infix 1 <|>
fun t1 <|> t2 = (fn xs => case t1 xs of SOME y => SOME y | NONE => t2 xs)

I sometimes want to combine a list of parsers with the choice operator. I can do
this with a fold operator, but I need a “zero” parser that always fails.
S264b.

pzero : ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S264a S264c ▷

fun pzero _ = NONE

Because building choices from lists is common, I implement this special case as
anyParser.
S264c.

anyParser : ('a, 'b) xformer list -> ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S264b S264d ▷

fun anyParser ts =
foldr op <|> pzero ts

J.1.2 Ignoring results produced by transformers

If a parser sees the stream of tokens

(if (< x y) x y) ,

we want it to build an abstract-syntax tree using IFX and three expressions. The
parentheses and keyword if serve to identify the if-expression and to make sure
it is well formed, so we do need to read them from the input, but we donʼt need to
do anything with the results that are produced. Using a parser and then ignoring
the result is such a common operation that special abbreviations have evolved to
support it.

The abbreviations are formed by modifying the <*> or <$> operator to remove
the angle bracket on the side containing the result we donʼt care about. For exam-
ple,

• Parser p1 <* p2 reads the input of p1 and then the input of p2, but it returns
only the result of p1.

• Parser p1 *> p2 reads the input of p1 and then the input of p2, but it returns
only the result of p2.

• Parser v <$ p parses the input the way p does, but it then ignores p s̓ result
and instead produces the value v.

S264d.

<* : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'b) xformer
*> : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'c) xformer
<$: 'b * ('a, 'c) xformer -> ('a, 'b) xformer

〈stream transformers and their combinators S261a〉+≡ ◁ S264c S265a ▷

infix 6 <* *>
fun p1 <* p2 = curry fst <$> p1 <*> p2
fun p1 *> p2 = curry snd <$> p1 <*> p2

infixr 4 <$
fun v <$ p = (fn _ => v) <$> p

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.1
Stream

transformers,
which act as

parsers

S265

J.1.3 At last, transformers that look at the input stream

None of the transformers above looks directly at an input stream. The fundamental
operations are pure, <*>, and <|>; pure never looks at the input, and <*> and <|>
simply sequence or alternate between other parsers which do the actual looking.
It s̓ time to meet those parsers.

The simplest input-inspecting parser is one. It s̓ anA-to-A transformer that suc-
ceeds if and only if there is a value in the input. If there s̓ no value input, one fails;
it never signals an error.
S265a.

one : ('a, 'a) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S264d S265b ▷

fun one xs = case streamGet xs
of NONE => NONE
| SOME (x, xs) => SOME (OK x, xs)

The counterpart of one is a parser that succeeds if and only if there is no input—
that is, if we have reached the end of a stream. This parser, which is called eos, can
produce no useful result, so it produces the empty tuple, which has type unit.
S265b.

eos : ('a, unit) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S265a S265c ▷

fun eos xs = case streamGet xs
of NONE => SOME (OK (), EOS)
| SOME _ => NONE

Perhaps surprisingly, these are the only two standard parsers that look at their in-
put. The only other parsing combinator that looks directly at input isstripAndReportErrors,
which removes ERROR and OK from error streams.

It is sometimes useful to look at input without consuming it. I provide two
functions: peek just looks at a transformed stream and maybe produces a value,
whereas rewind can change any transformer into a transformer that behaves iden-
tically, but doesnʼt consume any input. I use these functions either to debug, or to
find the source-code location of the next token in a token stream.
S265c.

peek : ('a, 'b) xformer -> 'a stream -> 'b option
〈stream transformers and their combinators S261a〉+≡ ◁ S265b S265d ▷

fun peek tx xs =
case tx xs of SOME (OK y, _) => SOME y

| _ => NONE

Given a transformer tx, transformer rewind tx computes the same value as tx,
but when it s̓ done, it rewinds the input stream back to where it was before we
ran tx. The actions performed by tx canʼt be undone, but the inputs can be read
again.
S265d.

rewind : ('a, 'b) xformer -> ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S265c S266a ▷

fun rewind tx xs =
case tx xs of SOME (ey, _) => SOME (ey, xs)

| NONE => NONE

J.1.4 Parsing combinators

Real parsers largely build on <$>, <*>, <|>, and one by adding the following ideas:

• Perhaps we d̓ like to succeed only if an input satisfies certain conditions. For
example, if weʼre trying to read a number, we might want to write a character
parser that succeeds only when the character is a digit.

• Most utterances in programming languages are made by composing things
in sequence. For example, in µScheme, the characters in an identifier are a
nonempty sequence of “ordinary” characters. And the arguments in a func-
tion application are a possibly empty sequence of expressions.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<*> S263a
curry S263d
EOS S250a
fst S263d
OK S243b
snd S263d
streamGet S250b

Lexical analysis,
parsing, and

reading using MLJ
S266

• Although Iʼve avoided using “optional” syntax in my own designs, many,
many programming languages do use constructs in which parts are optional.
For example, in C, the use of an else clause with an if statement is optional.

This section presents standard parsing combinators that help implement condi-
tional parsers, parsers for sequences, and parsers for optional syntax.

Parsers based on conditions

Combinator sat wraps an A-to-B transformer with a B-predicate such that the
wrapped transformer succeeds only when the underlying transformer succeeds
and produces a value that satisfies the predicate.
S266a.

sat : ('b -> bool) -> ('a, 'b) xformer -> ('a, 'b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S265d S266b ▷

fun sat p tx xs =
case tx xs
of answer as SOME (OK y, xs) => if p y then answer else NONE
| answer => answer

Transformer eqx b is sat specialized to an equality predicate. It is typically
used to recognize special characters like keywords and minus signs.
S266b.

eqx : ''b -> ('a, ''b) xformer -> ('a, ''b) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S266a S266c ▷

fun eqx y =
sat (fn y' => y = y')

A more subtle condition is that a partial function can turn an input into some-
thing weʼre looking for. If we have an A-to-B transformer, and we compose it with
a function that given a B, sometimes produces a C, then we get an A-to-C trans-
former. Because there s̓ a close analogy with the application operator <$>, I notate
this partial application operator as <$>?, with a question mark.
S266c.

<$>? : ('b -> 'c option) * ('a, 'b) xformer -> ('a, 'c) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S266b S266d ▷

infixr 4 <$>?
fun f <$>? tx =
fn xs => case tx xs

of NONE => NONE
| SOME (ERROR msg, xs) => SOME (ERROR msg, xs)
| SOME (OK y, xs) =>

case f y
of NONE => NONE
| SOME z => SOME (OK z, xs)

We can run a parser conditional on the success of another parser. Parser t1
<&> t2 succeeds only if both t1 and t2 succeed at the same point. This parser
looks at enough input to decide if t1 succeeds, but it does not consume that input—
it consumes only the input of t2.
S266d.

<&> : ('a, 'b) xformer * ('a, 'c) xformer -> ('a, 'c) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S266c S267a ▷

infix 3 <&>
fun t1 <&> t2 = fn xs =>
case t1 xs
of SOME (OK _, _) => t2 xs
| SOME (ERROR _, _) => NONE
| NONE => NONE

We can also use the success or failure of a parser as a condition. Parser
notFollowedBy t succeeds if and only if t fails. Parser notFollowedBy t may look
at the input, but it never consumes any input. I use notFollowedBy when reading

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.1
Stream

transformers,
which act as

parsers

S267

integer literals, to make sure that the digits are not followed by a letter or other
non-delimiting symbol.
S267a.

notFollowedBy : ('a, 'b) xformer -> ('a, unit) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S266d S267b ▷

fun notFollowedBy t xs =
case t xs
of NONE => SOME (OK (), xs)
| SOME _ => NONE

We now have something that resembles a little Boolean algebra for parsers:
functions <&>, <|>, and notFollowedBy play the roles of “and,” “or,” and “not.”

Parsers for sequences

Inputs are full of sequences. A function takes a sequence of arguments, a program
is a sequence of definitions, and a method definition contains a sequence of expres-
sions. To create transformers that process sequences, I define functions many and
many1. If t is an A-to-B transformer, then many t is an A-to-list-of-B transformer.
It runs t as many times as possible. And even if t fails, many t always succeeds:
when t fails, many t returns an empty list of B s̓.
S267b.

many : ('a, 'b) xformer -> ('a, 'b list) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S267a S267c ▷

fun many t =
curry (op ::) <$> t <*> (fn xs => many t xs) <|> pure []

I d̓ really like to write that first alternative as

curry (op ::) <$> t <*> many t

but that formulation leads to instant death by infinite recursion. If you write your
own parsers, it s̓ a problem to watch out for.

Sometimes an empty list isnʼt acceptable. In that case, use many1 t, which suc-
ceeds only if t succeeds at least once—in which case it returns a nonempty list.
S267c.

many1 : ('a, 'b) xformer -> ('a, 'b list) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S267b S267d ▷

fun many1 t =
curry (op ::) <$> t <*> many t

Although many t always succeeds, many1 t can fail.
Both many and many1 are “greedy”; that is, they repeat t as many times as possi-

ble. Client code has to be careful to ensure that calls to many and many1 terminate.
As it stands, if t can succeed without consuming any input, then many t does not
terminate, so it is an unchecked run-time error to pass many a transformer that
succeeds without consuming input. The same goes for many1.

Client code also has to be careful that when t sees something it doesnʼt recog-
nize, it doesnʼt signal an error. In particular, t had better not be built with the <?>
operator defined in chunk S273c below.

Sometimes instead of zero, one, or many B s̓, we just one zero or one; such a B
might be called “optional.” For example, a numeric literal begins with an optional
minus sign. Function optional turns anA-to-B transformer into anA-to-optional-
B transformer. Like many t, optional t always succeeds.
S267d.

optional : ('a, 'b) xformer -> ('a, 'b option) xformer
〈stream transformers and their combinators S261a〉+≡ ◁ S267c S268a ▷

fun optional t =
SOME <$> t <|> pure NONE

Transformers made with many and optional succeed even when there is no
input. They also succeed when there is input that they donʼt recognize.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<*> S263a
<|> S264a
curry S263d
ERROR S243b
OK S243b
pure S261b

Lexical analysis,
parsing, and

reading using MLJ
S268

J.1.5 Error-detecting transformers and their composition

Sometimes an error is detected not by a parser but by a function that is applied
to the results of parsing. A classic example is a function definition: if the formal
parameters are syntactically correct but contain duplicate name, an error should
be signalled. We would transform the input into a value of type name list error.
But the transformer type already includes the possibility of error, and we would
prefer that errors detected by functions be on the same footing as errors detected
by parsers, and that they be handled by the same mechanisms. To enable such
handling, I define <*>! and <$>! combinators that merge function-detected errors
with parser-detected errors.
S268a.

<*>! : ('a, 'b -> 'c error) xformer * ('a, 'b) xformer -> ('a, 'c) xformer
<$>! : ('b -> 'c error) * ('a, 'b) xformer -> ('a, 'c) xformer

〈stream transformers and their combinators S261a〉+≡ ◁ S267d

infix 2 <*>!
fun tx_ef <*>! tx_x =
fn xs => case (tx_ef <*> tx_x) xs

of NONE => NONE
| SOME (OK (OK y), xs) => SOME (OK y, xs)
| SOME (OK (ERROR msg), xs) => SOME (ERROR msg, xs)
| SOME (ERROR msg, xs) => SOME (ERROR msg, xs)

infixr 4 <$>!
fun ef <$>! tx_x = pure ef <*>! tx_x

J.2 LEXICAL ANALYZERS: TRANSFORMERS OF CHARACTERS

The interpreters in this book consume one line at a time. But characters within a
line may be split into multiple tokens. For example, the line

(define list1 (x) (cons x '()))

should be split into the tokens

(define list1 (x) (cons x ' ())

)

This section defines reusable transformers that are specialized to transform streams
of characters into something else, usually tokens.
S268b.

type 'a lexer
〈support for lexical analysis S268b〉≡ S268c ▷

type 'a lexer = (char, 'a) xformer

The type 'a lexer should be pronounced “lexer returning 'a.”
In popular languages, a character like a semicolon or comma usually does not

join with other tokens to form a character. In this book, left and right brackets
of all shapes keep to themselves and donʼt group with other characters. And in
just about every non-esoteric language, blank space separates tokens. A character
whose presence marks the end of one token (and possibly the beginning of the next)
is called a delimiter. In this book, the main delimiter characters are whitespace and
parentheses. The other delimiter is the semicolon, which introduces a comment.
S268c.

isDelim : char -> bool
〈support for lexical analysis S268b〉+≡ ◁ S268b S270a ▷

fun isDelim c =
Char.isSpace c orelse Char.contains "()[]{};" c

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.2
Lexical analyzers:
transformers of

characters

S269

Lexical analyzers; tokens

type 'a lexer = (char, 'a) xformer
isDelim : char -> bool
whitespace : char list lexer
intChars : (char -> bool) -> char list lexer
intFromChars : char list -> int error
intToken : (char -> bool) -> int lexer
type token
isLiteral : string -> token -> bool
tokenString : token -> string
lexLineWith : token lexer -> line -> token stream

Streams with end-of-line markers
type 'a eol_marked
drainLine : 'a eol_marked stream -> 'a eol_marked stream

Parsers
type 'a parser = (token located eol_marked, 'a) xformer
eol : ('a eol_marked, int) xformer
inline : ('a eol_marked, 'a) xformer
token : token parser
srcloc : srcloc parser
noTokens : unit parser
@@ : 'a parser -> 'a located parser
<?> : 'a parser * string -> 'a parser
<!> : 'a parser * string -> 'b parser
literal : string -> unit parser
>-- : string * 'a parser -> 'a parser
--< : 'a parser * string -> 'a parser
bracket : string * string * 'a parser -> 'a parser
nodups : string * string -> srcloc * name list

-> name list error
safeTokens : token located eol_marked stream -> token list
echoTagStream : line stream -> line stream
stripAndReportErrors : 'a error stream -> 'a stream

A complete, interactive source of abstract syntax
interactiveParsedStream : token lexer * 'a parser

-> string * line stream * prompts -> 'a stream

Table J.2: Transformers specialized for lexical analysis or parsing

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<*> S263a
ERROR S243b
OK S243b
pure S261b

Lexical analysis,
parsing, and

reading using MLJ
S270

Char.isSpace recognizes all whitespace characters. Char.contains takes a string
and a character and says if the string contains the character. These functions are
in the initial basis of Standard ML.

All languages in this book ignore whitespace. Lexer whitespace is typically
combined with another lexer using the *> operator.
S270a.

whitespace : char list lexer
〈support for lexical analysis S268b〉+≡ ◁ S268c S270b ▷

val whitespace = many (sat Char.isSpace one)

Most languages in this book are, like Scheme, very liberal about names. Just
about any sequence of characters, as long as it is free of delimiters, can form a
name. But there s̓ one big exception: a sequence of digits doesnʼt form a name;
it forms an integer literal. Because integer literals offer several complications, and
because they are used in all the languages in this book, it makes sense to deal with
the complications in one place: here.

The rules for integer literals are as follows:

• The integer literal may begin with a minus sign.

• It continues with one or more digits.

• If it is followed by character, that character must be a delimiter. (In other
words, it must not be followed by a non-delimiter.)

• When the sequence of digits is converted to an int, the arithmetic used in
the conversion must not overflow.

Function intChars does the lexical analysis to grab the characters; intFromChars
handles the conversion and its potential overflow, and intToken puts everything
together. Because not every language uses the same delimiters, both intChars and
intToken receive a predicate that identifies delimiters.
S270b.

intChars : (char -> bool) -> char list lexer
〈support for lexical analysis S268b〉+≡ ◁ S270a S270c ▷

fun intChars isDelim =
(curry (op ::) <$> eqx #"-" one <|> pure id) <*> many1 (sat Char.isDigit one) <*
notFollowedBy (sat (not o isDelim) one)

Function Char.isDigit, like Char.isSpace, is part of Standard ML.
Function intFromChars composes three functions from Standard MLs̓ initial

basis. Function implode converts a list of characters to a string; Int.fromString
converts a string to an int option (raising Overflow if the literal is too big); and
valOf converts an int option to an int. The Int.~ function, which is used when
we see a minus sign, negates an integer. The ~ is meant to resemble a “high minus”
sign, a notational convention that goes back at least to APL.
S270c.

intFromChars : char list -> int error
〈support for lexical analysis S268b〉+≡ ◁ S270b S270d ▷

fun intFromChars (#"-" :: cs) =
intFromChars cs >>=+ Int.~

| intFromChars cs =
(OK o valOf o Int.fromString o implode) cs
handle Overflow => ERROR "this interpreter can't read arbitrarily large integers"

In this book, every language except µProlog can use intToken.
S270d.

intToken : (char -> bool) -> int lexer
〈support for lexical analysis S268b〉+≡ ◁ S270c S271a ▷

fun intToken isDelim =
intFromChars <$>! intChars isDelim

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.3
Parsers: reading

tokens and
source-code
locations

S271

S271a. 〈support for lexical analysis S268b〉+≡ ◁ S270d S271b ▷

datatype bracket_shape = ROUND | SQUARE | CURLY

fun leftString ROUND = "("
| leftString SQUARE = "["
| leftString CURLY = "{"

fun rightString ROUND = ")"
| rightString SQUARE = "]"
| rightString CURLY = "}"

Given a lexer for language tokens, we can build a lexer for tokens:
S271b.

type 'a plus_brackets
bracketLexer : 'a lexer -> 'a plus_brackets lexer

〈support for lexical analysis S268b〉+≡ ◁ S271a
datatype 'a plus_brackets
= LEFT of bracket_shape
| RIGHT of bracket_shape
| PRETOKEN of 'a

fun bracketLexer pretoken
= LEFT ROUND <$ eqx #"(" one
<|> LEFT SQUARE <$ eqx #"[" one
<|> LEFT CURLY <$ eqx #"{" one
<|> RIGHT ROUND <$ eqx #")" one
<|> RIGHT SQUARE <$ eqx #"]" one
<|> RIGHT CURLY <$ eqx #"}" one
<|> PRETOKEN <$> pretoken

fun plusBracketsString _ (LEFT shape) = leftString shape
| plusBracketsString _ (RIGHT shape) = rightString shape
| plusBracketsString pts (PRETOKEN pt) = pts pt

J.3 PARSERS: READING TOKENS AND SOURCE-CODE LOCATIONS

To read definitions, expressions, and types, it helps to work at a higher level of
abstraction than individual characters. All the parsers in this book use two stages:
first a lexer groups characters into tokens, then a parser transforms tokens into
syntax. Not all languages use the same tokens, so the code in this section assumes
that the type token and function tokenString are defined. Function tokenString
returns a string representation of any given token; it is used in debugging. As an
example, the definitions used in µScheme appear in Section O.3.1 on page S373.

I hope transforming a stream of characters to a stream of tokens to a stream of
definitions sounds appealing—but it simplifies the story a little too much. If nothing
ever went wrong, it would be fine if all we ever saw were tokens. But if something
does go wrong, I want to be able to do more than throw up my hands:

• I want say where things went wrong—at what source-code location.

• I want to get rid of the bad tokens that caused the error.

• I want to be able to start parsing over again interactively, without having to
kill an interpreter and start over.

To support error reporting and recovery takes a lot of machinery.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<$>! S268a
<*> S263a
<|> S264a
>>=+ S244b
curry S263d
eqx S266b
ERROR S243b
id S263d
many S267b
many1 S267c
notFollowedBy

S267a
OK S243b
one S265a
pure S261b
sat S266a

Lexical analysis,
parsing, and

reading using MLJ
S272

J.3.1 Flushing bad tokens

A standard parser for a batch compiler needs only to see a stream of tokens and
to know from what source-code location each token came. A batch compiler can
simply read all its input and report all the errors it wants to report.2 But an interac-
tive interpreter may not use an error as an excuse to read an indefinite amount of
input. It must instead bring its error processing to a prompt conclusion and ready
itself to read the next line. To do so, it needs to know where the line boundaries
are! For example, if I find an error on line 6, I want to read all the tokens on line 6,
throw them away, and start over again on line 7. The nasty bit is that I want to do
it without reading line 7—reading line 7 will take an action and will likely have the
side effect of printing a prompt. And I want it to be the correct prompt. I there-
fore define a new type constructor eol_marked. A value of type 'a eol_marked is
either an end-of-line marker, or it contains a value of type 'a that occurs in a line.
A stream of such values can be drained up to the end of the line.3

S272a.

type 'a eol_marked
drainLine : 'a eol_marked stream -> 'a eol_marked stream

〈streams that track line boundaries S272a〉≡ S272b ▷

datatype 'a eol_marked
= EOL of int (* number of the line that ends here *)
| INLINE of 'a

fun drainLine EOS = EOS
| drainLine (SUSPENDED s) = drainLine (demand s)
| drainLine (EOL _ ::: xs) = xs
| drainLine (INLINE _ ::: xs) = drainLine xs

S272b.

eol : ('a eol_marked, int) xformer
inline : ('a eol_marked, 'a) xformer
srcloc : ('a located eol_marked, srcloc) xformer

〈streams that track line boundaries S272a〉+≡ ◁ S272a

local
fun asEol (EOL n) = SOME n
| asEol (INLINE _) = NONE

fun asInline (INLINE x) = SOME x
| asInline (EOL _) = NONE

in
fun eol xs = (asEol <$>? one) xs
fun inline xs = (asInline <$>? many eol *> one) xs
fun srcloc xs = rewind (fst <$> inline) xs

end

With source-code locations and end-of-line markers ready, we can now define
parsers.

J.3.2 Parsing located, in-line tokens

A value of type 'a parser takes a stream of located tokens set between end-of-
line markers, and it returns a value of type 'a, plus any leftover tokens.
S272c. 〈combinators and utilities for parsing located streams S272c〉≡ (S260) S273a ▷

type ('t, 'a) polyparser = ('t located eol_marked, 'a) xformer

2Batch compilers vary widely in the ambitions of their parsers. Some simple parsers report just one
error and stop. Some sophisticated parsers analyze the entire input and report the smallest number
of changes needed to make the input syntactically correct. And some ill-mannered parsers become
confused after an error and start spraying meaningless error messages. But all of them have access to
the entire input. We donʼt.

3At some future point I may need to change drainLine to keep the EOL in order to track locations in
µProlog.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.3
Parsers: reading

tokens and
source-code
locations

S273

The EOL and INLINE constructors are essential for error recovery, but for pars-
ing, they just get in the way. Our first order of business is to define analogs of
one and eos that ignore EOL. Parser token takes one token; parser srcloc looks at
the source-code location of a token, but leaves the token in the input; and parser
noTokens succeeds only if there are no tokens left in the input. They are built on top
of “utility” parsers eol and inline. The two utility parsers have different contracts;
eol succeeds only when at EOL, but inline scans past EOL to look for INLINE.
S273a.

token : ('t, 't) polyparser
noTokens : ('t, unit) polyparser

〈combinators and utilities for parsing located streams S272c〉+≡ (S260) ◁ S272c S273b ▷

fun token stream = (snd <$> inline) stream
fun noTokens stream = (notFollowedBy token) stream

Sometimes the easiest way to keep track of source-code locations is to pair a
source-code location with a result from a parser. This happens just often enough
that I find it worth while to define the @@ function. (Associate the word “at” with
the idea of “location.”) The code uses a dirty trick: it works because srcloc looks
at the input but does not consume any tokens.
S273b.

@@ : ('t, 'a) polyparser -> ('t, 'a located) polyparser
〈combinators and utilities for parsing located streams S272c〉+≡ (S260) ◁ S273a S273c ▷

fun @@ p = pair <$> srcloc <*> p

J.3.3 Parsers that report errors

Most syntactic forms (expressions, unit tests, definitions, and so on) are parsed by
trying a set of alternatives. When all alternatives fail, I usually want to convert the
failure into an error. Parser p <?> what succeeds when p succeeds, but when p fails,
parser p <?> what reports an error: it expected what. The error says what the parser
was expecting, and it gives the source-code location of the unrecognized token.
If there is no token, there is no error—at end of file, rather than signal an error, a
parser made using <?> fails. You can see an example in the parser for extended
definitions in chunk S377e.
S273c.

<?> : ('t, 'a) polyparser * string -> ('t, 'a) polyparser
〈combinators and utilities for parsing located streams S272c〉+≡ (S260) ◁ S273b S273d ▷

infix 0 <?>
fun p <?> what = p <|> errorAt ("expected " ^ what) <$>! srcloc

The <?> operator must not be used to define a parser that is passed to many, many1,
or optional In that context, if parser p fails, it must not signal an error; it must
instead propagate the failure to many, many1, or optional, so those combinators
know there is not a p there.

Another common error-detecting technique is to use a parser p to detect some
input that shouldnʼt be there. For example, if weʼre just starting to read a definition,
the input shouldnʼt begin with a right parenthesis. I can write a parser p that rec-
ognizes a right parenthesis, but I canʼt simply combine p with errorAt and srcloc
in the same way that <?> does, because I have two goals: consume the tokens rec-
ognized by p, and also report the error at the location of the first of those tokens.
I canʼt use errorAt until after p succeeds, but I have to use srcloc on the input
stream as it is before p is run. I solve this problem by defining a special combinator
that keeps a copy of the tokens inspected by p. If parser p succeeds, then parser p
<!> msg consumes the tokens consumed by p and reports error msg at the location
of p s̓ first token.
S273d.

<!> : ('t, 'a) polyparser * string -> ('t, 'b) polyparser
〈combinators and utilities for parsing located streams S272c〉+≡ (S260) ◁ S273c S277c ▷

infix 4 <!>
fun p <!> msg =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

::: S250a
<$> S263b
<$>! S268a
<$>? S266c
<*> S263a
<|> S264a
demand S249b
EOS S250a
errorAt S256a
fst S263d
many S267b
notFollowedBy

S267a
OK S243b
one S265a
pair S263d
peek S265c
rewind S265d
snd S263d
SUSPENDED S250a

Lexical analysis,
parsing, and

reading using MLJ
S274

fn tokens => (case p tokens
of SOME (OK _, unread) =>

(case peek srcloc tokens
of SOME loc => SOME (errorAt msg loc, unread)
| NONE => NONE)

| _ => NONE)

J.3.4 Parsers for common programming-language idioms

This section defines special-purpose parsers and combinators which handle phrases
and idioms that appear in many of the languages in this book.

Interchangeable brackets

Almost every language in this book uses a parenthesis-prefix syntax (Scheme syn-
tax) in which round and square brackets must match, but are otherwise inter-
changeable. The bracketKeyword4 function creates a parser that recognizes inputs
of the form

(keyword stuff)

The bracketKeyword function embodies some useful error handling:

• It takes an extra parameter expected, which says, when anything goes
wrong, what the parser was expecting in the way of stuff.

• If something does go wrong parsing stuff, it calls scanToClose to scan past
all the tokens where stuff was expected, up to and including the matching
close parenthesis. Function scanToClose returns SOME applied to the loca-
tion where stuff was expected, or if there was no closing bracket, it returns
NONE.

Once the parser sees the opening parenthesis and the keyword, failure is impossi-
ble: either parser p parses stuff correctly, or there s̓ an error.
S274. 〈transformers for interchangeable brackets S274〉≡ (S260) S276a ▷

fun notCurly (_, CURLY) = false
| notCurly _ = true

(* left: takes shape, succeeds or fails
right: takes shape and

succeeds with right bracket of correct shape
errors with right bracket of incorrect shape
fails with token that is not right bracket *)

fun left tokens = ((fn (loc, LEFT s) => SOME (loc, s) | _ => NONE) <$>? inline) tokens
fun right tokens = ((fn (loc, RIGHT s) => SOME (loc, s) | _ => NONE) <$>? inline) tokens
fun leftCurly tokens = sat (not o notCurly) left tokens

fun atRight expected = rewind right <?> expected

fun badRight msg =
(fn (loc, shape) => errorAt (msg ^ " " ^ rightString shape) loc) <$>! right

4I have spent entirely too much time working with Englishmen who call parentheses “brackets.”
I now find it hard even to say the word “parenthesis,” let alone type it. So the function is called
bracketKeyword.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.3
Parsers: reading

tokens and
source-code
locations

S275

Parser right matches a right bracket by itself. But quite commonly, we want
to wrap another parser p in matching left and right brackets. If something goes
wrong—say the brackets donʼt match—we ought not to try to address the error
in the right-bracket parser alone; we need to be able to report the location of
the left bracket as well. To be able to issue good error messages, I define parser
matchingRight, which always succeeds and which produces one of three out-
comes:

• Result FOUND_RIGHT (loc, s) says we found a right bracket exactly where we
expected to, and its shape and location are s and loc.

• Result SCANNED_TO_RIGHT loc says we didnʼt find a right bracket at loc, but we
scanned to a matching right bracket eventually.

• Result NO_RIGHT says that we scanned the entire input without finding a
matching right bracket.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$>! S268a
<$>? S266c
<?> S273c
CURLY S271a
errorAt S256a
inline S272b
LEFT S271b
rewind S265d
RIGHT S271b
rightString S271a
sat S266a

Lexical analysis,
parsing, and

reading using MLJ
S276

Function matchBrackets takes this result, along with the left bracket and the parsed
result a, and knows what to do.
S276a.

type right_result
matchingRight : ('t, right_result) pb_parser
scanToClose : ('t, right_result) pb_parser
matchBrackets : string -> bracket_shape located -> 'a -> right_result -> 'a error

〈transformers for interchangeable brackets S274〉+≡ (S260) ◁ S274 S276b ▷

type ('t, 'a) pb_parser = ('t plus_brackets, 'a) polyparser
datatype right_result
= FOUND_RIGHT of bracket_shape located
| SCANNED_TO_RIGHT of srcloc (* location where scanning started *)
| NO_RIGHT

fun scanToClose tokens =
let val loc = getOpt (peek srcloc tokens, ("end of stream", 9999))

fun scan lpcount tokens =
(* lpcount is the number of unmatched left parentheses *)
case tokens
of EOL _ ::: tokens => scan lpcount tokens
| INLINE (_, LEFT t) ::: tokens => scan (lpcount+1) tokens
| INLINE (_, RIGHT t) ::: tokens => if lpcount = 0 then

pure (SCANNED_TO_RIGHT loc) tokens
else
scan (lpcount-1) tokens

| INLINE (_, PRETOKEN _) ::: tokens => scan lpcount tokens
| EOS => pure NO_RIGHT tokens
| SUSPENDED s => scan lpcount (demand s)

in scan 0 tokens
end

fun matchingRight tokens = (FOUND_RIGHT <$> right <|> scanToClose) tokens

fun matchBrackets _ (loc, left) _ NO_RIGHT =
errorAt ("unmatched " ^ leftString left) loc

| matchBrackets e (loc, left) _ (SCANNED_TO_RIGHT loc') =
errorAt ("expected " ^ e) loc

| matchBrackets _ (loc, left) a (FOUND_RIGHT (loc', right)) =
if left = right then
OK a

else
errorAt (rightString right ^ " does not match " ^ leftString left ^

(if loc <> loc' then " at " ^ srclocString loc else "")) loc'

Story:

• Parser can fail, right bracket has to match: liberalBracket

• Keyword can fail, but if it matches, parser has to match: bracketKeyword

• Left bracket can fail, but if it matches, parser has to match: bracket,
curlyBracket

S276b.

bracketKeyword : ('t, 'keyword) pb_parser * string * ('t, 'a) pb_parser -> ('t, 'a) pb_parser
〈transformers for interchangeable brackets S274〉+≡ (S260) ◁ S276a S277a ▷

fun liberalBracket (expected, p) =
matchBrackets expected <$> sat notCurly left <*> p <*>! matchingRight

fun bracketKeyword (keyword, expected, p) =
liberalBracket (expected, keyword *> (p <?> expected))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.3
Parsers: reading

tokens and
source-code
locations

S277

fun bracket (expected, p) =
liberalBracket (expected, p <?> expected)

fun curlyBracket (expected, p) =
matchBrackets expected <$> leftCurly <*> (p <?> expected) <*>! matchingRight

Usually, we want to pull the keyword out of the usage string.
S277a.

usageParser : (string -> ('t, string) pb_parser) -> string * ('t, 'a) pb_parser -> ('t, 'a) pb_parser
〈transformers for interchangeable brackets S274〉+≡ (S260) ◁ S276b S277b ▷

fun usageParser keyword =
let val left = eqx #"(" one <|> eqx #"[" one

val getkeyword = left *> (implode <$> many1 (sat (not o isDelim) one))
in fn (usage, p) =>

case getkeyword (streamOfList (explode usage))
of SOME (OK k, _) => bracketKeyword (keyword k, usage, p)
| _ => let exception BadUsage of string in raise BadUsage usage end

end

Hello, stranger?
S277b. 〈transformers for interchangeable brackets S274〉+≡ (S260) ◁ S277a

fun pretoken stream = ((fn PRETOKEN t => SOME t | _ => NONE) <$>? token) stream

Detection of duplicate names

Most of the languages in this book allow you to define functions or methods that
take formal parameters. It is never permissible to use the same name for formal
parameters in two different positions. There are surprisingly many other places
where it s̓ not acceptable to have duplicates in a list of strings. Function nodups
takes two Curried arguments: a pair saying what kind of thing might be duplicated
and where it appeared, followed by a pair containing a list of names and the source-
code location of the list. If there are no duplicates, it returns OK applied to the list
of names; otherwise it returns an ERROR.
S277c.

nodups : string * string -> srcloc * name list -> name list error
〈combinators and utilities for parsing located streams S272c〉+≡ (S260) ◁ S273d

fun nodups (what, context) (loc, names) =
let fun dup [] = OK names

| dup (x::xs) = if List.exists (fn y : string => y = x) xs then
errorAt (what ^ " " ^ x ^ " appears twice in " ^ context) loc

else
dup xs

in dup names
end

Function List.exists is like the µScheme exists?. It is in the initial basis for
Standard ML.

J.3.5 Code used to debug parsers

When debugging parsers, I often find it helpful to dump out the tokens that a parser
is looking at. I want to dump all the tokens that are available without triggering
the action of reading another line of input. I believe it s̓ safe to read until I have
got to both an end-of-line marker and a suspension whose value has not yet been
demanded.
S277d.

safeTokens : 'a located eol_marked stream -> 'a list
〈code used to debug parsers S277d〉≡ (S260) S278a ▷

fun safeTokens stream =
let fun tokens (seenEol, seenSuspended) =

let fun get (EOL _ ::: ts) = if seenSuspended then []

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

::: S250a
<$> S263b
<$>? S266c
<*> S263a
<*>! S268a
<?> S273c
<|> S264a
type bracket_shape

S271a
demand S249b
EOL S272a
EOS S250a
eqx S266b
errorAt S256a
INLINE S272a
isDelim S268c
LEFT S271b
left S274
leftCurly S274
leftString S271a
many1 S267c
notCurly S274
OK S243b
one S265a
peek S265c
type polyparser

S272c
PRETOKEN S271b
PRODUCED S249a
pure S261b
RIGHT S271b
right S274
rightString S271a
sat S266a
srcloc S272b
srclocStringS254d
streamOfListS250c
SUSPENDED S250a
token S273a

Lexical analysis,
parsing, and

reading using MLJ
S278

else tokens (true, false) ts
| get (INLINE (_, t) ::: ts) = t :: get ts
| get EOS = []
| get (SUSPENDED (ref (PRODUCED ts))) = get ts
| get (SUSPENDED s) = if seenEol then []

else tokens (false, true) (demand s)
in get
end

in tokens (false, false) stream
end

The showErrorInput function transforms an ordinary parser into a parser that,
when it errors, shows the input that caused the error. It should be applied routinely
to every parser you build.
S278a.

showErrorInput : ('t -> string) -> ('t, 'a) polyparser -> ('t, 'a) polyparser
〈code used to debug parsers S277d〉+≡ (S260) ◁ S277d S278b ▷

fun showErrorInput asString p tokens =
case p tokens
of result as SOME (ERROR msg, rest) =>

if String.isSubstring " [input: " msg then
result

else
SOME (ERROR (msg ^ " [input: " ^

spaceSep (map asString (safeTokens tokens)) ^ "]"),
rest)

| result => result

The wrapAround function can be used to wrap a parser; it shows what the parser
was looking for, what tokens it was looking at, and whether it found something.
S278b.

wrapAround : ('t -> string) -> string -> ('t, 'a) polyparser -> ('t, 'a) polyparser
〈code used to debug parsers S277d〉+≡ (S260) ◁ S278a

fun wrapAround tokenString what p tokens =
let fun t tok = " " ^ tokenString tok

val _ = app eprint ["Looking for ", what, " at"]
val _ = app (eprint o t) (safeTokens tokens)
val _ = eprint "\n"
val answer = p tokens
val _ = app eprint [case answer of NONE => "Didn't find " | SOME _ => "Found ",

what, "\n"]
in answer
end handle e => (app eprint ["Search for ", what, " raised ", exnName e, "\n"]

; raise e)

J.4 STREAMS THAT LEX, PARSE, AND PROMPT

In this final section I pull together all the machinery needed to take a stream of
input lines, a lexer, and a parser, and to produce a stream of high-level syntactic
objects like definitions. With prompts! This code is where prompts get determined,
where errors are handled, and where special tagged lines are copied to the output
to support testing.

Testing support

Let s̓ get the testing support out of the way first. As in the C code, I want to print out
any line read that begins with the special string ;#. This string is a formal comment
that helps me test chunks marked 〈transcript〉. In the ML code, I can do the job

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.4
Streams that lex,
parse, and prompt

S279

in a very modular way: I define a post-stream action that prints any line meeting
the criterion. Function echoTagStream transforms a stream of lines to a stream of
lines, adding the behavior I want.
S279a.

echoTagStream : line stream -> line stream
〈streams that issue two forms of prompts S279a〉≡ (S260) S279b ▷

fun echoTagStream lines =
let fun echoIfTagged line =

if (String.substring (line, 0, 2) = ";#" handle _ => false) then
print line

else
()

in postStream (lines, echoIfTagged)
end

Issuing messages for error values

Function stripAndReportErrors removes the ERROR and OK tags from a stream,
producing an output stream with a simpler type. Values tagged with OK are passed
on to the output stream unchanged; messages tagged with ERROR are printed to stan-
dard error, using eprintln.
S279b.

stripAndReportErrors : 'a error stream -> 'a stream
〈streams that issue two forms of prompts S279a〉+≡ (S260) ◁ S279a S279c ▷

fun stripAndReportErrors xs =
let fun next xs =

case streamGet xs
of SOME (ERROR msg, xs) => (eprintln msg; next xs)
| SOME (OK x, xs) => SOME (x, xs)
| NONE => NONE

in streamOfUnfold next xs
end

An error detected during lexical analysis is printed without any information
about source-code locations. That s̓ because, to keep things somewhat simple,
Iʼve chosen to do lexical analysis on one line at a time, and I donʼt keep track of
the line s̓ source-code location.
S279c.

lexLineWith : 't lexer -> line -> 't stream
〈streams that issue two forms of prompts S279a〉+≡ (S260) ◁ S279b S279d ▷

fun lexLineWith lexer =
stripAndReportErrors o streamOfUnfold lexer o streamOfList o explode

When an error occurs during parsing, I drain the rest of the tokens on the line
where the error occurred. I don’t strip the errors at this point; errors are passed on
to the interactive stream because when an error is detected, the prompt may need
to be changed.
S279d.

parseWithErrors : ('t, 'a) polyparser -> 't located eol_marked stream -> 'a error stream
〈streams that issue two forms of prompts S279a〉+≡ (S260) ◁ S279c S280a ▷

fun parseWithErrors parser =
let fun adjust (SOME (ERROR msg, tokens)) = SOME (ERROR msg, drainLine tokens)

| adjust other = other
in streamOfUnfold (adjust o parser)
end

Prompts

All interpreters in the book are built on the Unix shell model of having two prompt
strings. The first prompt string, called ps1, is issued when starting to read a defini-

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

drainLine S272a
eprint S238a
eprintln S238a
ERROR S243b
OK S243b
postStream S252c
safeTokens S277d
spaceSep S239a
streamGet S250b
streamOfListS250c
streamOfUnfold

S251e

Lexical analysis,
parsing, and

reading using MLJ
S280

tion. The second prompt string, called ps2, is issued when in the middle of reading
a definition. To turn prompting off, we set both to the empty string.
S280a.

type prompts
stdPrompts : prompts
noPrompts : prompts

〈streams that issue two forms of prompts S279a〉+≡ (S260) ◁ S279d S280b ▷

type prompts = { ps1 : string, ps2 : string }
val stdPrompts = { ps1 = "-> ", ps2 = " " }
val noPrompts = { ps1 = "", ps2 = "" }

Building a reader

Our last stream function does two jobs which are interconnected: it manages the
flow of information from the input through the lexer and parser, and by monitoring
the flow of tokens in and syntax out, it arranges that the right prompts (ps1 and ps2)
are printed at the right times. The flow of information involves multiple steps:

1. We start with a stream of lines. The stream is transformed with preStream
and echoTagStream, so that a prompt is printed before every line, and when
a line contains the special tag, that line is echoed to the output.

2. Function lexLineWith lexer converts a line to a stream of tokens, which
then are paired with source-code locations, tagged with INLINE, and followed
by an EOL value. This extra decoration gets us from the token stream pro-
vided by the lexer to the token located eol_marked stream needed by the
parser. The work is done by function lexAndDecorate, which needs a located
line.

The moment a token is successfully taken from the stream, a postStream
action sets the prompt to ps2.

3. The final stream of definitions is computed by composing locatedStream to
add source-code locations, streamConcatMap lexAndDecorate to add deco-
rations, and parseWithErrors parser to parse. The entire composition is
applied to the stream of lines created in step 1.

To deliver the right prompt in the right situation, I store the current prompt
in a mutable cell called thePrompt. The prompt is initially ps1, and it stays ps1
until a token is delivered, at which point the postStream action sets the prompt
to ps2. But when we are about to get a new definition, a preStream action on the
syntax stream xdefs_with_errors resets the prompt to ps1. This combination of
pre- and post-stream actions, on different streams, makes sure the prompt is always
appropriate to the state of the parser.
S280b.

interactiveParsedStream : 't lexer * ('t, 'a) polyparser -> string * line stream * prompts -> 'a stream
lexAndDecorate : srcloc * line -> 't located eol_marked stream

〈streams that issue two forms of prompts S279a〉+≡ (S260) ◁ S280a

fun ('t, 'a) interactiveParsedStream (lexer, parser) (name, lines, prompts) =
let val { ps1, ps2 } = prompts

val thePrompt = ref ps1
fun setPrompt ps = fn _ => thePrompt := ps

val lines = preStream (fn () => print (!thePrompt), echoTagStream lines)

fun lexAndDecorate (loc, line) =
let val tokens = postStream (lexLineWith lexer line, setPrompt ps2)
in streamMap INLINE (streamZip (streamRepeat loc, tokens)) @@@

streamOfList [EOL (snd loc)]
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§J.5
Further reading

S281

val xdefs_with_errors : 'a error stream =
(parseWithErrors parser o streamConcatMap lexAndDecorate o locatedStream)
(name, lines)

in
stripAndReportErrors (preStream (setPrompt ps1, xdefs_with_errors))

end

J.5 FURTHER READING

Fat book by Aho and Ullman (1972).
Really nice paper by Knuth (1965).
Wirth (1977) master of the hand-written recursive-descent parser.
Gibbons and Jones (1998)
Ramsey (1999)
Mcbride and Paterson (2008)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

@@@ S253f
echoTagStream

S279a
EOL S272a
type error S243b
INLINE S272a
lexLineWith S279c
locatedStream

S256b
parseWithErrors

S279d
postStream S252c
preStream S252b
snd S263d
type stream S250a
streamConcatMap

S253e
streamMap S252d
streamOfListS250c
streamRepeatS251d
streamZip S253c
stripAndReport-

Errors
S279b

Lexical analysis,
parsing, and

reading using MLJ
S282

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

VIII. THE SUPPORTING CAST

S285

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
K.1 ADDITIONAL INTER-

FACES S287
K.1.1 Interfaces and the mas-

ter header file S289
K.1.2 Additional implementa-

tions S290
K.1.3 Evaluation of extended

definitions S290
K.1.4 Implementation of main S291

K.1.5 Implementation of
names S293

K.2 RUNNING UNIT TESTS S294
K.3 PRINTING FUNCTIONS S297
K.4 PRINTING PRIMITIVES S300
K.5 IMPLEMENTATION OF

FUNCTION ENVIRON-
MENTS S300

KSupporting code for Impcore

The most interesting parts of the Impcore interpreter are presented in Chap-
ter 1 and Appendices F and G. But there are three pieces left over—code that is used
in Impcore, is not shared in any other interpreter, and is not parsing:

• Code that runs unit tests

• Printing functions

• The implementation of function environments.

There are so few pieces that they donʼt warrant a lot of organization and description.
But they are not all equally worth reading:

• The unit-testing piece is interesting; this is the source of truth about what it
means to pass a unit test and how unit tests are run. (A version for µScheme,
which is very similar to this one, appears in Section L.6.) But unit tests are
in the bridge languages not because they help you learn about programming
languages, but because they help you write interesting programs. So the unit-
testing code is relegated to this appendix.

• The printing functions may be of minor interest, if for example you want to
write your own. But once youʼve seen a couple, youʼve seen them all.

• The implementation of function environments is of no interest—it s̓ exactly
like the implementation of Valenv in Section 1.6.3, only for functions instead
of values.

K.1 ADDITIONAL INTERFACES

Creating abstract syntax

To make these structures easy to create, I define a creator function for each
alternative in the sum, as well as for Userfun.
S287. 〈function prototypes for Impcore S287〉≡ (S290) S289a ▷

Userfun mkUserfun(Namelist formals, Exp body);
Def mkVal(Name name, Exp exp);
Def mkExp(Exp exp);
Def mkDefine(Name name, Userfun userfun);
struct Def mkValStruct(Name name, Exp exp);
struct Def mkExpStruct(Exp exp);
struct Def mkDefineStruct(Name name, Userfun userfun);

S287
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for ImpcoreK

S288

Extended definitions

But as discussed in the sidebar on page 25, Impcore also has extended definitions,
which include unit tests. If you like, you can just use extended definitions and not
worry about how they are implemented. But if you want to understand their imple-
mentations, youʼll need to start with these descriptions of how extended definitions
and unit tests are represented:
S288a. 〈xdef.t S288a〉≡

XDef* = DEF (Def)
| USE (Name)
| TEST (UnitTest)

UnitTest* = CHECK_EXPECT (Exp check, Exp expect)
| CHECK_ASSERT (Exp)
| CHECK_ERROR (Exp)

To remember all the unit tests in a file, I use a list.
S288b. 〈type definitions for Impcore S288b〉≡ (S290) S288c ▷

typedef struct UnitTestlist *UnitTestlist; // list of UnitTest

A UnitTestlist is list of pointers of type UnitTest. I use this naming convention in
all my C code. List types are manifest, and their definitions are in the lists interface
in chunk 46a. I also define a type for lists of Exps.
S288c. 〈type definitions for Impcore S288b〉+≡ (S290) ◁ S288b

typedef struct Explist *Explist; // list of Exp

Interface to infrastructure: Streams of definitions

The details of reading characters and converting them to abstract syntax are inter-
esting, but they are more relevant to study of compiler construction than to study
of programming languages. From the programming-language point of view, all we
need to know is that we have a source of extended definitions. The details are rel-
egated to Appendix F.

A source of extended definitions is called an XDefstream. To obtain the next
definition from such a source, call getxdef. Function getxdef returns either a
pointer to the next definition or, if the source is exhausted, the NULL pointer.
And if there is some problem converting input to abstract syntax, getxdef may
call synerror (page S289).
S288d. 〈shared type definitions S288d〉≡ (S290) S288g ▷

typedef struct XDefstream *XDefstream;

S288e. 〈shared function prototypes S288e〉≡ (S290) S288f ▷
XDef getxdef(XDefstream xdefs);

To create a stream of definitions, we need a source of lines. That source can be a
string compiled into the program, or an external file. So that error messages can
refer to the source, we need to give its name. And if the source is a file, we need to
say whether to prompt for input. (Reading from an internal string never prompts.)

S288f. 〈shared function prototypes S288e〉+≡ (S290) ◁ S288e S289c ▷
XDefstream stringxdefs(const char *stringname, const char *input);
XDefstream filexdefs (const char *filename, FILE *input, Prompts prompts);

Prompts are either absent or standard; the interface provides no way to change
prompts.
S288g. 〈shared type definitions S288d〉+≡ (S290) ◁ S288d S289b ▷

typedef enum Prompts { NO_PROMPTS, STD_PROMPTS } Prompts;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.1
Additional
interfaces

S289

Function readevalprint consumes a stream of extended definitions. It evalu-
ates each true definition, remembers each unit test, and calls itself recursively on
each use. When the stream of extended definitions is exhausted, readevalprint
runs the remembered unit tests.
S289a. 〈function prototypes for Impcore S287〉+≡ (S290) ◁ S287 S291b ▷

void readevalprint(XDefstream s, Valenv globals, Funenv functions, Echo echo_level);

As with evaldef, the echo_level parameter controls whether readevalprint
prints the values and names of top-level expressions and functions.
S289b. 〈shared type definitions S288d〉+≡ (S290) ◁ S288g S289d ▷

typedef enum Echo { NO_ECHOES, ECHOES } Echo;

Interface to the extensible printer

The implementations of print and fprint are extensible; adding a new conversion
specification is as simple as calling installprinter:
S289c. 〈shared function prototypes S288e〉+≡ (S290) ◁ S288f S289f ▷

void installprinter(unsigned char c, Printer *take_and_print);

The conversion specifications listed above are installed when the interpreter
launches, by code chunk 〈install conversion specifications for print and fprint S297e〉.
The details, including the definition of Printer, are in Sections F.3 and K.3.

Complexities of error signaling

The Sourceloc values are taken care of by the parsing infrastructure described in
Appendix G, which is the place from which synerror is called.
S289d. 〈shared type definitions S288d〉+≡ (S290) ◁ S289b S289e ▷

typedef struct Sourceloc *Sourceloc;

The possibility of printing source-code locations complicates the interface.
When the interpreter is reading code interactively, printing source-code locations
is silly—if there s̓ a syntax error, it s̓ in what you just typed. But if the interpreter is
reading code from a file, it s̓ a different story—it s̓ useful to have the file s̓ name
and the number of the line containing the bad syntax. But the error module
doesnʼt know where the interpreter is reading code from—only the main function
in chunk S292a knows that. So the error module has to be told how syntax errors
should be formatted: with locations or without.
S289e. 〈shared type definitions S288d〉+≡ (S290) ◁ S289d S295b ▷

typedef enum ErrorFormat { WITH_LOCATIONS, WITHOUT_LOCATIONS } ErrorFormat;

S289f. 〈shared function prototypes S288e〉+≡ (S290) ◁ S289c S294e ▷
void set_toplevel_error_format(ErrorFormat format);

K.1.1 Interfaces and the master header file

C provides poor support for separating interfaces from implementations. The best
a programmer can do is put each interface in a .h file and use the C preprocessor
to #include those .h files where they are needed. Ensuring that the right files are
#include d̓, that they are #include d̓ in the right order, and that no file is #include d̓
more than once are all up to the programmer; the C language and preprocessor
donʼt help. These problems are common, and C programmers have developed con-
ventions to deal with them, but these conventions are better suited to large software
projects than to small interpreters. I have therefore chosen simply to put all the in-
terfaces into one header file, all.h. When Noweb extracts code from the book, it
automatically puts #include "all.h" at the beginning of each C file.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

filexdefs S186b
type Funenv 44f
getxdef S186c
type Printer S189b
readevalprint

S291a
set_toplevel_

error_format
S195a

stringxdefs S186b
type Valenv 44f
type XDef A

Supporting code
for ImpcoreK

S290

File all.h, which includes all interfaces used in the interpreter, is split into six
parts:

• Imports of header files from the standard C library

• Type definitions

• Structure definitions

• Function prototypes

• Arcana used in lexical analysis and parsing

Putting types, structures, and functions in that order makes it easy for functions or
structures declared in one interface to use types defined in another. And because
declarations and definitions of types always precede the function prototypes that
use those types, we need not worry about getting things in the right order.

To make it possible to reuse the general-purpose interfaces in later interpreters,
I also distinguish between shared and unshared definitions; a definition is “shared”
if it is used in another interpreter later in the book.
S290. 〈all.h for Impcore S290〉≡

#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef __GNUC__
#define __noreturn __attribute__((noreturn))
#else
#define __noreturn
#endif

〈type definitions for Impcore S288b〉
〈shared type definitions S288d〉

〈structure definitions for Impcore S204b〉
〈shared structure definitions S178d〉

〈function prototypes for Impcore S287〉
〈shared function prototypes S288e〉

〈macro definitions used in parsing S205c〉
〈declarations of global variables used in lexical analysis and parsing S211h〉

K.1.2 Additional implementations

K.1.3 Evaluation of extended definitions

As shown on page S288, the XDef type includes both ordinary and extended defini-
tions, and an XDefstream provides a stream of XDefs, usually from a file or from a
user s̓ input.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.1
Additional
interfaces

S291

Responsibility for evaluating definitions is shared between two functions.
Function readevalprint takes as input a stream of definitions. The extended def-
initions are handled directly in readevalprint:

• Each unit test is remembered and later run.

• A file mentioned in use is converted to a stream of extended definitions, then
passed recursively to readevalprint.

The true definitions are passed on to evaldef.
S291a. 〈eval.c S291a〉≡

void readevalprint(XDefstream xdefs, Valenv globals, Funenv functions, Echo echo) {
UnitTestlist pending_unit_tests = NULL; // to be run when xdefs is exhausted

for (XDef d = getxdef(xdefs); d; d = getxdef(xdefs))
switch (d->alt) {
case TEST:

pending_unit_tests = mkUL(d->test, pending_unit_tests);
break;

case USE:
〈evaluate d->use, possibly mutating globals and functions S291c〉
break;

case DEF:
evaldef(d->def, globals, functions, echo);
break;

default:
assert(0);

}

process_tests(pending_unit_tests, globals, functions);
}

Functionprocess_tests, defined in Section K.2 on page S294, runs thepending_unit_tests
in the order in which they appear in the source code.
S291b. 〈function prototypes for Impcore S287〉+≡ (S290) ◁ S289a S294d ▷

void process_tests(UnitTestlist tests, Valenv globals, Funenv functions);

On seeing use, we open the file named by use, build a stream of definitions,
and through readevalprint, recursively call evaldef on all the definitions in that
file. When reading definitions via use, the interpreter neither prompts nor echoes.
S291c. 〈evaluate d->use, possibly mutating globals and functions S291c〉≡ (S291a)

{
const char *filename = nametostr(d->use);
FILE *fin = fopen(filename, "r");
if (fin == NULL)

runerror("cannot open file \"%s\"", filename);
readevalprint(filexdefs(filename, fin, NO_PROMPTS), globals, functions, echo);
fclose(fin);

}

As noted in Exercise 35, this code can leak open file descriptors.

K.1.4 Implementation of main

The main function coordinates all the pieces and forms a working interpreter. Such
an interpreter can operate in two modes:

• In interactive mode, the interpreter prompts for every input, and when it de-
tects a syntax error, it does not print the source-code location.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Echo S289b
evaldef 45e
type Funenv 44f
getxdef S288e
mkUL A
nametostr 43c
process_tests

S294c
reset_overflow_

check
S197a

runerror 47
type UnitTestlist

S288b
type Valenv 44f
type XDef A
type XDefstream

S288d

Supporting code
for ImpcoreK

S292

• In non-interactive mode, the interpreter does not prompt for any input, and
when it detects a syntax error, it prints the source-code locations.

Interactive mode is meant for interactive use, and non-interactive mode is meant
for redirecting standard input from a file. The interpreter is in interactive mode
by default, but if its given the option -q, for “quiet,” it operates in non-interactive
mode.
S292a. 〈impcore.c S292a〉≡

int main(int argc, char *argv[]) {
bool interactive = (argc <= 1) || (strcmp(argv[1], "-q") != 0);
Prompts prompts = interactive ? STD_PROMPTS : NO_PROMPTS;
set_toplevel_error_format(interactive ? WITHOUT_LOCATIONS : WITH_LOCATIONS);

〈install conversion specifications for print and fprint S297e〉

Valenv globals = mkValenv(NULL, NULL);
Funenv functions = mkFunenv(NULL, NULL);
〈install the initial basis in functions S293a〉

XDefstream xdefs = filexdefs("standard input", stdin, prompts);

while (setjmp(errorjmp))
;

readevalprint(xdefs, globals, functions, ECHOES);
return 0;

}

Before entering its main loop, the interpreter performs these phases of initial-
ization:

• It decides whether it is operating interactively or non-interactively, and it sets
prompts and the error format accordingly.

• It initializes print and fprint (the code appears in Appendix K).

• It creates empty environments for functions and global variables, then pop-
ulates the functions environment with functions from the initial basis.

• It creates a stream of XDefs from the standard input.

The main loop is in the readevalprint function, the call to which is preceded
by a C idiom:
S292b. 〈idiomatic error handler S292b〉≡

while (setjmp(errorjmp)) {
〈recover from an error〉

}

This idiom uses setjmp to deal with errors. On the first loop test, setjmp initializes
errorjmp and returns zero, so the code in 〈recover froman error〉 is not executed, and
control continues following the while loop. If an error occurs later, the error rou-
tine calls longjmp(errorjmp, 1), which returns control to the setjmp again, this
time returning 1. At this point the body of the while is executed. (In the defini-
tion of main above, no work is needed to recover from an error, instead of a block
containing the action 〈recover from an error〉, I use an empty statement, which is
written as a single semicolon.) On the next iteration through the while statement,
the process starts over from the beginning, because setjmp resets the jump buffer
and returns zero again.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.1
Additional
interfaces

S293

The initial basis includes both primitives and user-defined functions. We install
the primitives first.
S293a. 〈install the initial basis in functions S293a〉≡ (S292a) S293c ▷

{
static const char *prims[] =

{ "+", "-", "*", "/", "<", ">", "=", "println", "print", "printu", 0 };
for (const char **p = prims; *p; p++) {

Name x = strtoname(*p);
bindfun(x, mkPrimitive(x), functions);

}
}

I represent the user-defined part of the initial basis as a single string, which
is interpreted by readevalprint. These functions also appear in Figure 1.3 on
page 27, from which this code is derived automatically.
S293b. 〈predefined Impcore functions, as strings S293b〉≡ (S293c)

"(define and (b c) (if b c b))\n"
"(define or (b c) (if b b c))\n"
"(define not (b) (if b 0 1))\n"
"(define <= (x y) (not (> x y)))\n"
"(define >= (x y) (not (< x y)))\n"
"(define != (x y) (not (= x y)))\n"
"(define mod (m n) (- m (* n (/ m n))))\n"
"(define negated (n) (- 0 n))\n"

S293c. 〈install the initial basis in functions S293a〉+≡ (S292a) ◁ S293a
{

const char *fundefs =
〈predefined Impcore functions, as strings S293b〉;

if (setjmp(errorjmp))
assert(0); // if error in predefined function, die horribly

readevalprint(stringxdefs("predefined functions", fundefs), globals, functions, NO_ECHOES);
}

K.1.5 Implementation of names

Because names and environments are core concepts in programming languages,
their implementations are included in this chapter. The implementations are
straightforward, and the techniques I use should be familiar.

Each name is associated with a string. I just store the string inside the name.
S293d. 〈name.c S293d〉≡ S293e ▷

struct Name {
const char *s;

};

Returning the string associated with a name is trivial.
S293e. 〈name.c S293d〉+≡ ◁ S293d S294a ▷

const char* nametostr(Name np) {
assert(np != NULL);
return np->s;

}

Finding the name associated with a string is harder. To meet the specification,
if I get a string I have seen before, I must return the same name I returned before.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
bindfun 45d
dump_fenv_names

S301c
errorjmp 47
type Funenv 44f
mkPrimitive 44e
type Name 43b
type Prompts S288g
readevalprint

S289a
set_toplevel_

error_format
S289f

stringxdefs S288f
strtoname 43c
type Valenv 44f
type XDefstream

S288d

Supporting code
for ImpcoreK

S294

To remember what I have seen and returned, I use the simplest possible data struc-
ture: all_names, a list of all names we ever returned. Given a string s, a simple
linear search finds the name associated with it, if any.
S294a. 〈name.c S293d〉+≡ ◁ S293e

Name strtoname(const char *s) {
static Namelist all_names;
assert(s != NULL);

for (Namelist unsearched = all_names; unsearched; unsearched = unsearched->tl)
if (strcmp(s, unsearched->hd->s) == 0)

return unsearched->hd;

〈allocate a new name, add it to all_names, and return it S294b〉
}

A faster implementation might use a search tree or a hash table, not a simple list.
Hanson (1996, Chapter 3) shows such an implementation.

If the string s isnʼt associated with any name on the list all_names, I make a
new name and add it.
S294b. 〈allocate a new name, add it to all_names, and return it S294b〉≡ (S294a)

Name np = malloc(sizeof(*np));
assert(np != NULL);
np->s = malloc(strlen(s) + 1);
assert(np->s != NULL);
strcpy((char*)np->s, s);
all_names = mkNL(np, all_names);
return np;

K.2 RUNNING UNIT TESTS

Running a list of unit tests is the job of the function process_tests:
S294c. 〈imptests.c S294c〉≡ S295a ▷

void process_tests(UnitTestlist tests, Valenv globals, Funenv functions) {
set_error_mode(TESTING);
int npassed = number_of_good_tests(tests, globals, functions);
set_error_mode(NORMAL);
int ntests = lengthUL(tests);
report_test_results(npassed, ntests);

}

Function number_of_good_tests runs each test, last one first, and counts the num-
ber that pass. So it can catch errors during testing, it expects the error mode to
be TESTING; calling number_of_good_tests when the error mode is NORMAL is an
unchecked run-time error.
S294d. 〈function prototypes for Impcore S287〉+≡ (S290) ◁ S291b S295c ▷

int number_of_good_tests(UnitTestlist tests, Valenv globals, Funenv functions);

The auxiliary function report_test_results prints a report of the results. The
reporting code is shared among all interpreters written in C; its implementation
appears in Section F.5 on page S196.
S294e. 〈shared function prototypes S288e〉+≡ (S290) ◁ S289f S297f ▷

void report_test_results(int npassed, int ntests);

The key fact about the testing interface is that the list of tests coming in contains
the last test first, but we must run the first test first. Functionnumber_of_good_tests

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.2
Running unit tests

S295

therefore recursively runs tests->tl before calling test_result on tests->hd.
It returns the number of tests passed.
S295a. 〈imptests.c S294c〉+≡ ◁ S294c S295d ▷

int number_of_good_tests(UnitTestlist tests, Valenv globals, Funenv functions) {
if (tests == NULL)

return 0;
else {

int n = number_of_good_tests(tests->tl, globals, functions);
switch (test_result(tests->hd, globals, functions)) {
case TEST_PASSED: return n+1;
case TEST_FAILED: return n;
default: assert(0);
}

}
}

If the list tests were very long, this recursion might blow the C stack. But the list
is only as long as the number of tests written by hand, so we probably donʼt have
to worry about more than dozens of tests, for which default stack space should be
adequate.

The heavy lifting is done by function test_result, which returns a value of
type TestResult.
S295b. 〈shared type definitions S288d〉+≡ (S290) ◁ S289e

typedef enum TestResult { TEST_PASSED, TEST_FAILED } TestResult;

S295c. 〈function prototypes for Impcore S287〉+≡ (S290) ◁ S294d
TestResult test_result(UnitTest t, Valenv globals, Funenv functions);

Function test_result handles every kind of unit test. In Impcore there are
three kinds: check-expect, check-assert, and check-error. Typed languages,
starting with Typed Impcore in Chapter 6, have more.
S295d. 〈imptests.c S294c〉+≡ ◁ S295a

TestResult test_result(UnitTest t, Valenv globals, Funenv functions) {
switch (t->alt) {
case CHECK_EXPECT:

〈run check-expect test t, returning TestResult S295e〉
case CHECK_ASSERT:

〈run check-assert test t, returning TestResult S296a〉
case CHECK_ERROR:

〈run check-error test t, returning TestResult S296b〉
default:

assert(0);
}

}

To run a check-expect, we evaluate both the “check” and “expect” expressions,
each under the protection of an error handler. If an error occurs under either eval-
uation, the test fails. Otherwise we compare the values check and expect. If they
differ, the test fails; if not, the test passes. All failures trigger error messages.
S295e. 〈run check-expect test t, returning TestResult S295e〉≡ (S295d)

{ Valenv empty_env = mkValenv(NULL, NULL);
if (setjmp(testjmp)) {

〈report that evaluating t->check_expect.check failed with an error S296d〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value check = eval(t->check_expect.check, globals, functions, empty_env);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
bufreset S186f
errorbuf S193a
eval 45e
type Funenv 44f
lengthUL A
mkNL A
type Name 43b
type Namelist

43b
report_test_

results
S196c

set_error_mode
S193a

testjmp S193a
type UnitTest

A
type UnitTestlist

S288b
type Valenv 44f
type Value 44a

Supporting code
for ImpcoreK

S296

if (setjmp(testjmp)) {
〈report that evaluating t->check_expect.expect failed with an error S297a〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value expect = eval(t->check_expect.expect, globals, functions, empty_env);

if (check != expect) {
〈report failure because the values are not equal S296c〉
return TEST_FAILED;

} else {
return TEST_PASSED;

}
}

To run a check-assert, we evaluate just one expression, which should evaluate,
without error, to a nonzero value.
S296a. 〈run check-assert test t, returning TestResult S296a〉≡ (S295d)

{ Valenv empty_env = mkValenv(NULL, NULL);
if (setjmp(testjmp)) {

〈report that evaluating t->check_assert failed with an error S297c〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value v = eval(t->check_assert, globals, functions, empty_env);

if (v == 0) {
〈report failure because the value is zero S297b〉
return TEST_FAILED;

} else {
return TEST_PASSED;

}
}

To run a check-error, we use the same tools in different ways. Again we eval-
uate an expression under the protection of an error handler, but now, if an error
occurs, the test passes. If not, it fails.
S296b. 〈run check-error test t, returning TestResult S296b〉≡ (S295d)

{ Valenv empty_env = mkValenv(NULL, NULL);
if (setjmp(testjmp)) {

bufreset(errorbuf);
return TEST_PASSED; // error occurred, so the test passed

}
Value check = eval(t->check_error, globals, functions, empty_env);
〈report that evaluating t->check_error produced check S297d〉
return TEST_FAILED;

}

Error-reporting code is voluminous but uninteresting.
S296c. 〈report failure because the values are not equal S296c〉≡ (S295e)

fprint(stderr, "Check-expect failed: expected %e to evaluate to %v",
t->check_expect.check, expect);

if (t->check_expect.expect->alt != LITERAL)
fprint(stderr, " (from evaluating %e)", t->check_expect.expect);

fprint(stderr, ", but it's %v.\n", check);

S296d. 〈report that evaluating t->check_expect.check failed with an error S296d〉≡ (S295e)
fprint(stderr, "Check-expect failed: expected %e to evaluate to the same "

"value as %e, but evaluating %e causes an error: %s.\n",

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.3
Printing functions

S297

t->check_expect.check, t->check_expect.expect,
t->check_expect.check, bufcopy(errorbuf));

S297a. 〈report that evaluating t->check_expect.expect failed with an error S297a〉≡ (S295e)
fprint(stderr, "Check-expect failed: expected %e to evaluate to the same "

"value as %e, but evaluating %e causes an error: %s.\n",
t->check_expect.check, t->check_expect.expect,
t->check_expect.expect, bufcopy(errorbuf));

S297b. 〈report failure because the value is zero S297b〉≡ (S296a)
fprint(stderr, "Check-assert failed: %e evaluated to 0.\n", t->check_assert);

S297c. 〈report that evaluating t->check_assert failed with an error S297c〉≡ (S296a)
fprint(stderr, "Check-assert failed: evaluating %e causes an error: %s.\n",

t->check_assert, bufcopy(errorbuf));

S297d. 〈report that evaluating t->check_error produced check S297d〉≡ (S296b)
fprint(stderr, "Check-error failed: evaluating %e was expected to produce "

"an error, but instead it produced the value %v.\n",
t->check_error, check);

K.3 PRINTING FUNCTIONS

Table 1.6 on page 47 lists all the types of values that print, fprint, runerror, and
synerror know how to print. Each of the conversion specifiers mentioned in that
table has to be installed. That work is done here:
S297e. 〈install conversion specifications for print and fprint S297e〉≡ (S292a)

installprinter('c', printchar);
installprinter('d', printdecimal);
installprinter('e', printexp);
installprinter('E', printexplist);
installprinter('f', printfun);
installprinter('n', printname);
installprinter('N', printnamelist);
installprinter('p', printpar);
installprinter('P', printparlist);
installprinter('s', printstring);
installprinter('t', printdef);
installprinter('v', printvalue);
installprinter('V', printvaluelist);
installprinter('%', printpercent);

Functions printdecimal, printname, printstring, and printpercent are de-
fined in Section F.3.3 on page S191. Functions that print lists are generated au-
tomatically. The remaining functions, which print Impcore s̓ abstract syntax and
values, are defined here.
S297f. 〈shared function prototypes S288e〉+≡ (S290) ◁ S294e

Printer printexp, printdef, printvalue, printfun;

Function printexp reverses the process of parsing: it renders abstract syntax
into concrete syntax.
S297g. 〈printfuns.c S297g〉≡ S298a ▷

void printexp(Printbuf output, va_list_box *box) {
Exp e = va_arg(box->ap, Exp);
if (e == NULL) {

bprint(output, "<null>");
return;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
bprint S188f
bufreset S186f
errorbuf S193a
eval 45e
type Exp A
functions S295d
globals S295d
installprinter

S189a
type Printbuf

S186d
printchar S191c
printdecimalS191c
printdef S298a
type Printer S189b
printexplistA
printfun S299c
printname S191c
printnamelist

A
printpar S192d
printparlistA
printpercentS191c
printstring S191c
printvalue S299b
printvaluelist

A
testjmp S193a
type va_list_box

S189c
type Valenv 44f
type Value 44a

Supporting code
for ImpcoreK

S298

}

switch (e->alt){
case LITERAL:

bprint(output, "%v", e->literal);
break;

case VAR:
bprint(output, "%n", e->var);
break;

case SET:
bprint(output, "(set %n %e)", e->set.name, e->set.exp);
break;

case IFX:
bprint(output, "(if %e %e %e)", e->ifx.cond, e->ifx.truex, e->ifx.falsex);
break;

case WHILEX:
bprint(output, "(while %e %e)", e->whilex.cond, e->whilex.exp);
break;

case BEGIN:
bprint(output, "(begin%s%E)", e->begin?" ":"", e->begin);
break;

case APPLY:
bprint(output, "(%n%s%E)", e->apply.name,

e->apply.actuals?" ":"", e->apply.actuals);
break;

}
}

Function printdef works similarly.
S298a. 〈printfuns.c S297g〉+≡ ◁ S297g S298b ▷

void printdef(Printbuf output, va_list_box *box) {
Def d = va_arg(box->ap, Def);
if (d == NULL) {

bprint(output, "<null>");
return;

}

switch (d->alt) {
case VAL:

bprint(output, "(val %n %e)", d->val.name, d->val.exp);
break;

case EXP:
bprint(output, "%e", d->exp);
break;

case DEFINE:
bprint(output, "(define %n (%N) %e)", d->define.name,

d->define.userfun.formals,
d->define.userfun.body);

break;
}

}

Although it s̓ not bound to any conversion specifier, here is a function that prints
extended definitions.
S298b. 〈printfuns.c S297g〉+≡ ◁ S298a S299b ▷

void printxdef(Printbuf output, va_list_box *box) {
XDef d = va_arg(box->ap, XDef);
if (d == NULL) {

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.3
Printing functions

S299

bprint(output, "<null>");
return;

}

switch (d->alt) {
case USE:

bprint(output, "(use %n)", d->use);
break;

case TEST:
〈print unit test d->test to file output S299a〉
break;

case DEF:
bprint(output, "%t", d->def);
break;

}
assert(0);

}

S299a. 〈print unit test d->test to file output S299a〉≡ (S298b)
{ UnitTest t = d->test;

switch (t->alt) {
case CHECK_EXPECT:

bprint(output, "(check-expect %e %e)",
t->check_expect.check, t->check_expect.expect);

break;
case CHECK_ASSERT:

bprint(output, "(check-assert %e)", t->check_assert);
break;

case CHECK_ERROR:
bprint(output, "(check-error %e)", t->check_error);
break;

default:
assert(0);

}
}

Impcore s̓ values are so simple that a value can be rendered as concrete syntax
for an integer literal.
S299b. 〈printfuns.c S297g〉+≡ ◁ S298b S299c ▷

void printvalue(Printbuf output, va_list_box *box) {
Value v = va_arg(box->ap, Value);
bprint(output, "%d", v);

}

In Impcore, a function canʼt be rendered as concrete syntax. But for debugging,
it helps to see something, so I put some information in angle brackets.
S299c. 〈printfuns.c S297g〉+≡ ◁ S299b

void printfun(Printbuf output, va_list_box *box) {
Func f = va_arg(box->ap, Func);
switch (f.alt) {
case PRIMITIVE:

bprint(output, "<%n>", f.primitive);
break;

case USERDEF:
bprint(output, "<userfun (%N) %e>", f.userdef.formals, f.userdef.body);
break;

default:
assert(0);

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
type Def A
type Func A
type Printbuf

S186d
type UnitTest

A
type va_list_box

S189c
type Value 44a
type XDef A

Supporting code
for ImpcoreK

S300

}

K.4 PRINTING PRIMITIVES

S300a. 〈apply Impcore primitive println to vs and return S300a〉≡ (52c)
{

checkargc(e, 1, lengthVL(vs));
Value v = nthVL(vs, 0);
print("%v\n", v);
return v;

}

S300b. 〈apply Impcore primitive printu to vs and return S300b〉≡ (52c)
{

checkargc(e, 1, lengthVL(vs));
Value v = nthVL(vs, 0);
print_utf8(v);
return v;

}

K.5 IMPLEMENTATION OF FUNCTION ENVIRONMENTS

This code is continued from Chapter 1, which gives the implementation of value
environments. Except for types, the code is identical to code in Section 1.6.3 on
page 55.
S300c. 〈env.c S300c〉≡ S300d ▷

struct Funenv {
Namelist xs;
Funclist funs;
// invariant: both lists are the same length

};

S300d. 〈env.c S300c〉+≡ ◁ S300c S300e ▷
Funenv mkFunenv(Namelist xs, Funclist funs) {

Funenv env = malloc(sizeof *env);
assert(env != NULL);
assert(lengthNL(xs) == lengthFL(funs));
env->xs = xs;
env->funs = funs;
return env;

}

S300e. 〈env.c S300c〉+≡ ◁ S300d S300f ▷
static Func* findfun(Name name, Funenv env) {

Namelist xs = env->xs;
Funclist funs = env->funs;

for (; xs && funs; xs = xs->tl, funs = funs->tl)
if (name == xs->hd)

return &funs->hd;
return NULL;

}

S300f. 〈env.c S300c〉+≡ ◁ S300e S301a ▷
bool isfunbound(Name name, Funenv env) {

return findfun(name, env) != NULL;
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§K.5
Implementation of

function
environments

S301

S301a. 〈env.c S300c〉+≡ ◁ S300f S301b ▷

Func fetchfun(Name name, Funenv env) {
Func *fp = findfun(name, env);
assert(fp != NULL);
return *fp;

}

S301b. 〈env.c S300c〉+≡ ◁ S301a S301c ▷
void bindfun(Name name, Func fun, Funenv env) {

Func *fp = findfun(name, env);
if (fp != NULL)

*fp = fun; // safe optimization
else {

env->xs = mkNL(name, env->xs);
env->funs = mkFL(fun, env->funs);

}
}

S301c. 〈env.c S300c〉+≡ ◁ S301b
void dump_fenv_names(Funenv env) {

Namelist xs;
if (env)

for (xs = env->xs; xs; xs = xs->tl)
print("%n\n", xs->hd);

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

checkargc 48b
type Func A
type Funclist

44b
type Funenv 44f
lengthFL A
lengthNL A
lengthVL A
mkFL A
mkNL A
type Name 43b
type Namelist

43b
nthVL A
print 46c
print_utf8 S199a
type Value 44a

CHAPTER CONTENTS
L.1 EXCERPTS FROM THE IN-

TERPRETER S303
L.1.1 Implementation of the

evaluator S305
L.1.2 Primitives S306
L.1.3 The main procedure S309
L.1.4 Memory allocation S310

L.2 µSCHEME CODE NOT IN-
CLUDED IN CHAPTER 2 S310

L.3 IMPLEMENTATION OF
µSCHEME ENVIRON-
MENTS S311

L.4 PARSING µSCHEME
CODE S313

L.4.1 Parsing tables and re-
duce functions S313

L.4.2 New shift functions: S-
expressions and bind-
ings S315

L.4.3 New parsing functions:
S-expressions and bind-
ings S316

L.4.4 Parsing atomic expres-
sions S317

L.5 IMPLEMENTATION OF
µSCHEMEʼS VALUE IN-
TERFACE S318

L.5.1 Boolean values and
Boolean testing S318

L.5.2 Unspecified values S318
L.5.3 Printing and values S319

L.6 µSCHEMEʼS UNIT TESTS S323
L.7 PARSE-TIME ERROR

CHECKING S326
L.8 SUPPORT FOR AN EXER-

CISE: CONCATENATING
NAMES S326

L.9 PRINT FUNCTIONS FOR
EXPRESSIONS S327

L.10 SUPPORT FORµSCHEME+ S329
L.11 ORPHANS S329

LSupporting code for µScheme

The stars of the µScheme show are presented in Chapter 2. Here youʼll find the
supporting cast. In addition to code for implementing environments, for parsing
µScheme, and for running unit tests, all of which is similar to the analogous parts
of the Impcore interpreter, youʼll also find code that helps with some exercises, as
well as some that lays groundwork for µScheme+ in Chapter 3.

L.1 EXCERPTS FROM THE INTERPRETER

S303a. 〈ast.t S303a〉≡
XDef* = DEF (Def)

| USE (Name)
| TEST (UnitTest)

UnitTest* = CHECK_EXPECT (Exp check, Exp expect)
| CHECK_ASSERT (Exp)
| CHECK_ERROR (Exp)

S303b. 〈type definitions for µScheme S303b〉≡ (S303d) S306d ▷

typedef struct UnitTestlist *UnitTestlist; // list of UnitTest
typedef struct Explist *Explist; // list of Exp

S303c. 〈early type definitions for µScheme S303c〉≡ (S303d)
typedef struct Valuelist *Valuelist; // list of Value

MISSING: RELEGATED DEFINITIONS OF PREDEFINED LIST FUNCTIONS (caaar,
list5, and friends).

As in Impcore, I gather all the interfaces into a single C header file.
S303d. 〈all.h for µScheme S303d〉≡

#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef __GNUC__
#define __noreturn __attribute__((noreturn))
#else
#define __noreturn
#endif

S303
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µSchemeL

S304

〈early type definitions for µScheme S303c〉
〈type definitions for µScheme S303b〉
〈shared type definitions 43b〉

〈structure definitions for µScheme S313b〉
〈shared structure definitions S206a〉

〈function prototypes for µScheme S304a〉
〈shared function prototypes S306c〉

〈macro definitions used in parsing S205c〉
〈declarations of global variables used in lexical analysis and parsing S211h〉

Allocation

Before the first call to allocate, a client must call initallocate. For reasons
that arenʼt discussed until Chapter 4, initallocate is given a pointer to the envi-
ronment containing the global variables.
S304a. 〈function prototypes for µScheme S304a〉≡ (S303d) S304b ▷

void initallocate(Env *globals);

Values

Before executing any code that refers to truev or falsev, clients must call
initvalue.
S304b. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S304a S304c ▷

void initvalue(void);

Read-eval-print loop

To handle a sequence of extended definitions, we use readevalprint. In princi-
ple, readevalprint ought to look a lot like evaldef. In particular, readevalprint
ought to take an environment and return an environment. But when an error oc-
curs, readevalprint doesnʼt actually return; instead it calls synerror or runerror.
And if an error occurs, we donʼt want to lose the definitions that precede it. So in-
stead of returning a new environment, readevalprintwrites the new environment
through an environment pointer envp, which is passed as a parameter.
S304c. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S304b S304d ▷

void readevalprint(XDefstream xdefs, Env *envp, Echo echo);

Primitives

Compared to Impcore,µScheme has many primitives. The functionaddprimitives
mutates an existing environment by adding bindings to all the primitive opera-
tions.
S304d. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S304c S305a ▷

void addprimitives(Env *envp);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.1
Excerpts from the

interpreter

S305

Printing

Here are some of the printing functions used to implement print and fprint.
S305a. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S304d S306b ▷

void printenv (Printbuf, va_list_box*);
void printvalue (Printbuf, va_list_box*);
void printexp (Printbuf, va_list_box*);
void printdef (Printbuf, va_list_box*);
void printlambda (Printbuf, va_list_box*);

L.1.1 Implementation of the evaluator

S305b. 〈eval.c declarations S305b〉≡
static Valuelist evallist(Explist es, Env env);

S305c. 〈if echo calls for printing, print either v or the bound name S305c〉≡ (162a)
if (echo == ECHOES) {

if (d->val.exp->alt == LAMBDAX)
print("%n\n", d->val.name);

else
print("%v\n", v);

}

S305d. 〈if echo calls for printing, print v S305d〉≡ (162b)
if (echo == ECHOES)

print("%v\n", v);

Functionreadevalprint evaluates definitions, updates the environment*envp,
and remembers unit tests. After all definitions have been read, it runs the remem-
bered unit tests. The last test added to unit_tests is the one at the front of the list,
but we want to run tests in the order in which they appear, so the tests are run back
to front.
S305e. 〈evaldef.c S305e〉≡

void readevalprint(XDefstream xdefs, Env *envp, Echo echo) {
UnitTestlist pending_unit_tests = NULL;

for (XDef d = getxdef(xdefs); d; d = getxdef(xdefs)) {
〈lower definition d as needed S305f〉
switch (d->alt) {
case DEF:

*envp = evaldef(d->def, *envp, echo);
break;

case USE:
〈read in a file and update *envp S306a〉
break;

case TEST:
pending_unit_tests = mkUL(d->test, pending_unit_tests);
break;

default:
assert(0);

}
}

process_tests(pending_unit_tests, *envp);
}

S305f. 〈lower definition d as needed S305f〉≡ (S305e)
/* not in uScheme */

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Echo S289b
echo 161e
type Env 155a
evaldef 157a
evallist 159c
type Explist S303b
getxdef S288e
initallocate,
in µScheme S310b
in µScheme (in

GC?!)
S357f

initvalue S318b
mkUL A
print 46c
type Printbuf

S186d
printdef S327b
printenv S312e
printexp S328b
printlambda S329a
printvalue S322a
process_tests

S306b
type UnitTestlist

S303b
type va_list_box

S189c
type Valuelist

S303c
type XDef A
type XDefstream

S288d

Supporting code
for µSchemeL

S306

In the DEF case, as alluded to on page S304, the assignment to *envp ensures that
after a successful call to evaldef, the new environment is remembered, even if a
later call to evaldef exits the loop by calling runerror. This code is more compli-
cated than the analogous code in Impcore: Impcore s̓ readevalprint simply mu-
tates the global environment. In µScheme, environments are not mutable, so we
mutate a C location instead.

Reading a file is as in Impcore, except that again we cannot mutate an environ-
ment, so we mutate *envp instead. When readevalprint calls itself recursively to
read a file, it passes the same envp it was given.
S306a. 〈read in a file and update *envp S306a〉≡ (S305e)

{
const char *filename = nametostr(d->use);
FILE *fin = fopen(filename, "r");
if (fin == NULL)

runerror("cannot open file \"%s\"", filename);
readevalprint(filexdefs(filename, fin, NO_PROMPTS), envp, echo);
fclose(fin);

}

Unit tests are run by code in Section L.6.
S306b. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S305a S307d ▷

void process_tests(UnitTestlist tests, Env rho);

L.1.2 Primitives

S306c. 〈shared function prototypes S306c〉≡ (S303d) S313d ▷

Primitive arith, binary, unary;

To define the primitives and associate each one with its tag and function,
I resort to macro madness. Each primitive appears in file prim.h as a macro
xx(name, tag, function). I use the same macros with two different definitions of
xx: one to create an enumeration with distinct tags, and one to install the primi-
tives in an empty environment. There are other initialization techniques that donʼt
require macros, but this technique ensures there is a single point of truth about
the primitives (that point of truth is the file prim.h), which helps guarantee that
the enumeration type is consistent with the initialization code.
S306d. 〈type definitions for µScheme S303b〉+≡ (S303d) ◁ S303b

enum {
#define xx(NAME, TAG, FUNCTION) TAG,
#include "prim.h"
#undef xx
UNUSED_TAG

};

In addprimitives, the xx macro extends the initial environment.
S306e. 〈install primitive functions into env S306e〉≡ (S309a)

#define xx(NAME, TAG, FUNCTION) \
env = bindalloc(strtoname(NAME), mkPrimitive(TAG, FUNCTION), env);

#include "prim.h"
#undef xx

S306f. 〈JUNK prim.c S306f〉≡
Env primenv(void) {

Env env = NULL;
#define xx(NAME, TAG, FUNCTION) \

env = bindalloc(strtoname(NAME), mkPrimitive(TAG, FUNCTION), env);
#include "prim.h"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.1
Excerpts from the

interpreter

S307

#undef xx
return env;

}

Arithmetic primitives

These are the arithmetic primitives.
S307a. 〈prim.h S307a〉≡ S307c ▷

xx("+", PLUS, arith)
xx("-", MINUS, arith)
xx("*", TIMES, arith)
xx("/", DIV, arith)
xx("<", LT, arith)
xx(">", GT, arith)

We need special support for division, because while µScheme requires that
division round toward minus infinity, C guarantees only that dividing positive
operands rounds toward zero.
S307b. 〈prim.c S307b〉≡ S307e ▷

static int32_t divide(int32_t n, int32_t m) {
if (n >= 0)

if (m >= 0)
return n / m;

else
return -((n - m - 1) / -m);

else
if (m >= 0)

return -((-n + m - 1) / m);
else

return -n / -m;
}

Other binary primitives

S307c. 〈prim.h S307a〉+≡ ◁ S307a S308b ▷

xx("cons", CONS, binary)
xx("=", EQ, binary)

I implement them with the function binary, which delegates to cons and
equalatoms.
S307d. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S306b S316b ▷

Value cons(Value v, Value w);
Value equalatoms(Value v, Value w);

S307e. 〈prim.c S307b〉+≡ ◁ S307b S308a ▷
Value binary(Exp e, int tag, Valuelist args) {

checkargc(e, 2, lengthVL(args));
Value v = nthVL(args, 0);
Value w = nthVL(args, 1);

switch (tag) {
case CONS:

return cons(v, w);
case EQ:

return equalatoms(v, w);
default:

assert(0);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arith 163b
checkargc 48b
cons 163c
type Env 155a
equalatoms S308a
type Exp A
lengthVL A
nametostr 43c
nthVL A
type Primitive

154b
process_tests

S323a
runerror 47
unary 164a
type UnitTestlist

S303b
type Value A
type Valuelist

S303c

Supporting code
for µSchemeL

S308

}
}

The implementation of equality is not completely trivial. Two values are = only
if they are the same number, the same boolean, the same symbol, or both the empty
list. Because all these values are atoms, I call the C function equalatoms. A differ-
ent function, equalpairs, is used in Section L.6 to implement check-expect.
S308a. 〈prim.c S307b〉+≡ ◁ S307e

Value equalatoms(Value v, Value w) {
if (v.alt != w.alt)

return falsev;

switch (v.alt) {
case NUM:

return mkBoolv(v.num == w.num);
case BOOLV:

return mkBoolv(v.boolv == w.boolv);
case SYM:

return mkBoolv(v.sym == w.sym);
case NIL:

return truev;
default:

return falsev;
}

}

Unary primitives

S308b. 〈prim.h S307a〉+≡ ◁ S307c
xx("boolean?", BOOLEANP, unary)
xx("null?", NULLP, unary)
xx("number?", NUMBERP, unary)
xx("pair?", PAIRP, unary)
xx("function?", FUNCTIONP, unary)
xx("symbol?", SYMBOLP, unary)
xx("car", CAR, unary)
xx("cdr", CDR, unary)
xx("println", PRINTLN, unary)
xx("print", PRINT, unary)
xx("printu", PRINTU, unary)
xx("error", ERROR, unary)

S308c. 〈other cases for unary primitives S308c〉≡ (164a)
case BOOLEANP:

return mkBoolv(v.alt == BOOLV);
case NUMBERP:

return mkBoolv(v.alt == NUM);
case SYMBOLP:

return mkBoolv(v.alt == SYM);
case PAIRP:

return mkBoolv(v.alt == PAIR);
case FUNCTIONP:

return mkBoolv(v.alt == CLOSURE || v.alt == PRIMITIVE);
case CDR:

if (v.alt == NIL)
runerror("in %e, cdr applied to empty list", e);

else if (v.alt != PAIR)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.1
Excerpts from the

interpreter

S309

runerror("cdr applied to non-pair %v in %e", v, e);
return *v.pair.cdr;

case PRINTLN:
print("%v\n", v);
return v;

case PRINT:
print("%v", v);
return v;

L.1.3 Implementation of the interpreter’s main procedure

As in the Impcore interpreter, mainprocesses arguments, initializes the interpreter,
and runs the read-eval-print loop.
S309a. 〈scheme.c S309a〉≡

int main(int argc, char *argv[]) {
bool interactive = (argc <= 1) || (strcmp(argv[1], "-q") != 0);
Prompts prompts = interactive ? STD_PROMPTS : NO_PROMPTS;
set_toplevel_error_format(interactive ? WITHOUT_LOCATIONS : WITH_LOCATIONS);

initvalue();

〈install printers S309b〉

Env env = NULL;
initallocate(&env);
〈install primitive functions into env S306e〉
〈install predefined functions into env S310a〉

XDefstream xdefs = filexdefs("standard input", stdin, prompts);

while (setjmp(errorjmp))
;

readevalprint(xdefs, &env, ECHOES);
return 0;

}

We have many printers.
S309b. 〈install printers S309b〉≡ (S309a)

installprinter('c', printchar);
installprinter('d', printdecimal);
installprinter('e', printexp);
installprinter('E', printexplist);
installprinter('\\', printlambda);
installprinter('n', printname);
installprinter('N', printnamelist);
installprinter('p', printpar);
installprinter('P', printparlist);
installprinter('r', printenv);
installprinter('s', printstring);
installprinter('t', printdef);
installprinter('v', printvalue);
installprinter('V', printvaluelist);
installprinter('%', printpercent);
installprinter('*', printpointer);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
dump_env_names

S313a
type Env 155a
errorjmp 47
extendSyntaxS315i
falsev 156b
initallocateS304a
initvalue S304b
installprinter

S189a
print 46c
printchar S191c
printdecimalS191c
printdef S305a
printenv S305a
printexp S305a
printexplistA
printlambda S305a
printname S191c
printnamelist

A
printpar S192d
printparlistA
printpercentS191c
printpointerS191c
printstring S191c
printvalue S305a
printvaluelist

A
type Prompts S288g
readevalprint

S304c
runerror 47
set_toplevel_

error_format
S289f

truev 156b
type Value A
type XDefstream

S288d

Supporting code
for µSchemeL

S310

As in the Impcore interpreter, the C representation of the initial basis is gener-
ated automatically from code in 〈predefined µScheme functions S310e〉.
S310a. 〈install predefined functions into env S310a〉≡ (S309a)

const char *fundefs = 〈predefined µScheme functions, as strings (from ⟨predefined µScheme functions 98a⟩)〉;
if (setjmp(errorjmp))

assert(0); // fail if error occurs in predefined functions
readevalprint(stringxdefs("predefined functions", fundefs), &env, NO_ECHOES);

L.1.4 Memory allocation

To use malloc requires no special initialization or resetting.
S310b. 〈loc.c S310b〉≡

void initallocate(Env *globals) {
(void)globals;

}

L.2 µSCHEME CODE NOT INCLUDED IN CHAPTER 2

Function sqrt produces the largest integer that is not greater than the square root
of n. This is a pathetic definition of square root, but it does work on perfect squares,
and it s̓ also useful for testing primality.
S310c. 〈definition of sqrt S310c〉≡ (120a)

-> (define sqrt (n)
(letrec ((find (lambda (r)

(if (> (* r r) n) (- r 1) (find (+ r 1))))))
(find 0)))

Next is a scurvy Noweb trick; by extending the definition of 〈transcript S310d〉 in
this appendix, I expose 〈polymorphic-set transcript 135b〉 to my testing software, while
preventing the definitions in 〈polymorphic-set transcript 135b〉 from interfering with
non-polymorphic uses of the set operations.
S310d. 〈transcript S310d〉≡

〈polymorphic-set transcript 135b〉

Unicode code points

S310e. 〈predefined µScheme functions S310e〉≡ S310f ▷
(val newline 10) (val left-round 40)
(val space 32) (val right-round 41)
(val semicolon 59) (val left-curly 123)
(val quotemark 39) (val right-curly 125)

(val left-square 91)
(val right-square 93)

Integer functions

We add additional integer operations, all of which are defined exactly as they would
be in Impcore. We begin with comparisons.
S310f. 〈predefined µScheme functions S310e〉+≡ ◁ S310e S311a ▷

(define <= (x y) (not (> x y)))
(define >= (x y) (not (< x y)))
(define != (x y) (not (= x y)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.3
Implementation of

µScheme
environments

S311

We continue with min and max.
S311a. 〈predefined µScheme functions S310e〉+≡ ◁ S310f S311b ▷

(define max (x y) (if (> x y) x y))
(define min (x y) (if (< x y) x y))

Finally, we add negation, modulus, greatest common divisor, and least common
multiple.
S311b. 〈predefined µScheme functions S310e〉+≡ ◁ S311a S311f ▷

(define negated (n) (- 0 n))
(define mod (m n) (- m (* n (/ m n))))
(define gcd (m n) (if (= n 0) m (gcd n (mod m n))))
(define lcm (m n) (if (= m 0) 0 (* m (/ n (gcd m n)))))

List operations

S311c. 〈more predefined combinations of car and cdr S311c〉≡ S311d ▷

(define cddr (sx) (cdr (cdr sx)))
(define caaar (sx) (car (caar sx)))
(define caadr (sx) (car (cadr sx)))
(define cadar (sx) (car (cdar sx)))
(define caddr (sx) (car (cddr sx)))
(define cdaar (sx) (cdr (caar sx)))
(define cdadr (sx) (cdr (cadr sx)))
(define cddar (sx) (cdr (cdar sx)))
(define cdddr (sx) (cdr (cddr sx)))

S311d. 〈more predefined combinations of car and cdr S311c〉+≡ ◁ S311c S311e ▷
(define caaaar (sx) (car (caaar sx)))
(define caaadr (sx) (car (caadr sx)))
(define caadar (sx) (car (cadar sx)))
(define caaddr (sx) (car (caddr sx)))
(define cadaar (sx) (car (cdaar sx)))
(define cadadr (sx) (car (cdadr sx)))
(define caddar (sx) (car (cddar sx)))
(define cadddr (sx) (car (cdddr sx)))

S311e. 〈more predefined combinations of car and cdr S311c〉+≡ ◁ S311d
(define cdaaar (sx) (cdr (caaar sx)))
(define cdaadr (sx) (cdr (caadr sx)))
(define cdadar (sx) (cdr (cadar sx)))
(define cdaddr (sx) (cdr (caddr sx)))
(define cddaar (sx) (cdr (cdaar sx)))
(define cddadr (sx) (cdr (cdadr sx)))
(define cdddar (sx) (cdr (cddar sx)))
(define cddddr (sx) (cdr (cdddr sx)))

S311f. 〈predefined µScheme functions S310e〉+≡ ◁ S311b
(define list4 (x y z a) (cons x (list3 y z a)))
(define list5 (x y z a b) (cons x (list4 y z a b)))
(define list6 (x y z a b c) (cons x (list5 y z a b c)))
(define list7 (x y z a b c d) (cons x (list6 y z a b c d)))
(define list8 (x y z a b c d e) (cons x (list7 y z a b c d e)))

L.3 IMPLEMENTATION OF µSCHEME ENVIRONMENTS

µScheme environments are significantly different from Impcore environments,
but not so dramatically different that it s̓ worth putting a very similar implemen-
tation in Chapter 2. The big difference in a µScheme environment is that evalu-
ating a lambda expression copies an environment, and that copy can be extended.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
type Env 155a
env S309a
errorjmp 47
readevalprint

S304c
stringxdefs S288f

Supporting code
for µSchemeL

S312

The possibility of copying rules out the mutate-in-place optimization I used in Im-
pcore environments, and it militates toward a different representation.

First, and most important, environments are immutable, as we can see from
the interface in Section 2.12.2 on page 155. The operational semantics never mu-
tates an environment, and there is really no need, because all the mutation is done
on locations. Moreover, if we wanted to mutate environments, it wouldnʼt be safe
to copy them just by copying pointers; this would make the evaluation of lambda
expressions very expensive.

I choose a representation of environments that makes it easy to share and ex-
tend them: an environment contains a single binding and a pointer to the rest of
the bindings in the environment.
S312a. 〈env.c S312a〉≡ S312b ▷

struct Env {
Name name;
Value *loc;
Env tl;

};

We look up a name by following tl pointers.
S312b. 〈env.c S312a〉+≡ ◁ S312a S312c ▷

Value* find(Name name, Env env) {
for (; env; env = env->tl)

if (env->name == name)
return env->loc;

return NULL;
}

Function bindalloc always creates a new environment with a new binding.
There is never any mutation.
S312c. 〈env.c S312a〉+≡ ◁ S312b S312d ▷

Env bindalloc(Name name, Value val, Env env) {
Env newenv = malloc(sizeof(*newenv));
assert(newenv != NULL);

newenv->name = name;
newenv->loc = allocate(val);
newenv->tl = env;
return newenv;

}

Function bindalloclist binds names to values in sequence.
S312d. 〈env.c S312a〉+≡ ◁ S312c S312e ▷

Env bindalloclist(Namelist xs, Valuelist vs, Env env) {
for (; xs && vs; xs = xs->tl, vs = vs->tl)

env = bindalloc(xs->hd, vs->hd, env);
assert(xs == NULL && vs == NULL);
return env;

}

In case it helps you debug your code, you might want to print environments.
Here is a printing function printenv.
S312e. 〈env.c S312a〉+≡ ◁ S312d S313a ▷

void printenv(Printbuf output, va_list_box *box) {
char *prefix = " ";

bprint(output, "{");
for (Env env = va_arg(box->ap, Env); env; env = env->tl) {

bprint(output, "%s%n -> %v", prefix, env->name, *env->loc);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.4
Parsing µScheme

code

S313

prefix = ", ";
}
bprint(output, " }");

}

To help support static analysis of µScheme programs, we can dump all the
names in an environment.
S313a. 〈env.c S312a〉+≡ ◁ S312e

void dump_env_names(Env env) {
for (; env; env = env->tl)

fprint(stdout, "%n\n", env->name);
}

L.4 PARSING µSCHEME CODE

L.4.1 Parsing tables and reduce functions

Here are all the components that go into µScheme s̓ abstract syntax. They include
all the components used to parse Impcore, plus a Value component that is used
when parsing a quoted S-expression.
S313b. 〈structure definitions for µScheme S313b〉≡ (S303d)

struct Component {
Exp exp;
Explist exps;
Name name;
Namelist names;
Value value;
〈fields of µScheme Component added in exercises S315c〉

};

Here is the usage table for the parenthesized keywords.
S313c. 〈parse.c S313c〉≡ S314a ▷

struct Usage usage_table[] = {
{ ADEF(VAL), "(val x e)" },
{ ADEF(DEFINE), "(define fun (formals) body)" },
{ ANXDEF(USE), "(use filename)" },
{ ATEST(CHECK_EXPECT), "(check-expect exp-to-run exp-expected)" },
{ ATEST(CHECK_ASSERT), "(check-assert exp)" },
{ ATEST(CHECK_ERROR), "(check-error exp)" },

{ SET, "(set x e)" },
{ IFX, "(if cond true false)" },
{ WHILEX, "(while cond body)" },
{ BEGIN, "(begin exp ... exp)" },
{ LAMBDAX, "(lambda (formals) body)" },

{ ALET(LET), "(let ((var exp) ...) body)" },
{ ALET(LETSTAR), "(let* ((var exp) ...) body)" },
{ ALET(LETREC), "(letrec ((var exp) ...) body)" },
〈µScheme usage_table entries added in exercises S315h〉
{ -1, NULL }

};

Shift functions are as in Impcore, but with two additions: to parse quoted S-
expressions, shift function sSexp has been added, and to parse bindings in LETX
forms, sBindings has been added.
S313d. 〈shared function prototypes S306c〉+≡ (S303d) ◁ S306c S315i ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

allocate 156a
bindalloc 155c
bprint S188f
type Env 155a
type Exp A
type Explist S303b
type Name 43b
type Namelist

43b
type ParserResult

S207c
type ParserState

S206b
type Printbuf

S186d
sBindings S316a
sSexp S315k
type va_list_box

S189c
type Value A
type Valuelist

S303c

Supporting code
for µSchemeL

S314

ParserResult sSexp (ParserState state);
ParserResult sBindings(ParserState state);

Using the new shift functions, here is the exptable, for parsing expressions.
S314a. 〈parse.c S313c〉+≡ ◁ S313c S314c ▷

static ShiftFun quoteshifts[] = { sSexp, stop };
static ShiftFun setshifts[] = { sName, sExp, stop };
static ShiftFun ifshifts[] = { sExp, sExp, sExp, stop };
static ShiftFun whileshifts[] = { sExp, sExp, stop };
static ShiftFun beginshifts[] = { sExps, stop };
static ShiftFun letshifts[] = { sBindings, sExp, stop };
static ShiftFun lambdashifts[]= { sNamelist, sExp, stop };
static ShiftFun applyshifts[] = { sExp, sExps, stop };
〈arrays of shift functions added to µScheme in exercises S315d〉
〈lowering functions for µScheme+ S329d〉

struct ParserRow exptable[] = {
{ "set", ANEXP(SET), setshifts },
{ "if", ANEXP(IFX), ifshifts },
{ "begin", ANEXP(BEGIN), beginshifts },
{ "lambda", ANEXP(LAMBDAX), lambdashifts },
{ "quote", ANEXP(LITERAL), quoteshifts },
〈rows of µScheme’s exptable that are sugared in µScheme+ generated automatically〉
〈rows added to µScheme’s exptable in exercises S315e〉
{ NULL, ANEXP(APPLY), applyshifts } // must come last

};

S314b. 〈rows of µScheme’s exptable that are sugared in µScheme+ [[uscheme]] S314b〉≡
{ "while", ANEXP(WHILEX), whileshifts },
{ "let", ALET(LET), letshifts },
{ "let*", ALET(LETSTAR), letshifts },
{ "letrec", ALET(LETREC), letshifts },

In µScheme, a quote mark in the input is expanded to a quote expression.
The global variable read_tick_as_quote so instructs the getpar function defined
in Section F.1.2 on page S182.
S314c. 〈parse.c S313c〉+≡ ◁ S314a S314d ▷

bool read_tick_as_quote = true;

The codes used in exptable tell reduce_to_exp how to reduce components to
an expression.
S314d. 〈parse.c S313c〉+≡ ◁ S314c S315a ▷

Exp reduce_to_exp(int code, struct Component *comps) {
switch(code) {
case ANEXP(SET): return mkSet(comps[0].name, comps[1].exp);
case ANEXP(IFX): return mkIfx(comps[0].exp, comps[1].exp, comps[2].exp);
case ANEXP(BEGIN): return mkBegin(comps[0].exps);
〈cases for reduce_to_exp that are sugared in µScheme+ generated automatically〉
case ANEXP(LAMBDAX): return mkLambdax(mkLambda(comps[0].names, comps[1].exp));
case ANEXP(APPLY): return mkApply(comps[0].exp, comps[1].exps);
case ANEXP(LITERAL): return mkLiteral(comps[0].value);
〈cases for µScheme’s reduce_to_exp added in exercises S315f〉
}
assert(0);

}

S314e. 〈cases for reduce_to_exp that are sugared in µScheme+ [[uscheme]] S314e〉≡
case ANEXP(WHILEX): return mkWhilex(comps[0].exp, comps[1].exp);
case ALET(LET):
case ALET(LETSTAR):

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.4
Parsing µScheme

code

S315

case ALET(LETREC): return mkLetx(code+LET-ALET(LET),
comps[0].names, comps[0].exps, comps[1].exp);

The xdeftable is shared with the Impcore parser. Function reduce_to_xdef is
almost shareable as well, but not quite—the abstract syntax of DEFINE is different.
S315a. 〈parse.c S313c〉+≡ ◁ S314d S315k ▷

XDef reduce_to_xdef(int code, struct Component *out) {
switch(code) {
case ADEF(VAL): return mkDef(mkVal(out[0].name, out[1].exp));
〈reduce_to_xdef case for ADEF(DEFINE) generated automatically〉
case ANXDEF(USE): return mkUse(out[0].name);
case ATEST(CHECK_EXPECT):

return mkTest(mkCheckExpect(out[0].exp, out[1].exp));
case ATEST(CHECK_ASSERT):

return mkTest(mkCheckAssert(out[0].exp));
case ATEST(CHECK_ERROR):

return mkTest(mkCheckError(out[0].exp));
case ADEF(EXP): return mkDef(mkExp(out[0].exp));
〈cases for µScheme’s reduce_to_xdef added in exercises S315g〉
default: assert(0); // incorrectly configured parser
}

}

S315b. 〈reduce_to_xdef case for ADEF(DEFINE) [[uscheme]] S315b〉≡
case ADEF(DEFINE): return mkDef(mkDefine(out[0].name,

mkLambda(out[1].names, out[2].exp)));

Here s̓ how the parser might be extended
S315c. 〈fields of µScheme Component added in exercises S315c〉≡ (S313b)

/* if implementing COND, add a question-answer field here */

S315d. 〈arrays of shift functions added to µScheme in exercises S315d〉≡ (S314a)
/* define arrays of shift functions as needed for [[exptable]] rows */

S315e. 〈rows added to µScheme’s exptable in exercises S315e〉≡ (S314a)
/* add a row for each new syntactic form of Exp */

S315f. 〈cases for µScheme’s reduce_to_exp added in exercises S315f〉≡ (S314d)
/* add a case for each new syntactic form of Exp */

S315g. 〈cases for µScheme’s reduce_to_xdef added in exercises S315g〉≡ (S315a)
/* add a case for each new syntactic form of definition */

S315h. 〈µScheme usage_table entries added in exercises S315h〉≡ (S313c)
/* add expected usage for each new syntactic form */

S315i. 〈shared function prototypes S306c〉+≡ (S303d) ◁ S313d
void extendSyntax(void);

S315j. 〈parse.c [[uscheme]] S315j〉≡
void extendSyntax(void) { }

L.4.2 New shift functions: S-expressions and bindings

Many shift functions are reused from Impcore (Appendix G). New shift function
sSexp calls parsesx to parse a literal S-expression. The result is stored in a value
component.
S315k. 〈parse.c S313c〉+≡ ◁ S315a S316a ▷

ParserResult sSexp(ParserState s) {
if (s->input == NULL) {

return INPUT_EXHAUSTED;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
extendSyntaxS344b
halfshift S208b
mkApply A
mkBegin A
mkCheckAssert

A
mkCheckErrorA
mkCheckExpect

A
mkDef A
mkDefine A
mkExp A
mkIfx A
mkLambda A
mkLambdax A
mkLetx A
mkLiteral A
mkSet A
mkTest A
mkUse A
mkVal A
mkWhilex A
type Par A
type ParserResult

S207c
type ParserState

S206b
parsesx S316b
sBindings S313d
sExp S207e
sExps S207e
type ShiftFun

S207d
sName S207e
sNamelist S207e
sSexp S313d
stop S209d
type XDef A

Supporting code
for µSchemeL

S316

} else {
Par p = s->input->hd;
halfshift(s);
s->components[s->nparsed++].value = parsesx(p, s->context.source);
return PARSED;

}
}

New shift function sBindings calls parseletbindings to parse bindings for
LETX forms. Function parseletbindings returns a component that has both names
and and exps fields set.
S316a. 〈parse.c S313c〉+≡ ◁ S315k S316c ▷

ParserResult sBindings(ParserState s) {
if (s->input == NULL) {

return INPUT_EXHAUSTED;
} else {

Par p = s->input->hd;
switch (p->alt) {
case ATOM:

usage_error(code_of_name(s->context.name), BAD_INPUT, &s->context);
case LIST:

halfshift(s);
s->components[s->nparsed++] = parseletbindings(&s->context, p->list);
return PARSED;

}
assert(0);

}
}

L.4.3 New parsing functions: S-expressions and bindings

Each new shift function is supported by a new parsing function.
S316b. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S307d S323b ▷

Value parsesx(Par p, Sourceloc source);
struct Component parseletbindings(ParsingContext context, Parlist input);

Parsing quoted S-expressions

A quoted S-expression is either an atom or a list.
S316c. 〈parse.c S313c〉+≡ ◁ S316a S317b ▷

Value parsesx(Par p, Sourceloc source) {
switch (p->alt) {
case ATOM: 〈return p->atom interpreted as an S-expression S316d〉
case LIST: 〈return p->list interpreted as an S-expression S317a〉
}
assert(0);

}

Inside a quoted S-expression, an atom is necessarily a number, a Boolean, or
a symbol. This parser does not understand dot notation, which in full Scheme is
used to write cons cells that are not lists.
S316d. 〈return p->atom interpreted as an S-expression S316d〉≡ (S316c)

{
Name n = p->atom;
const char *s = nametostr(n);

char *t; // first nondigit in s

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.4
Parsing µScheme

code

S317

long l = strtol(s, &t, 10); // value of digits in s, if any
if (*t == '\0' && *s != '\0') // s is all digits

return mkNum(l);
else if (strcmp(s, "#t") == 0)

return truev;
else if (strcmp(s, "#f") == 0)

return falsev;
else if (strcmp(s, ".") == 0)

synerror(source, "this interpreter cannot handle . in quoted S-expressions");
else

return mkSym(n);
}

A quoted list is turned into a µScheme list, recursively.
S317a. 〈return p->list interpreted as an S-expression S317a〉≡ (S316c)

if (p->list == NULL)
return mkNil();

else
return cons(parsesx(p->list->hd, source),

parsesx(mkList(p->list->tl), source));

Parsing bindings used in LETX forms

A sequence of let bindings has both names and expressions. To capture both,
parseletbindings returns a component with both names and exps fields set.
S317b. 〈parse.c S313c〉+≡ ◁ S316c S318a ▷

struct Component parseletbindings(ParsingContext context, Parlist input) {
if (input == NULL) {

struct Component output = { .names = NULL, .exps = NULL };
return output;

} else if (input->hd->alt == ATOM) {
synerror(context->source,

"in %p, expected (... (x e) ...) in bindings, but found %p",
context->par, input->hd);

} else {
/* state and row are set up to parse one binding */
struct ParserState s = mkParserState(input->hd, context->source);
s.context = *context;
static ShiftFun bindingshifts[] = { sName, sExp, stop };
struct ParserRow row = { .code = code_of_name(context->name)

, .shifts = bindingshifts
};

rowparse(&row, &s);

/* now parse the remaining bindings, then add the first at the front */
struct Component output = parseletbindings(context, input->tl);
output.names = mkNL(s.components[0].name, output.names);
output.exps = mkEL(s.components[1].exp, output.exps);
return output;

}
}

L.4.4 Parsing atomic expressions

To parse an atom, we need to check if it is a Boolean or integer literal. Otherwise it
is a variable.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

code_of_nameS217b
cons S307d
falsev 156b
halfshift S208b
mkEL A
mkList A
mkNil A
mkNL A
mkNum A
mkParserState

S207b
mkSym A
type Name 43b
nametostr 43c
type Par A
type Parlist S181b
type ParserResult

S207c
type ParserState

S206b
type

ParsingContext
S206b

rowparse S211a
sExp S207e
type ShiftFun

S207d
sName S207e
type Sourceloc

S289d
stop S209d
synerror 48a
truev 156b
usage_error S211a
type Value A

Supporting code
for µSchemeL

S318

S318a. 〈parse.c S313c〉+≡ ◁ S317b S326c ▷
Exp exp_of_atom (Sourceloc loc, Name n) {

if (n == strtoname("#t"))
return mkLiteral(truev);

else if (n == strtoname("#f"))
return mkLiteral(falsev);

const char *s = nametostr(n);
char *t; // first nondigit in s, if any
long l = strtol(s, &t, 10); // number represented by s, if any
if (*t != '\0' || *s == '\0') // not a nonempty sequence of digits

return mkVar(n);
else if (((l == LONG_MAX || l == LONG_MIN) && errno == ERANGE) ||

l > (long)INT32_MAX || l < (long)INT32_MIN)
{

synerror(loc, "arithmetic overflow in integer literal %s", s);
return mkVar(n); // unreachable

} else { // the number is the whole atom, and not too big
return mkLiteral(mkNum(l));

}
}

L.5 IMPLEMENTATION OF µSCHEMEʼS VALUE INTERFACE

The value interface has special support for Booleans and for unspecified values.
As usual, the value interface also has support for printing.

L.5.1 Boolean values and Boolean testing

The first part of the value interface supports Booleans.
S318b. 〈value.c S318b〉≡ S318c ▷

bool istrue(Value v) {
return v.alt != BOOLV || v.boolv;

}

Value truev, falsev;

void initvalue(void) {
truev = mkBoolv(true);
falsev = mkBoolv(false);

}

L.5.2 Unspecified values

The interface defines a function to return an unspecified value. “Unspecified”
means we can pick any value we like. For example, we could just always use NIL.
Unfortunately, if we do that, careless persons will grow to rely on finding NIL, and
they shouldnʼt. To foil such carelessness, we choose an unhelpful value at random.

S318c. 〈value.c S318b〉+≡ ◁ S318b
Value unspecified (void) {

switch ((rand()>>4) & 0x3) {
case 0: return truev;
case 1: return mkNum(rand());
case 2: return mkSym(strtoname("this value is unspecified"));

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.5
Implementation of
µScheme’s value

interface

S319

case 3: return mkPrimitive(-12, NULL);
default: return mkNil();

}
}

With any luck, careless personsʼ code might make our interpreter dereference a
NULL pointer, which is no worse than such persons deserve.

The rest of the code deals with printing—a complex and unpleasant task.

L.5.3 Printing and values

The printing code is lengthy and tedious. The length and tedium are all about print-
ing closures. When printing a closure nicely, you donʼt want to see the entire en-
vironment that is captured in the closure. You want to see only the parts of the
environment that the closure actually depends on—the free variables of the lambda
expression.

Finding free variables in an expression

Finding free variables is hard work. I start with a bunch of utility functions on
names. Function nameinlist says whether a particular Name is on a Namelist.
S319a. 〈printfuns.c S319a〉≡ S319b ▷

static bool nameinlist(Name n, Namelist xs) {
for (; xs; xs=xs->tl)

if (n == xs->hd)
return true;

return false;
}

Function addname adds a name to a list, unless it s̓ already there.
S319b. 〈printfuns.c S319a〉+≡ ◁ S319a S319c ▷

static Namelist addname(Name n, Namelist xs) {
if (nameinlist(n, xs))

return xs;
else

return mkNL(n, xs);
}

Function freevars is passed an expression, a list of variables known to be
bound, and a list of variables known to be free. If the expression contains free
variables not on either list, freevars adds them to the free list and returns the new
free list. Function freevars works by traversing an abstract-syntax tree; when it
finds a name, it calls addfree to calculate the new list of free variables
S319c. 〈printfuns.c S319a〉+≡ ◁ S319b S319d ▷

static Namelist addfree(Name n, Namelist bound, Namelist free) {
if (nameinlist(n, bound))

return free;
else

return addname(n, free);
}

Here s̓ the tree traversal. Computing the free variables of an expression is as
much work as evaluating the expression. We have to know all the rules for envi-
ronments.
S319d. 〈printfuns.c S319a〉+≡ ◁ S319c S321a ▷

Namelist freevars(Exp e, Namelist bound, Namelist free) {
switch (e->alt) {
case LITERAL:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
type Explist S303b
falsev 156b
freevars S609i
mkLiteral A
mkNil A
mkNL A
mkNum A
mkSym A
mkVar A
type Name 43b
type Namelist

43b
nametostr 43c
type Sourceloc

S289d
strtoname 43c
synerror 48a
truev 156b
type Value A

Supporting code
for µSchemeL

S320

break;
case VAR:

free = addfree(e->var, bound, free);
break;

case IFX:
free = freevars(e->ifx.cond, bound, free);
free = freevars(e->ifx.truex, bound, free);
free = freevars(e->ifx.falsex, bound, free);
break;

case WHILEX:
free = freevars(e->whilex.cond, bound, free);
free = freevars(e->whilex.body, bound, free);
break;

case BEGIN:
for (Explist es = e->begin; es; es = es->tl)

free = freevars(es->hd, bound, free);
break;

case SET:
free = addfree(e->set.name, bound, free);
free = freevars(e->set.exp, bound, free);
break;

case APPLY:
free = freevars(e->apply.fn, bound, free);
for (Explist es = e->apply.actuals; es; es = es->tl)

free = freevars(es->hd, bound, free);
break;

case LAMBDAX:
〈let free be the free variables for e->lambdax S320a〉
break;

case LETX:
〈let free be the free variables for e->letx S320b〉
break;

〈extra cases for finding free variables in µScheme expressions S329c〉
}
return free;

}

The case for lambda expressions is the interesting one. Any variables that are
bound by the lambda are added to the “known bound” list for the recursive exami-
nation of the lambda s̓ body.
S320a. 〈let free be the free variables for e->lambdax S320a〉≡ (S319d)

for (Namelist xs = e->lambdax.formals; xs; xs = xs->tl)
bound = addname(xs->hd, bound);

free = freevars(e->lambdax.body, bound, free);

The let expressions are a bit tricky; we have to follow the rules exactly.
S320b. 〈let free be the free variables for e->letx S320b〉≡ (S319d)

switch (e->letx.let) {
Namelist xs; // used to visit every bound name
Explist es; // used to visit every expression that is bound

case LET:
for (es = e->letx.es; es; es = es->tl)

free = freevars(es->hd, bound, free);
for (xs = e->letx.xs; xs; xs = xs->tl)

bound = addname(xs->hd, bound);
free = freevars(e->letx.body, bound, free);
break;

case LETSTAR:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.5
Implementation of
µScheme’s value

interface

S321

for (xs = e->letx.xs, es = e->letx.es
; xs && es
; xs = xs->tl, es = es->tl
)

{
free = freevars(es->hd, bound, free);
bound = addname(xs->hd, bound);

}
free = freevars(e->letx.body, bound, free);
break;

case LETREC:
for (xs = e->letx.xs; xs; xs = xs->tl)

bound = addname(xs->hd, bound);
for (es = e->letx.es; es; es = es->tl)

free = freevars(es->hd, bound, free);
free = freevars(e->letx.body, bound, free);
break;

}

Printing closures and other values

Free variables are used to print closures. We print a closure by printing the lambda
expression, plus the values of the free variables that are not global variables. (If we
included the global variables, we would be distracted by many bindings of cons,
car, +, and so on.) Function printnonglobals does the hard work.

A recursive function is represented by a closure whose environment includes a
pointer back to the recursive function itself. If we print such a closure by printing
the values of the free variables, the printer could loop forever. The depthparameter
cuts off this loop, so when depth reaches 0, the printing functions print closures
simply as <function>.
S321a. 〈printfuns.c S319a〉+≡ ◁ S319d S321b ▷

static void printnonglobals(Printbuf output, Namelist xs, Env env, int depth);

static void printclosureat(Printbuf output, Lambda lambda, Env env, int depth) {
if (depth > 0) {

Namelist vars = freevars(lambda.body, lambda.formals, NULL);
bprint(output, "<%\\, {", lambda);
printnonglobals(output, vars, env, depth - 1);
bprint(output, "}>");

} else {
bprint(output, "<function>");

}
}

The value-printing functions also need a depth parameter.
S321b. 〈printfuns.c S319a〉+≡ ◁ S321a S322a ▷

static void printvalueat(Printbuf output, Value v, int depth);
〈helper functions for printvalue S322b〉
static void printvalueat(Printbuf output, Value v, int depth) {

switch (v.alt){
case NIL:

bprint(output, "()");
return;

case BOOLV:
bprint(output, v.boolv ? "#t" : "#f");
return;

case NUM:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

addname S319b
bound S319d
bprint S188f
type Env 155a
type Explist S303b
free S319d
freevars S609i
type Lambda A
type Namelist

43b
type Printbuf

S186d
printnonglobals

S322c
type Value A

Supporting code
for µSchemeL

S322

bprint(output, "%d", v.num);
return;

case SYM:
bprint(output, "%n", v.sym);
return;

case PRIMITIVE:
bprint(output, "<function>");
return;

case PAIR:
bprint(output, "(");
printvalueat(output, *v.pair.car, depth);
printtail(output, *v.pair.cdr, depth);
return;

case CLOSURE:
printclosureat(output, v.closure.lambda, v.closure.env, depth);
return;

default:
bprint(output, "<unknown v.alt=%d>", v.alt);
return;

}
}

If you ask just to print a value, the default depth is 0. That is, by default the
interpreter doesnʼt print closures. If you need to debug, increase the default depth.

S322a. 〈printfuns.c S319a〉+≡ ◁ S321b S322c ▷
void printvalue(Printbuf output, va_list_box *box) {

printvalueat(output, va_arg(box->ap, Value), 0);
}

Function printtail handles the correct printing of lists. If a cons cell doesnʼt
have another cons cell or NIL in its cdr field, the car and cdr are separated by a dot.

S322b. 〈helper functions for printvalue S322b〉≡ (S321b)
static void printtail(Printbuf output, Value v, int depth) {

switch (v.alt) {
case NIL:

bprint(output, ")");
break;

case PAIR:
bprint(output, " ");
printvalueat(output, *v.pair.car, depth);
printtail(output, *v.pair.cdr, depth);
break;

default:
bprint(output, " . ");
printvalueat(output, v, depth);
bprint(output, ")");
break;

}
}

Finally, the implementation of printnonglobals.
S322c. 〈printfuns.c S319a〉+≡ ◁ S322a S327b ▷

Env *globalenv;
static void printnonglobals(Printbuf output, Namelist xs, Env env, int depth) {

char *prefix = "";
for (; xs; xs = xs->tl) {

Value *loc = find(xs->hd, env);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.6
µScheme’s unit

tests

S323

if (loc && (globalenv == NULL || find(xs->hd, *globalenv) != loc)) {
bprint(output, "%s%n -> ", prefix, xs->hd);
prefix = ", ";
printvalueat(output, *loc, depth);

}
}

}

L.6 µSCHEMEʼS UNIT TESTS

Running a list of unit tests is the job of the function process_tests. It s̓ just like
the process_tests for Impcore in Section K.2, except that instead of Impcore s̓
separate function and value environments, the µScheme version uses the single
µScheme environment.
S323a. 〈scheme-tests.c S323a〉≡ S323c ▷

void process_tests(UnitTestlist tests, Env rho) {
set_error_mode(TESTING);
int npassed = number_of_good_tests(tests, rho);
set_error_mode(NORMAL);
int ntests = lengthUL(tests);
report_test_results(npassed, ntests);

}

Function number_of_good_tests runs each test, last one first, and counts the num-
ber that pass. So it can catch errors during testing, it expects the error mode to
be TESTING; calling number_of_good_tests when the error mode is NORMAL is an
unchecked run-time error. Again, except for the environment, it s̓ just like the Imp-
core version.
S323b. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S316b S323d ▷

int number_of_good_tests(UnitTestlist tests, Env rho);

S323c. 〈scheme-tests.c S323a〉+≡ ◁ S323a S323e ▷
int number_of_good_tests(UnitTestlist tests, Env rho) {

if (tests == NULL)
return 0;

else {
int n = number_of_good_tests(tests->tl, rho);
switch (test_result(tests->hd, rho)) {
case TEST_PASSED: return n+1;
case TEST_FAILED: return n;
default: assert(0);
}

}
}

And except for the environment, test_result is just like the Impcore version.
S323d. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S323b S325g ▷

TestResult test_result(UnitTest t, Env rho);

S323e. 〈scheme-tests.c S323a〉+≡ ◁ S323c S325h ▷

TestResult test_result(UnitTest t, Env rho) {
switch (t->alt) {
case CHECK_EXPECT:

〈run check-expect test t, returning TestResult S324a〉
case CHECK_ASSERT:

〈run check-assert test t, returning TestResult S324b〉
case CHECK_ERROR:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
type Env 155a
find 155b
lengthUL A
type Namelist

43b
type Printbuf

S186d
printvalueatS321b
report_test_

results
S294e

set_error_mode
S193a

type TestResult
S295b

type UnitTest
A

type UnitTestlist
S303b

type va_list_box
S189c

type Value A

Supporting code
for µSchemeL

S324

〈run check-error test t, returning TestResult S324c〉
default:

assert(0);
}

}

Aside from the environment, there is one other difference between theµScheme
check-expect and the Impcore check-expect. In Impcore, values are integers,
and we test for inequality using C s̓ != operator. In µScheme, values are S-
expressions, and we test for equality using C function equalpairs (defined below),
which works the same way as the µScheme function equal?.
S324a. 〈run check-expect test t, returning TestResult S324a〉≡ (S323e)

{ if (setjmp(testjmp)) {
〈report that evaluating t->check_expect.check failed with an error S325b〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value check = eval(testexp(t->check_expect.check), rho);
if (setjmp(testjmp)) {

〈report that evaluating t->check_expect.expect failed with an error S325c〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value expect = eval(testexp(t->check_expect.expect), rho);

if (!equalpairs(check, expect)) {
〈report failure because the values are not equal S325a〉
return TEST_FAILED;

} else {
return TEST_PASSED;

}
}

And check-assert
S324b. 〈run check-assert test t, returning TestResult S324b〉≡ (S323e)

{ if (setjmp(testjmp)) {
〈report that evaluating t->check_assert failed with an error S325e〉
bufreset(errorbuf);
return TEST_FAILED;

}
Value v = eval(testexp(t->check_assert), rho);

if (v.alt == BOOLV && !v.boolv) {
〈report failure because the value is false S325d〉
return TEST_FAILED;

} else {
return TEST_PASSED;

}
}

A check-error neednʼt test for equality, so again, except for the environment,
it is just as in Impcore.
S324c. 〈run check-error test t, returning TestResult S324c〉≡ (S323e)

{ if (setjmp(testjmp)) {
bufreset(errorbuf);
return TEST_PASSED; // error occurred, so the test passed

}
Value check = eval(testexp(t->check_error), rho);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.6
µScheme’s unit

tests

S325

〈report that evaluating t->check_error produced check S325f〉
return TEST_FAILED;

}

And the reporting is as in Impcore.
S325a. 〈report failure because the values are not equal S325a〉≡ (S324a)

fprint(stderr, "Check-expect failed: expected %e to evaluate to %v",
t->check_expect.check, expect);

if (t->check_expect.expect->alt != LITERAL)
fprint(stderr, " (from evaluating %e)", t->check_expect.expect);

fprint(stderr, ", but it's %v.\n", check);

S325b. 〈report that evaluating t->check_expect.check failed with an error S325b〉≡ (S324a)
fprint(stderr, "Check-expect failed: expected %e to evaluate to the same "

"value as %e, but evaluating %e causes an error: %s.\n",
t->check_expect.check, t->check_expect.expect,
t->check_expect.check, bufcopy(errorbuf));

S325c. 〈report that evaluating t->check_expect.expect failed with an error S325c〉≡ (S324a)
fprint(stderr, "Check-expect failed: expected %e to evaluate to the same "

"value as %e, but evaluating %e causes an error: %s.\n",
t->check_expect.check, t->check_expect.expect,
t->check_expect.expect, bufcopy(errorbuf));

S325d. 〈report failure because the value is false S325d〉≡ (S324b)
fprint(stderr, "Check-assert failed: %e evaluates to #f.\n", t->check_assert);

S325e. 〈report that evaluating t->check_assert failed with an error S325e〉≡ (S324b)
fprint(stderr, "Check-assert failed: evaluating %e causes an error: %s.\n",

t->check_assert, bufcopy(errorbuf));

S325f. 〈report that evaluating t->check_error produced check S325f〉≡ (S324c)
fprint(stderr, "Check-error failed: evaluating %e was expected to produce "

"an error, but instead it produced the value %v.\n",
t->check_error, check);

Function equalpairs tests for equality of atoms and pairs. It resembles func-
tion equalatoms (chunk S308a), which implements the primitive =, with two differ-
ences:

• Its semantics are those of equal?, not =.

• Instead of returning a µScheme Boolean represented as a C Value, it returns
a Boolean represented as a C bool.

S325g. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S323d S326a ▷
bool equalpairs(Value v, Value w);

S325h. 〈scheme-tests.c S323a〉+≡ ◁ S323e
bool equalpairs(Value v, Value w) {

if (v.alt != w.alt)
return false;

else
switch (v.alt) {
case PAIR:

return equalpairs(*v.pair.car, *w.pair.car) &&
equalpairs(*v.pair.cdr, *w.pair.cdr);

case NUM:
return v.num == w.num;

case BOOLV:
return v.boolv == w.boolv;

case SYM:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

_setjmp B
bufreset S186f
errorbuf S193a
eval 157a
rho S323e
testexp S326a
testjmp S193a
type Value A

Supporting code
for µSchemeL

S326

return v.sym == w.sym;
case NIL:

return true;
default:

return false;
}

}

µScheme doesnʼt require any change to test expressions.
S326a. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S325g S326d ▷

Exp testexp(Exp);

S326b. 〈eval.c S326b〉≡
Exp testexp(Exp e) {

return e;
}

L.7 PARSE-TIME ERROR CHECKING

Here is where we check for duplicate names. And LETREC for lambdas.
S326c. 〈parse.c S313c〉+≡ ◁ S318a S327a ▷

void check_exp_duplicates(Sourceloc source, Exp e) {
switch (e->alt) {
case LAMBDAX:

if (duplicatename(e->lambdax.formals) != NULL)
synerror(source, "formal parameter %n appears twice in lambda",

duplicatename(e->lambdax.formals));
return;

case LETX:
if (e->letx.let != LETSTAR && duplicatename(e->letx.xs) != NULL)

synerror(source, "bound name %n appears twice in %s",
duplicatename(e->letx.xs),
e->letx.let == LET ? "let" : "letrec");

if (e->letx.let == LETREC)
for (Explist es = e->letx.es; es; es = es->tl)

if (es->hd->alt != LAMBDAX)
synerror(source,

"letrec tries to bind non-lambda expression %e", es->hd);
return;

default:
return;

}
}

void check_def_duplicates(Sourceloc source, Def d) {
if (d->alt == DEFINE && duplicatename(d->define.lambda.formals) != NULL)

synerror(source,
"formal parameter %n appears twice in define",
duplicatename(d->define.lambda.formals));

}

L.8 SUPPORT FOR AN EXERCISE: CONCATENATING NAMES

Here is an auxiliary function that will be useful if you do Exercise 54 on page 198.
It concatenates names.
S326d. 〈function prototypes for µScheme S304a〉+≡ (S303d) ◁ S326a

Name namecat(Name n1, Name n2);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.9
Print functions for

expressions

S327

S327a. 〈parse.c S313c〉+≡ ◁ S326c
Name namecat(Name n1, Name n2) {

const char *s1 = nametostr(n1);
const char *s2 = nametostr(n2);
char *buf = malloc(strlen(s1) + strlen(s2) + 1);
assert(buf);
sprintf(buf, "%s%s", s1, s2);
Name answer = strtoname(buf);
free(buf);
return answer;

}

L.9 PRINT FUNCTIONS FOR EXPRESSIONS

Here is the (boring) code that prints abstract-syntax trees.
S327b. 〈printfuns.c S319a〉+≡ ◁ S322c S327c ▷

void printdef(Printbuf output, va_list_box *box) {
Def d = va_arg(box->ap, Def);
if (d == NULL) {

bprint(output, "<null>");
return;

}

switch (d->alt) {
case VAL:

bprint(output, "(val %n %e)", d->val.name, d->val.exp);
return;

case EXP:
bprint(output, "%e", d->exp);
return;

case DEFINE:
bprint(output, "(define %n %\\)", d->define.name, d->define.lambda);
return;

}
assert(0);

}

S327c. 〈printfuns.c S319a〉+≡ ◁ S327b S328a ▷
void printxdef(Printbuf output, va_list_box *box) {

XDef d = va_arg(box->ap, XDef);
if (d == NULL) {

bprint(output, "<null>");
return;

}

switch (d->alt) {
case USE:

bprint(output, "(use %n)", d->use);
return;

case TEST:
bprint(output, "CANNOT PRINT UNIT TEST XXX\n");
return;

case DEF:
bprint(output, "%t", d->def);
return;

}
assert(0);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
type Def A
duplicatename

S196a
type Exp A
type Explist S303b
type Name 43b
nametostr 43c
type Printbuf

S186d
type Sourceloc

S289d
strtoname 43c
synerror 48a
testexp S340c
type va_list_box

S189c
type XDef A

Supporting code
for µSchemeL

S328

}

S328a. 〈printfuns.c S319a〉+≡ ◁ S327c S328b ▷

static void printlet(Printbuf output, Exp let) {
switch (let->letx.let) {
case LET:

bprint(output, "(let (");
break;

case LETSTAR:
bprint(output, "(let* (");
break;

case LETREC:
bprint(output, "(letrec (");
break;

default:
assert(0);

}
Namelist xs; // visits every let-bound name
Explist es; // visits every bound expression
for (xs = let->letx.xs, es = let->letx.es;

xs && es;
xs = xs->tl, es = es->tl)
bprint(output, "(%n %e)%s", xs->hd, es->hd, xs->tl?" ":"");

bprint(output, ") %e)", let->letx.body);
}

S328b. 〈printfuns.c S319a〉+≡ ◁ S328a S329a ▷
void printexp(Printbuf output, va_list_box *box) {

Exp e = va_arg(box->ap, Exp);
if (e == NULL) {

bprint(output, "<null>");
return;

}

switch (e->alt) {
case LITERAL:

if (e->literal.alt == NUM || e->literal.alt == BOOLV)
bprint(output, "%v", e->literal);

else
bprint(output, "'%v", e->literal);

break;
case VAR:

bprint(output, "%n", e->var);
break;

case IFX:
bprint(output, "(if %e %e %e)", e->ifx.cond, e->ifx.truex, e->ifx.falsex);
break;

case WHILEX:
bprint(output, "(while %e %e)", e->whilex.cond, e->whilex.body);
break;

case BEGIN:
bprint(output, "(begin%s%E)", e->begin ? " " : "", e->begin);
break;

case SET:
bprint(output, "(set %n %e)", e->set.name, e->set.exp);
break;

case LETX:
printlet(output, e);
break;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§L.10
Support for
µScheme+

S329

case LAMBDAX:
bprint(output, "%\\", e->lambdax);
break;

case APPLY:
bprint(output, "(%e%s%E)", e->apply.fn,

e->apply.actuals ? " " : "", e->apply.actuals);
break;

〈extra cases for printing µScheme ASTs S329b〉
default:

assert(0);
}

}

S329a. 〈printfuns.c S319a〉+≡ ◁ S328b
void printlambda(Printbuf output, va_list_box *box) {

Lambda l = va_arg(box->ap, Lambda);
bprint(output, "(lambda (%N) %e)", l.formals, l.body);

}

L.10 SUPPORT FOR µSCHEME+

These empty definitions are placeholders for code that implements parts of
µScheme+, an extension that adds control operators to µScheme. µScheme+ is
the topic of Chapter 3.
S329b. 〈extra cases for printing µScheme ASTs S329b〉≡ (S328b)

S329c. 〈extra cases for finding free variables in µScheme expressions S329c〉≡ (S319d)

S329d. 〈lowering functions for µScheme+ S329d〉≡ (S314a)
/* placeholder */

L.11 ORPHANS

Here is a placeholder for desugarLet:
S329e. 〈parse.c [[prototype]] S329e〉≡

Exp desugarLet(Namelist xs, Explist es, Exp body) {
/* you replace the body of this function */
runerror("desugaring for LET never got implemented");
return NULL;

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
type Exp A
type Explist S303b
type Lambda A
type Namelist

43b
type Printbuf

S186d
runerror 47
type va_list_box

S189c

CHAPTER CONTENTS
M.1 BONUS EXERCISES S331
M.2 DELIMITED CONTINUA-

TIONS S332
M.3 THE EVALUATION STACK S333

M.3.1 Implementing the stack S333
M.3.2 Printing the stack S335
M.3.3 Instrumentation for the

high stack mark S336
M.3.4 Tracing machine state

using the stack S336

M.4 UPDATING LISTS OF EX-
PRESSIONS WITHIN CON-
TEXTS S337

M.5 LOWERING S339
M.6 OPTIONS AND DIAGNOS-

TIC CODE S342
M.7 PARSING S342
M.8 FINDING FREE VARI-

ABLES S344
M.9 INTERPRETER CODE

OMITTED FROM THE
CHAPTER S345

M.10 BUREAUCRACY S346

MSupporting code for µScheme+

M.1 BONUS EXERCISES

26. I claim that µScheme+ is a conservative extension of µScheme. This means
that every µScheme definition is a value µScheme+ definition, and that ev-
ery such definition has the same effect in µScheme+ as it has in µScheme.
(Because an expression is also a definition, the same holds of expressions.)

This claim can be made formal and can be backed up with proof. The first
part of the claim is as follows:

Whenever the µScheme rules can prove 〈e, ρ, σ〉 ⇓ 〈v, σ′〉, there
is a ρ′ such that 〈e, ρ, σ, []〉 →∗ 〈v, ρ′, σ′, []〉.

To prove this claim, we need a slightly stronger claim to use as an induction
hypothesis:

Whenever the µScheme rules can prove 〈e, ρ, σ〉 ⇓ 〈v, σ′〉, there
exists aρ′ such that for every stackS, 〈e, ρ, σ, S〉 →∗ 〈v, ρ′, σ′, S〉.

The claim is proved by induction over the derivation of 〈e, ρ, σ〉 ⇓ 〈v, σ′〉.

(a) Prove base cases for LITERAL, VAR, and LAMBDA.

(b) Prove the induction step for a derivation that ends in BIG-STEP-ASSIGN.

(c) Prove the induction steps for derivations that end in BIG-STEP-IFTRUE
or BIG-STEP-IFFALSE.

(d) Prove the induction step for a derivation that ends in BIG-STEP-APPLYCLOSURE,
for the special case that there is exactly one argument expression e1 in
the APPLY node.

(e) Prove the induction step for a derivation that ends in BIG-STEP-WHILEEND.

(f) Prove the induction step for a derivation that ends in BIG-STEP-WHILEITERATE.

So far the only claim Iʼve made formal is that if an expression e can
be evaluated in µScheme, then µScheme+ evaluates e in the same way.
For µScheme+ to be considered a true conservative extension, we also have
to be sure it doesnʼt add any behaviors:

If given e, ρ, and σ, there do not exist a v and σ′ such that
〈e, ρ, σ〉 ⇓ 〈v, σ′〉, then there does not exist a ρ′ and σ′ such that
〈e, ρ, σ, []〉 →∗ 〈v, ρ′, σ′, []〉.

The techniques needed to prove this half of the claim are beyond the scope
of this book.

S331
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µScheme+M

S332

27. When an evaluation context contains a sequencev1, . . . , vi−1, •, ei+1, . . . , en,
we represent the sequence as a value of type Explist. When it s̓ time to
transition to the next context, finding the hole takes time proportional to i.
That means the total work involved in evaluating the sequence is about 1

2n
2.

In most programs, n is so small that this doesnʼt matter. But for the sake of
craftsmanship, change the representation of these contexts to be a pair of
lists vi−1, vi−1, . . . , v1 and ei+1, . . . , en.1 Expect these changes:

• Transition from one context to another takes constant time and space.

• No Explist is ever copied. Memory management gets simpler, and the
system allocates less memory overall.

• When the context is complete, the list of values needed is in reverse
order. To cut down on further memory allocation, consider reversing
the list by mutating pointers in place.

When youʼre done, answer these questions:

(a) Given a long-running µScheme program, can you measure any repro-
ducible difference in the performance of the two interpreters?

(b) If you have access to a memory-analysis tool like Valgrind, what
changes do you measure in the amount of allocation? The amount of
memory “lost” at the end of execution?

(c) If you were building a new system from scratch, which method would
you use? Why?

M.2 DELIMITED CONTINUATIONS

The delimited-continuation primitives that best fit the semantics of this chapter are
called prompt and control.

• A prompt marks a spot on the stack. It s̓ a bit like a catch with no handler.

• Like call/cc, control captures the current evaluation context—but only up
to the nearest prompt. The prompt acts as a delimiter which limits the extent
of the continuation that is captured.

Crucially, “capturing” a continuation doesnot mean copying the continuation—
instead of the stack being copied, the part of the stack between the control
and the prompt is moved into a continuation value.

• Equally crucially, when a continuation is called as a function, its stack does
not replace the current context. Instead, the saved stack is pushed on top of the
current context.

The prompt and control primitives honor the correspondence between evalua-
tion contexts and functions: unlike the undelimited continuations captured by
call/cc, the delimited continuations captured with control compose nicely with
themselves and with ordinary functions.

Here are the rules:

〈PROMPT(e), ρ, σ, S〉 → 〈e, ρ, σ, PROMPT(•) :: S〉
(PROMPT)

1To save yourself the massive headache of changing the representations of all the contexts, define
C macros or static inline functions to convert between an Explist pointer and a pointer to your pair
of lists.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.3
The evaluation

stack

S333

〈v, ρ, σ, PROMPT(•) :: S〉 → 〈v, ρ, σ, S〉
(PROMPT-FINISH)

〈CONTROL(e), ρ, σ, S〉 → 〈e, ρ, σ, CONTROL(•) :: S〉
(CONTROL)

vf is a function None of F1, . . . , Fn has the form PROMPT(•)
〈vf , ρ, σ, CONTROL(•) :: F1 :: · · · :: Fn :: PROMPT(•) :: S〉 →
〈APPLY(vf , CONTINUATION(F1, . . . , Fn)), ρ, σ, PROMPT(•) :: S〉

(CONTROL-CAPTURE)
vf = CONTINUATION(F1, . . . , Fn)

〈v1, ρ, σ, APPLY(vf , •) :: S〉 → 〈v1, ρ, σ, F1 :: · · · :: Fn :: S〉
(APPLY-DELIMITED-CONTINUATION)

M.3 THE EVALUATION STACK

This section shows the implementation of the Stack of evaluation contexts and its
instrumentation.

M.3.1 Implementing the stack

In Chapter 3, the representation of a Stack is private to this module. In Chapter 4,
the representation is exposed to the garbage collector.
S333a. 〈representation of struct Stack S333a〉≡ (S333b)

struct Stack {
int size;
Frame *frames; // memory for 'size' frames
Frame *sp; // points to first unused frame

};

Instrumentation is stored in three global variables. Tail-call optimization is on
by default; showing the high stack mark is not.
S333b. 〈context-stack.c S333b〉≡ S333c ▷

〈representation of struct Stack S333a〉

bool optimize_tail_calls = true;
int high_stack_mark; // maximum number of frames used in the current evaluation
bool show_high_stack_mark;

A fresh, empty stack can hold 8 frames.
S333c. 〈context-stack.c S333b〉+≡ ◁ S333b S333d ▷

Stack emptystack(void) {
Stack s;
s = malloc(sizeof *s);
assert(s);
s->size = 8;
s->frames = malloc(s->size * sizeof(*s->frames));
assert(s->frames);
s->sp = s->frames;
return s;

}

A stack that has already been allocated can be emptied by calling clearstack.
This situation may occur if a call to eval is terminated prematurely (with a non-
empty stack) by a call to error.
S333d. 〈context-stack.c S333b〉+≡ ◁ S333c S334b ▷

void clearstack (Stack s) {
s->sp = s->frames;

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Frame 225a
type Stack 225a

Supporting code
for µScheme+M

S334

This initialization code runs in eval and sets its local variable evalstack.
S334a. 〈ensure that evalstack is initialized and empty S334a〉≡ (229a)

if (evalstack == NULL)
evalstack = emptystack();

else
clearstack(evalstack);

Unless the sp and frames fields point to the same memory, there is a frame on
top of the stack.
S334b. 〈context-stack.c S333b〉+≡ ◁ S333d S334c ▷

Frame *topframe (Stack s) {
assert(s);
if (s->sp == s->frames)

return NULL;
else

return s->sp - 1;
}

S334c. 〈context-stack.c S333b〉+≡ ◁ S334b S334d ▷

Frame *topnonlabel (Stack s) {
Frame *p;
for (p = s->sp; p > s->frames && p[-1].form.alt == LABEL; p--)

;
if (p > s->frames)

return p-1;
else

return NULL;
}

Pushing, whether pushframe or pushenv_opt, is implemented using the private
function push. Function push returns a pointer to the frame just pushed.
S334d. 〈context-stack.c S333b〉+≡ ◁ S334c S334f ▷

static Frame *push (Frame f, Stack s) {
assert(s);
〈if stack s is full, enlarge it S334e〉
*s->sp++ = f;
〈set high_stack_mark from stack s S336d〉
return s->sp - 1;

}

Ten thousand stack frames ought to be enough for anybody.
S334e. 〈if stack s is full, enlarge it S334e〉≡ (S334d)

if (s->sp - s->frames == s->size) {
unsigned newsize = 2 * s->size;
if (newsize > 10000) {

clearstack(s);
runerror("recursion too deep");

}
s->frames = realloc(s->frames, newsize * sizeof(*s->frames));
assert(s->frames);
s->sp = s->frames + s->size;
s->size = newsize;

}

A frame can be popped only if the stack is not empty. But there is no need for
memory management or instrumentation.
S334f. 〈context-stack.c S333b〉+≡ ◁ S334d S335a ▷

void popframe (Stack s) {
assert(s->sp - s->frames > 0);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.3
The evaluation

stack

S335

s->sp--;
}

Here s̓ the specialized pushframe.
S335a. 〈context-stack.c S333b〉+≡ ◁ S334f S335d ▷

static Frame mkExpFrame(struct Exp e) {
Frame fr;
fr.form = e;
fr.syntax = NULL;
return fr;

}

Exp pushframe(struct Exp e, Stack s) {
Frame *fr;
assert(s);
fr = push(mkExpFrame(e), s);
return &fr->form;

}

M.3.2 Printing the stack

Here are the functions used to print frames and stacks. Function printnoenvprints
the current environment as a C pointer, rather than as a list of (name, value) pairs.
S335b. 〈function prototypes for µScheme+ S335b〉≡ (S346)

void printstack (Printbuf, va_list_box*);
void printoneframe(Printbuf, va_list_box*);
void printframe (Printbuf, Frame *fr);
void printnoenv (Printbuf, va_list_box*);

S335c. 〈install printers S335c〉≡ (S309a)
installprinter('S', printstack);
installprinter('F', printoneframe);
installprinter('R', printnoenv);

S335d. 〈context-stack.c S333b〉+≡ ◁ S335a S335e ▷
void printnoenv(Printbuf output, va_list_box* box) {

Env env = va_arg(box->ap, Env);
bprint(output, "@%*", (void *)env);

}

S335e. 〈context-stack.c S333b〉+≡ ◁ S335d S335f ▷
void printstack(Printbuf output, va_list_box *box) {

Stack s = va_arg(box->ap, Stack);
Frame *fr;

for (fr = s->sp-1; fr >= s->frames; fr--) {
bprint(output, " ");
printframe(output, fr);
bprint(output, ";\n");

}
}

S335f. 〈context-stack.c S333b〉+≡ ◁ S335e S336a ▷
void printoneframe(Printbuf output, va_list_box *box) {

Frame *fr = va_arg(box->ap, Frame*);
printframe(output, fr);

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
clearstack 226a
emptystack 226a
type Env 155a
evalstack 229a
type Exp A
type Frame 225a
installprinter

S189a
type Printbuf

S186d
printframe S336a
runerror 47
type Stack 225a
type va_list_box

S189c

Supporting code
for µScheme+M

S336

S336a. 〈context-stack.c S333b〉+≡ ◁ S335f
void printframe (Printbuf output, Frame *fr) {

bprint(output, "%*: ", (void *) fr);
bprint(output, "[%e]", &fr->form);

}

M.3.3 Instrumentation for the high stack mark

S336b. 〈use the options in env to initialize the instrumentation S336b〉≡ (229a) S336g ▷
high_stack_mark = 0;
show_high_stack_mark =

istrue(getoption(strtoname("&show-high-stack-mark"), env, falsev));

S336c. 〈if show_high_stack_mark is set, show maximum stack size S336c〉≡ (229b)
if (show_high_stack_mark)

fprintf(stderr, "High stack mark == %d\n", high_stack_mark);

S336d. 〈set high_stack_mark from stack s S336d〉≡ (S334d)
{ int n = s->sp - s->frames;

if (n > high_stack_mark)
high_stack_mark = n;

}

M.3.4 Tracing machine state using the stack

Variables etick and vtick count the number of state transitions involving an ex-
pression or a variable as the current item, respectively. Pointer trace_countp
points to the value of a µScheme+ number. That way, set expressions in the
µScheme+ code can turn tracing on and off during a single call to eval.
S336e. 〈stack-debug.c S336e〉≡ S336f ▷

static int etick, vtick; // number of times saw a current expression or value
static int *trace_countp; // if not NULL, points to value of &trace-stack

Initalization sets the private variables.
S336f. 〈stack-debug.c S336e〉+≡ ◁ S336e S337a ▷

void stack_trace_init(int *countp) {
etick = vtick = 0;
trace_countp = countp;

}

The following code runs in eval, which has access to env. There s̓ just a lit-
tle sanity checking—if someone changes µScheme+ variable &trace-stack from
a number to a non-number, chaos may ensue.
S336g. 〈use the options in env to initialize the instrumentation S336b〉+≡ (229a) ◁ S336b S342c ▷

{ Value *p = find(strtoname("&trace-stack"), env);
if (p && p->alt == NUM)

stack_trace_init(&p->num);
else

stack_trace_init(NULL);
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.4
Updating lists of

expressions within
contexts

S337

Tracing a current expression shows the tick number, the expression, a pointer
to the environment, and the stack. The trace count is decremented.
S337a. 〈stack-debug.c S336e〉+≡ ◁ S336f S337b ▷

void stack_trace_current_expression(Exp e, Env rho, Stack s) {
if (trace_countp && *trace_countp != 0) {

(*trace_countp)--;
etick++;
fprint(stderr, "exp %d = %e\n", etick, e);
fprint(stderr, "env %R\n", rho);
fprint(stderr, "stack\n%S\n", s);

}
}

Tracing a current value works the same way, except I use a special rendering for
the empty stack.
S337b. 〈stack-debug.c S336e〉+≡ ◁ S337a

void stack_trace_current_value(Value v, Env rho, Stack s) {
if (trace_countp && *trace_countp != 0) {

(*trace_countp)--;
vtick++;
fprint(stderr, "val %d = %v\n", vtick, v);
fprint(stderr, "env %R\n", rho);
if (topframe(s))

fprint(stderr, "stack\n%S\n", s);
else

fprint(stderr, " (final answer from stack-based eval)\n");
}

}

M.4 UPDATING LISTS OF EXPRESSIONS WITHIN CONTEXTS

Section 3.6.8 describes several functions I use to implement the evaluation of AP-
PLY, LET, and other forms that use an Explist to remember a list of values.

S337c. 〈context-lists.c S337c〉≡ S337d ▷

〈private functions for updating lists of expressions in contexts S337e〉

To move hole from one position to the next, I find the hole, fill it, and then place
a hole at the beginning of the rest of the list.
S337d. 〈context-lists.c S337c〉+≡ ◁ S337c S338b ▷

Exp transition_explist(Explist es, Value v) {
Explist p = find_explist_hole(es);
assert(p);
fill_hole(p->hd, v);
return head_replaced_with_hole(p->tl);

}

S337e. 〈private functions for updating lists of expressions in contexts S337e〉≡ (S337c) S338a ▷
static void fill_hole(Exp e, Value v) {
assert(e->alt == HOLE);
e->alt = LITERAL;
e->literal = v;

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bprint S188f
type Env 155a
env 229a
type Exp A
type Explist S303b
find 155b
find_explist_hole

S338a
type Frame 225a
head_replaced_

with_hole
233c

high_stack_mark
226d

type Printbuf
S186d

type Stack 225a
strtoname 43c
type Value A

Supporting code
for µScheme+M

S338

Function find_explist_hole returns a pointer to the first hole in a list of ex-
pressions, or if there is no hole, returns NULL.
S338a. 〈private functions for updating lists of expressions in contexts S337e〉+≡ (S337c) ◁ S337e

static Explist find_explist_hole(Explist es) {
while (es && es->hd->alt != HOLE)
es = es->tl;

return es;
}

Function head_replaced_with_hole(es) replaces the head of list es with a
hole, returning the old head. If list es is empty, head_replaced_with_hole re-
turns NULL. Function head_replaced_with_hole doesnʼt allocate space for each
new result—all results share the same space.
S338b. 〈context-lists.c S337c〉+≡ ◁ S337d S338c ▷

Exp head_replaced_with_hole(Explist es) {
static struct Exp a_copy; // overwritten by subsequent calls
if (es) {
a_copy = *es->hd;
*es->hd = mkHoleStruct();
return &a_copy;

} else {
return NULL;

}
}

Function copyEL copies not only the Explist pointers but also the Exp pointers
they hold.
S338c. 〈context-lists.c S337c〉+≡ ◁ S338b S338d ▷

Explist copyEL(Explist es) {
if (es == NULL)
return NULL;

else {
Exp e = malloc(sizeof(*e));
assert(e);
*e = *es->hd;
return mkEL(e, copyEL(es->tl));

}
}

Correspondingly, freeEL frees both the Explist pointers and the internal Exp
pointers.
S338d. 〈context-lists.c S337c〉+≡ ◁ S338c S338e ▷

void freeEL(Explist es) {
if (es != NULL) {
freeEL(es->tl);
free(es->hd);
free(es);

}
}

By contrast, a Valuelist contains no internal pointers, so only the Valuelist
pointers can be freed.
S338e. 〈context-lists.c S337c〉+≡ ◁ S338d S339a ▷

void freeVL(Valuelist vs) {
if (vs != NULL) {
freeVL(vs->tl);
free(vs);

}
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.5. Lowering

S339

Conversion of an Explist to a Valuelist requires allocation and therefore in-
curs an obligation to call freeVL on the result.
S339a. 〈context-lists.c S337c〉+≡ ◁ S338e S339b ▷

Valuelist asLiterals(Explist es) {
if (es == NULL)
return NULL;

else
return mkVL(asLiteral(es->hd), asLiterals(es->tl));

}

By contrast, because a Value is not a pointer, asLiteral need not allocate.
S339b. 〈context-lists.c S337c〉+≡ ◁ S339a

Value asLiteral(Exp e) {
assert(e->alt == LITERAL);
return validate(e->literal);

}

M.5 LOWERING

S339c. 〈lower.c S339c〉≡ S339d ▷

#define LOWER_RETURN false // to do return-lowering exercise, change me

S339d. 〈lower.c S339c〉+≡ ◁ S339c S339e ▷
static inline Exp lowerLet1(Name x, Exp e, Exp body) {

return mkLetx(LET, mkNL(x, NULL), mkEL(e, NULL), body);
}

S339e. 〈lower.c S339c〉+≡ ◁ S339d S339f ▷
static Exp lowerSequence(Exp e1, Exp e2) {

return lowerLet1(strtoname("ignore me"), e1, e2);
}

S339f. 〈lower.c S339c〉+≡ ◁ S339e S339g ▷
static Exp lowerBegin(Explist es) {

if (es == NULL)
return mkLiteral(falsev);

else if (es->tl == NULL)
return es->hd;

else
return lowerSequence(es->hd, lowerBegin(es->tl));

}

S339g. 〈lower.c S339c〉+≡ ◁ S339f S339h ▷

static Exp lower(LoweringContext c, Exp e);
static void lowerAll(LoweringContext c, Explist es) {

if (es) {
lowerAll(c, es->tl);
es->hd = lower(c, es->hd);

}
}

S339h. 〈lower.c S339c〉+≡ ◁ S339g S340a ▷
static Exp lowerLetstar(Namelist xs, Explist es, Exp body) {

if (xs == NULL) {
assert(es == NULL);
return body;

} else {

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

asLiteral 234a
asLiterals 234a
copyEL 233d
type Exp A
type Explist S303b
falsev 156b
freeEL 233d
freeVL 234b
lower 228e
type

LoweringContext
228d

mkEL A
mkHoleStructA
mkLiteral A
mkVL A
type Name 43b
type Namelist

43b
strtoname 43c
validate 227b
type Value A
type Valuelist

S303c

Supporting code
for µScheme+M

S340

assert(es != NULL);
return lowerLet1(xs->hd, es->hd, lowerLetstar(xs->tl, es->tl, body));

}
}

S340a. 〈lower.c S339c〉+≡ ◁ S339h S340b ▷

static void lowerDef(Def d) {
switch (d->alt) {
case VAL: d->val.exp = lower(0, d->val.exp); break;
case EXP: d->exp = lower(0, d->exp); break;
case DEFINE: {

LoweringContext c = FUNCONTEXT;
Exp body = lower(c, d->define.lambda.body);
if (LOWER_RETURN)

body = mkLowered(d->define.lambda.body,
mkLabel(strtoname(":return"), body));

d->define.lambda.body = body;
break;

}
default: assert(0);
}

}

We canʼt lower a test eagerly, because if lowering fails with an error, it has to
occur in the right dynamic context.
S340b. 〈lower.c S339c〉+≡ ◁ S340a S340c ▷

void lowerXdef(XDef d) {
switch (d->alt) {
case DEF: lowerDef(d->def); break;
case USE: break;
case TEST: break;
default: assert(0);
}

}

S340c. 〈lower.c S339c〉+≡ ◁ S340b S340d ▷

Exp testexp(Exp e) {
return lower(0, e);

}

S340d. 〈lower.c S339c〉+≡ ◁ S340c
〈definition of private function lower 228e〉

S340e. 〈other cases for lowering expression e S340e〉≡ (228e)
case LITERAL: return e;
case VAR: return e;
case IFX: e->ifx.cond = lower(c, e->ifx.cond);

e->ifx.truex = lower(c, e->ifx.truex);
e->ifx.falsex = lower(c, e->ifx.falsex);
return e;

case WHILEX: {
LoweringContext nc = c | LOOPCONTEXT;
Exp body = mkLabel(strtoname(":continue"), lower(nc, e->whilex.body));
Exp cond = lower(c, e->whilex.cond);
Exp placeholder = mkLiteral(falsev); // unique pointer
Exp loop = mkIfx(cond, placeholder, mkLiteral(falsev));
loop->ifx.truex = lowerSequence(body, mkLowered(e, mkLoopback(loop)));
Exp lowered = mkLabel(strtoname(":break"), loop);
return mkLowered(e, lowered);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.5. Lowering

S341

}
case BEGIN:

lowerAll(c, e->begin);
return mkLowered(e, lowerBegin(e->begin));

case LETX:
lowerAll(c, e->letx.es);
e->letx.body = lower(c, e->letx.body);
switch (e->letx.let) {
case LET: case LETREC:

return e;
case LETSTAR:

return mkLowered(e, lowerLetstar(e->letx.xs, e->letx.es,
e->letx.body));

default:
assert(0);

}
case LAMBDAX: {

LoweringContext nc = FUNCONTEXT; // no loop!
Exp body = lower(nc, e->lambdax.body);
e->lambdax.body =

LOWER_RETURN ? mkLowered(e->lambdax.body, mkLabel(strtoname(":return"), body))
: body;

return e;
}
case APPLY:

lowerAll(c, e->apply.actuals);
e->apply.fn = lower(c, e->apply.fn);
return e;

case CONTINUEX:
if (c & LOOPCONTEXT)

return mkLowered(e, mkLongGoto(strtoname(":continue"), mkLiteral(falsev)));
else

othererror("Lowering error: %e appeared outside of any loop", e);
case RETURNX:

e->returnx = lower(c, e->returnx);
if (c & FUNCONTEXT)

return LOWER_RETURN ? mkLowered(e, mkLongGoto(strtoname(":return"), e->returnx))
: e;

else
othererror("Lowering error: %e appeared outside of any function", e);

case TRY_CATCH: {
Exp body = lower(c, e->try_catch.body);
Exp handler = lower(c, e->try_catch.handler);
Name h = strtoname("the-;-handler");
Name x = strtoname("the-;-answer");
Exp lbody = lowerLet1(x, body,

mkLambdax(mkLambda(mkNL(strtoname("_"), NULL),
mkVar(x))));

Exp labeled = mkLabel(e->try_catch.label, lbody);
Exp lowered = lowerLet1(h, handler, mkApply(labeled, mkEL(mkVar(h), NULL)));
return mkLowered(e, lowered);

}
case THROW: {

Name h = strtoname("the-;-handler");
Name x = strtoname("the-;-answer");
Lambda thrown =

mkLambda(mkNL(h, NULL), mkApply(mkVar(h), mkEL(mkVar(x), NULL)));
Exp throw = mkLongGoto(e->throw.label, mkLambdax(thrown));

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Def A
type Exp A
falsev 156b
type Lambda A
lower S339g
lowerAll S339g
lowerBegin S339f
type

LoweringContext
228d

lowerLet1 S339d
lowerLetstarS339h
lowerSequence

S339e
mkIfx A
mkLabel A
mkLambdax A
mkLiteral A
mkLongGoto A
mkLoopback A
mkLowered A
type Name 43b
othererror S195b
strtoname 43c
type XDef A

Supporting code
for µScheme+M

S342

Exp lowered = lowerLet1(x, lower(c, e->throw.exp), throw);
return mkLowered(e, lowered);

}
case LABEL:

e->label.body = lower(c, e->label.body);
return e;

case LONG_GOTO:
e->long_goto.exp = lower(c, e->long_goto.exp);
return e;

case LOWERED: case LOOPBACK:
assert(0); // never expect to lower twice

default:
assert(0);

S342a. 〈lower definition d as needed S342a〉≡ (S305e)
lowerXdef(d);

M.6 OPTIONS AND DIAGNOSTIC CODE

S342b. 〈options.c S342b〉≡
Value getoption(Name name, Env env, Value defaultval) {

Value *p = find(name, env);
if (p)

return *p;
else

return defaultval;
}

S342c. 〈use the options in env to initialize the instrumentation S336b〉+≡ (229a) ◁ S336g
optimize_tail_calls =

istrue(getoption(strtoname("&optimize-tail-calls"), env, truev));

S342d. 〈validate.c S342d〉≡
Value validate(Value v) {

return v;
}

S342e. 〈cases for forms that appear only as frames S342e〉≡ (230a)
case HOLE:
case ENV:

assert(0);

S342f. 〈definition of static Exp hole, which always has a hole S342f〉≡ (229a)
static struct Exp holeExp = { HOLE, { { NIL, { 0 } } } };
static Exp hole = &holeExp;

M.7 PARSING

S342g. 〈arrays of shift functions added to µScheme in exercises S342g〉≡ (S314a) S343b ▷

ShiftFun breakshifts[] = { stop };
ShiftFun returnshifts[] = { sExp, stop };
ShiftFun throwshifts[] = { sName, sExp, stop };
ShiftFun tcshifts[] = { sExp, sName, sExp, stop };
ShiftFun labelshifts[] = { sName, sExp, stop };

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.7. Parsing

S343

S343a. 〈rows added to µScheme’s exptable in exercises S343a〉≡ (S314a)
{ "break", BREAKX, breakshifts },
{ "continue", CONTINUEX, breakshifts },
{ "return", RETURNX, returnshifts },
{ "throw", THROW, throwshifts },
{ "try-catch", TRY_CATCH, tcshifts },
{ "label", LABEL, labelshifts },
{ "long-goto", LONG_GOTO, labelshifts },
{ "when", SUGAR(WHEN), applyshifts },
{ "unless", SUGAR(UNLESS), applyshifts },

OK, not really exercises…
S343b. 〈arrays of shift functions added to µScheme in exercises S342g〉+≡ (S314a) ◁ S342g

static ShiftFun procwhileshifts[] = { sExp, sExps, stop };
static ShiftFun procletshifts[] = { sBindings, sExps, stop };

S343c. 〈rows of µScheme’s exptable that are sugared in µScheme+ [[uschemeplus]] S343c〉≡
{ "while", ANEXP(WHILEX), procwhileshifts },
{ "let", ALET(LET), procletshifts },
{ "let*", ALET(LETSTAR), procletshifts },
{ "letrec", ALET(LETREC), procletshifts },

S343d. 〈cases for µScheme’s reduce_to_exp added in exercises S343d〉≡ (S314d)
case ANEXP(BREAKX): return mkBreakx();
case ANEXP(CONTINUEX): return mkContinuex();
case ANEXP(RETURNX): return mkReturnx(comps[0].exp);
case ANEXP(THROW): return mkThrow(comps[0].name, comps[1].exp);
case ANEXP(TRY_CATCH): return mkTryCatch(comps[0].exp, comps[1].name, comps[2].exp);
case ANEXP(LABEL): return mkLabel(comps[0].name, comps[1].exp);
case ANEXP(LONG_GOTO): return mkLongGoto(comps[0].name, comps[1].exp);
case SUGAR(WHEN): return mkIfx(comps[0].exp, smartBegin(comps[1].exps),

mkLiteral(falsev));
case SUGAR(UNLESS): return mkIfx(comps[0].exp, mkLiteral(falsev),

smartBegin(comps[1].exps));

S343e. 〈cases for reduce_to_exp that are sugared in µScheme+ [[uschemeplus]] S343e〉≡
case ANEXP(WHILEX): (void) whileshifts;

return mkWhilex(comps[0].exp, smartBegin(comps[1].exps));
case ALET(LET):
case ALET(LETSTAR):
case ALET(LETREC): (void) letshifts;

return mkLetx(code+LET-ALET(LET),
comps[0].names, comps[0].exps,
smartBegin(comps[1].exps));

S343f. 〈µScheme usage_table entries added in exercises S343f〉≡ (S313c)
{ ANEXP(BREAKX), "(break)" },
{ ANEXP(CONTINUEX), "(continue)" },
{ ANEXP(RETURNX), "(return exp)" },
{ ANEXP(THROW), "(throw lbl-name exp)" },
{ ANEXP(TRY_CATCH), "(try-catch body lbl-name handler)" },
{ ANEXP(LABEL), "(label lbl-name body)" },
{ ANEXP(LONG_GOTO), "(long-goto lbl-name exp)" },

S343g. 〈lowering functions for µScheme+ S343g〉≡ (S314a)
static Exp smartBegin(Explist es) {

if (es != NULL && es->tl == NULL)
return es->hd;

else
return mkBegin(es);

}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

code,
in µScheme (in

GC?!)
S360b

in µScheme+
S314d

comps,
in µScheme (in

GC?!)
S360b

in µScheme+
S314d

type Env 155a
type Exp A
type Explist S303b
falsev 156b
find 155b
letshifts S314a
lowerXdef 228f
mkBegin A
mkBreakx A
mkContinuex A
mkIfx A
mkLabel A
mkLetx A
mkLiteral A
mkLongGoto A
mkReturnx A
mkThrow A
mkTryCatch A
mkWhilex A
type Name 43b
sBindings S313d
sExp S207e
sExps S207e
type ShiftFun

S207d
sName S207e
stop S209d
type Value A
whileshifts S314a

Supporting code
for µScheme+M

S344

S344a. 〈reduce_to_xdef case for ADEF(DEFINE) [[uschemeplus]] S344a〉≡
case ADEF(DEFINE):
return mkDef(mkDefine(out[0].name,

mkLambda(out[1].names, smartBegin(out[2].exps))));

S344b. 〈extend-syntax.c S344b〉≡
extern void extendDefine(void);
void extendSyntax(void) { extendDefine(); }

S344c. 〈extra cases for printing µScheme ASTs S344c〉≡ (S328b)
case BREAKX:

bprint(output, "(break)");
break;

case CONTINUEX:
bprint(output, "(continue)");
break;

case RETURNX:
bprint(output, "(return %e)", e->returnx);
break;

case THROW:
bprint(output, "(throw %n %e)", e->throw.label, e->throw.exp);
break;

case TRY_CATCH:
bprint(output, "(try-catch %e %n %e)", e->try_catch.body, e->try_catch.label, e->try_catch.handler);
break;

case LABEL:
bprint(output, "(label %n %e)", e->label.label, e->label.body);
break;

case LONG_GOTO:
bprint(output, "(long-goto %n %e)", e->long_goto.label, e->long_goto.exp);
break;

case HOLE:
bprint(output, "<*>");
break;

case ENV:
bprint(output, "Saved %senvironment %*",

e->env.tag == CALL ? "caller's " : "", (void*)e->env.contents);
break;

case LOWERED:
bprint(output, "%e", e->lowered.before);
break;

case LOOPBACK:
bprint(output, "...loopback...");
break;

M.8 FINDING FREE VARIABLES

Here are extra cases for the freevars function, which is used to do a good job print-
ing closures.
S344d. 〈extra cases for finding free variables in µScheme expressions S344d〉≡ (S319d) S345a ▷

case BREAKX:
break;

case CONTINUEX:
break;

case RETURNX:
free = freevars(e->returnx, bound, free);
break;

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.9
Interpreter code
omitted from the

chapter

S345

case THROW:
free = freevars(e->throw.exp, bound, free);
break;

case TRY_CATCH:
free = freevars(e->try_catch.body, bound, free);
free = freevars(e->try_catch.handler, bound, free);
break;

case LABEL:
free = freevars(e->label.body, bound, free);
break;

case LONG_GOTO:
free = freevars(e->long_goto.exp, bound, free);
break;

case LOWERED:
free = freevars(e->lowered.before, bound, free);

// dare not look at after, because it might loop
break;

case LOOPBACK:
break;

These forms appear only in contexts, and we have no business looking for a free
variable.
S345a. 〈extra cases for finding free variables in µScheme expressions S344d〉+≡ (S319d) ◁ S344d

case HOLE:
case ENV:

assert(0);
break;

M.9 INTERPRETER CODE OMITTED FROM THE CHAPTER

S345b. 〈cases for forms that never appear as frames S345b〉≡ (230b)
case LITERAL: // syntactic values never appear as frames
case VAR:
case LAMBDAX:
case HOLE: // and neither do bare holes
case BREAKX: // nor does sugar
case CONTINUEX:
case WHILEX:
case BEGIN:
case TRY_CATCH:
case THROW:
case LOWERED:
case LOOPBACK:

assert(0);

S345c. 〈bind every name in e->letx.xs to an unspecified value in env S345c〉≡ (236d)
{ Namelist xs;

for (xs = e->letx.xs; xs; xs = xs->tl)
env = bindalloc(xs->hd, unspecified(), env);

}

S345d. 〈if not all of e->letx.es are lambdas, reject the letrec S345d〉≡ (236d)
for (Explist es = e->letx.es; es; es = es->tl)

if (es->hd->alt != LAMBDAX)
runerror("letrec tries to bind non-lambda expression %e", es->hd);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bindalloc 155c
bound S319d
bprint S188f
env 229a
type Explist S303b
extendDefineS213c
free S319d
freevars S609i
mkDef A
mkDefine A
mkLambda A
type Namelist

43b
out S315a
output S328b
runerror 47
smartBegin S343g
unspecified 156d

Supporting code
for µScheme+M

S346

M.10 BUREAUCRACY

As in µScheme, we gather all the interfaces into a single C header file.
S346. 〈all.h for µScheme+ S346〉≡

#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef __GNUC__
#define __noreturn __attribute__((noreturn))
#else
#define __noreturn
#endif

〈early type definitions for µScheme S303c〉
〈type definitions for µScheme+ 225a〉
〈type definitions for µScheme 147b〉
〈shared type definitions 43b〉

〈structure definitions for µScheme+ 225b〉
〈structure definitions for µScheme S313b〉
〈shared structure definitions generated automatically〉

〈function prototypes for µScheme+ S335b〉
〈function prototypes for µScheme 155b〉
〈shared function prototypes 43c〉

〈global variables for µScheme+ 226d〉

〈macro definitions used in parsing generated automatically〉
〈declarations of global variables used in lexical analysis and parsing generated automatically〉

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§M.10
Bureaucracy

S347

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
N.1 BUREAUCRACY S349
N.2 BASIC SUPPORT FOR THE

TWO COLLECTORS S349

N.2.1 Object-visiting proce-
dures for mark-and-
sweep collection S349

N.2.2 Root-scanning proce-
dures for copying col-
lection S352

N.2.3 Access to the desired
size of the heap S354

N.2.4 Code to push and pop
register roots S355

N.3 GC DEBUGGING, WITH
OR WITHOUT VALGRIND S355

N.4 CODE THAT IS CHANGED
TO SUPPORT GARBAGE
COLLECTION S358

N.4.1 Revised environment-
extension routines S358

N.4.2 Revisions to eval S359
N.4.3 Revised evaldef S359
N.4.4 The revised parser S360
N.4.5 Checking for cycles in

cons S361

N.5 PLACEHOLDERS FOR EX-
ERCISES S362

NSupporting code for garbage collection

This appendix shows supporting code that can help with the Exercises in Chapter 4:
visiting functions, scanning procedures, root-tracking code for the evaluator, and
the implementation of the root stack.

N.1 BUREAUCRACY

Data structures for roots.
S349a. 〈type definitions for µScheme+ S349a〉≡ (S346)

typedef struct Value *Register; /* pointer to a local variable or a parameter
of a C function that could allocate */

typedef struct Registerlist *Registerlist; /* list of Register */
typedef struct UnitTestlistlist *UnitTestlistlist; /* list of UnitTestlist (list) */

The root type and its variables are visible to all C code.
S349b. 〈structure definitions for µScheme+ S349b〉≡ (S346)

〈structure definitions used in garbage collection 269a〉
S349c. 〈global variables for µScheme+ S349c〉≡ (S346)

〈global variables used in garbage collection S356c〉
These are the scan calls.

S349d. 〈scan frame *fr, forwarding all internal pointers S349d〉≡ (278)
scanframe(fr);

S349e. 〈scan list of unit tests testss->hd, forwarding all internal pointers S349e〉≡ (278)
scantests(testss->hd);

S349f. 〈scan register regs->hd, forwarding all internal pointers S349f〉≡ (278)
scanloc(regs->hd);

S349g. 〈scan object *scanp, forwarding all internal pointers S349g〉≡ (278)
scanloc(scanp);

N.2 BASIC SUPPORT FOR THE TWO COLLECTORS

N.2.1 Object-visiting procedures for mark-and-sweep collection

Section 4.4.2 presents a few procedures for visitingµScheme objects in a depth-first
search. The remaining procedures are here.

To visit an expression, we visit its literal value, if any, and of course its subex-
pressions.
S349h. 〈ms.c S349h〉≡ S351b ▷

static void visitexp(Exp e) {
switch (e->alt) {
〈cases for visitexp S350a〉
}
assert(0);

}

S349
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for garbage
collectionN

S350

There are more cases than will fit on a page, so I break them into three groups.
First, µScheme expressions:
S350a. 〈cases for visitexp S350a〉≡ (S349h) S350b ▷

case LITERAL:
visitvalue(e->literal);
return;

case VAR:
return;

case IFX:
visitexp(e->ifx.cond);
visitexp(e->ifx.truex);
visitexp(e->ifx.falsex);
return;

case WHILEX:
visitexp(e->whilex.cond);
visitexp(e->whilex.body);
return;

case BEGIN:
visitexplist(e->begin);
return;

case SET:
visitexp(e->set.exp);
return;

case LETX:
visitexplist(e->letx.es);
visitexp(e->letx.body);
return;

case LAMBDAX:
visitexp(e->lambdax.body);
return;

case APPLY:
visitexp(e->apply.fn);
visitexplist(e->apply.actuals);
return;

Next, µScheme+ expressions:
S350b. 〈cases for visitexp S350a〉+≡ (S349h) ◁ S350a S351a ▷

case BREAKX:
return;

case CONTINUEX:
return;

case RETURNX:
visitexp(e->returnx);
return;

case THROW:
visitexp(e->throw.exp);
return;

case TRY_CATCH:
visitexp(e->try_catch.handler);
visitexp(e->try_catch.body);
return;

case LONG_GOTO:
visitexp(e->long_goto.exp);
return;

case LABEL:
visitexp(e->label.body);
return;

case LOWERED:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.2
Basic support for
the two collectors

S351

visitexp(e->lowered.before);
return;

case LOOPBACK:
return;

Last, µScheme+ evaluation contexts:
S351a. 〈cases for visitexp S350a〉+≡ (S349h) ◁ S350b

case ENV:
visitenv(e->env.contents);
return;

case HOLE:
return;

Function visitexplist visits a list of expressions.
S351b. 〈ms.c S349h〉+≡ ◁ S349h S351c ▷

static void visitexplist(Explist es) {
for (; es; es = es->tl)

visitexp(es->hd);
}

Function visitregiserlist visits a list of registers.
S351c. 〈ms.c S349h〉+≡ ◁ S351b S351d ▷

static void visitregisterlist(Registerlist regs) {
for (; regs != NULL; regs = regs->tl)

visitregister(regs->hd);
}

To visit a Stack, we have to be able to see the representation. Then we visit all
the frames.
S351d. 〈ms.c S349h〉+≡ ◁ S351c S351e ▷

〈representation of struct Stack S333a〉
static void visitstack(Stack s) {

Frame *fr;
for (fr = s->frames; fr < s->sp; fr++) {

visitframe(fr);
}

}

Visiting a frame means visiting both expressions.
S351e. 〈ms.c S349h〉+≡ ◁ S351d S351f ▷

static void visitframe(Frame *fr) {
visitexp(&fr->form);
if (fr->syntax != NULL)

visitexp(fr->syntax);
}

Visiting lists of pending unit tests visits all lists on the list.
S351f. 〈ms.c S349h〉+≡ ◁ S351e S352a ▷

static void visittestlists(UnitTestlistlist uss) {
UnitTestlist ul;

for (; uss != NULL; uss = uss->tl)
for (ul = uss->hd; ul; ul = ul->tl)

visittest(ul->hd);
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Explist S303b
type Frame 225a
type Registerlist

S349a
type Stack 225a
type UnitTestlist

S303b
type Unit-

Testlistlist
S349a

visitenv 273b
visitexp 273b
visitexplist273b
visitframe 273b
visitvalue 273b

Supporting code
for garbage
collectionN

S352

Visiting a unit test means visiting its component expressions.
S352a. 〈ms.c S349h〉+≡ ◁ S351f S352b ▷

static void visittest(UnitTest t) {
switch (t->alt) {
case CHECK_EXPECT:

visitexp(t->check_expect.check);
visitexp(t->check_expect.expect);
return;

case CHECK_ASSERT:
visitexp(t->check_assert);
return;

case CHECK_ERROR:
visitexp(t->check_error);
return;

}
assert(0);

}

Visiting roots means visiting the global variables, the stack, and any machine
registers.
S352b. 〈ms.c S349h〉+≡ ◁ S352a

static void visitroots(void) {
visitenv(*roots.globals.user);
visittestlists(roots.globals.internal.pending_tests);
visitstack(roots.stack);
visitregisterlist(roots.registers);

}

N.2.2 Root-scanning procedures for copying collection

Section 4.5.3 presents a few procedures for scanning potential roots. The rest
are here. As explained in Section 4.5.3, these scanning procedures are hybrids.
Like standard scanning procedures, they forward internal pointers to objects allo-
cated on the µScheme heap. But because some potential roots are allocated on the
C heap, these procedures use graph traversal to visit those. Almost all the forward-
ing is done by scanloc, which is shown in chunk 282b. The remaining procedures
that are shown here either call scanloc, do graph traversal, or both. These proce-
dures are therefore very similar to the visiting procedures in the previous section.

Scanning expressions means scanning internal values or subexpressions.
S352c. 〈copy.c S352c〉≡ S354a ▷

static void scanexp(Exp e) {
switch (e->alt) {
〈cases for scanexp S352d〉
}
assert(0);

}

First, µScheme expressions:
S352d. 〈cases for scanexp S352d〉≡ (S352c) S353a ▷

case LITERAL:
scanloc(&e->literal);
return;

case VAR:
return;

case IFX:
scanexp(e->ifx.cond);
scanexp(e->ifx.truex);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.2
Basic support for
the two collectors

S353

scanexp(e->ifx.falsex);
return;

case WHILEX:
scanexp(e->whilex.cond);
scanexp(e->whilex.body);
return;

case BEGIN:
scanexplist(e->begin);
return;

case SET:
scanexp(e->set.exp);
return;

case LETX:
scanexplist(e->letx.es);
scanexp(e->letx.body);
return;

case LAMBDAX:
scanexp(e->lambdax.body);
return;

case APPLY:
scanexp(e->apply.fn);
scanexplist(e->apply.actuals);
return;

Next, µScheme+ expressions:
S353a. 〈cases for scanexp S352d〉+≡ (S352c) ◁ S352d S353b ▷

case BREAKX:
return;

case CONTINUEX:
return;

case RETURNX:
scanexp(e->returnx);
return;

case THROW:
scanexp(e->throw.exp);
return;

case TRY_CATCH:
scanexp(e->try_catch.handler);
scanexp(e->try_catch.body);
return;

case LONG_GOTO:
scanexp(e->long_goto.exp);
return;

case LABEL:
scanexp(e->label.body);
return;

case LOWERED:
scanexp(e->lowered.before);
scanexp(e->lowered.after);
return;

case LOOPBACK:
return;

Last, µScheme+ evaluation contexts.
S353b. 〈cases for scanexp S352d〉+≡ (S352c) ◁ S353a

case HOLE:
return;

case ENV:
scanenv(e->env.contents);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Exp A
roots 269b
scanenv 281d
scanexp 281d
scanexplist 281d
scanloc 281d
type UnitTest

A
visitenv 273b
visitexp 273b
visitregisterlist

273b
visitstack 273b
visittestlists

273b

Supporting code
for garbage
collectionN

S354

return;

Scanning a frame means scanning its expressions.
S354a. 〈copy.c S352c〉+≡ ◁ S352c S354b ▷

static void scanframe(Frame *fr) {
scanexp(&fr->form);
if (fr->syntax != NULL)

scanexp(fr->syntax);
}

Function scanexplist scans a list of expressions.
S354b. 〈copy.c S352c〉+≡ ◁ S354a S354c ▷

static void scanexplist(Explist es) {
for (; es; es = es->tl)

scanexp(es->hd);
}

Scanning a source means scanning its pending tests.
S354c. 〈copy.c S352c〉+≡ ◁ S354b S354d ▷

static void scantests(UnitTestlist tests) {
for (; tests; tests = tests->tl)

scantest(tests->hd);
}

Scanning a test means scanning its expressions.
S354d. 〈copy.c S352c〉+≡ ◁ S354c

static void scantest(UnitTest t) {
switch (t->alt) {
case CHECK_EXPECT:

scanexp(t->check_expect.check);
scanexp(t->check_expect.expect);
return;

case CHECK_ASSERT:
scanexp(t->check_assert);
return;

case CHECK_ERROR:
scanexp(t->check_error);
return;

}
assert(0);

}

N.2.3 Access to the desired size of the heap

To control the size of the heap, we might want to use the µScheme variable
&gamma-desired, as described in Exercises 10 and 3. This routine gets the value
of that variable.
S354e. 〈loc.c S354e〉≡ S357f ▷

int gammadesired(int defaultval, int minimum) {
assert(roots.globals.user != NULL);
Value *gammaloc = find(strtoname("&gamma-desired"), *roots.globals.user);
if (gammaloc && gammaloc->alt == NUM)

return gammaloc->num > minimum ? gammaloc->num : minimum;
else

return defaultval;
}

S354f. 〈function prototypes for µScheme S354f〉≡ (S303d S346)
int gammadesired(int defaultval, int minimum);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.3
GC debugging,
with or without

Valgrind

S355

N.2.4 Code to push and pop register roots

The roots data structure is defined here.
S355a. 〈root.c S355a〉≡ S355b ▷

struct Roots roots = { { NULL, { NULL } }, NULL, NULL };

Here are implementations of pushreg and popreg.
S355b. 〈root.c S355a〉+≡ ◁ S355a S355c ▷

void pushreg(Value *reg) {
roots.registers = mkRL(reg, roots.registers);

}

Popping a register requires a check that the roots match.
S355c. 〈root.c S355a〉+≡ ◁ S355b S355d ▷

void popreg(Value *reg) {
Registerlist regs = roots.registers;
assert(regs != NULL);
assert(reg == regs->hd);
roots.registers = regs->tl;
free(regs);

}

When pushing and popping a list of registers, we push left to right and pop right
to left.
S355d. 〈root.c S355a〉+≡ ◁ S355c

void pushregs(Valuelist regs) {
for (; regs; regs = regs->tl)

pushreg(®s->hd);
}

void popregs (Valuelist regs) {
if (regs != NULL) {

popregs(regs->tl);
popreg(®s->hd);

}
}

N.3 GC DEBUGGING, WITH OR WITHOUT VALGRIND

This code implements the debugging interface described in Section 4.6.1. It finds
bugs in three ways:

• When memory belongs to the collector and not the interpreter, the alt field
is set to INVALID. If validate is called with an INVALID expression, it dies.

• When memory belongs to the collector and not the interpreter, we tell Val-
grind that nobody must read or write it. If your collector mistakenly reclaims
memory that the interpreter still has access to, when the interpreter tries to
read or write that memory, Valgrind will bleat. (Valgrind is discussed briefly
in Section 4.9 on page 292.)

• When memory is given from the collector to the interpreter, we tell Valgrind
that it is OK to write but not OK to read until it has been initialized.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type Explist S303b
find 155b
type Frame 225a
mkRL A
popreg 270a
popregs 270b
pushreg 270a
type Registerlist

S349a
roots 269b
scanexp 281d
scantest 281d
strtoname 43c
type UnitTest

A
type UnitTestlist

S303b
type Value A
type Valuelist

S303c

Supporting code
for garbage
collectionN

S356

If you donʼt have Valgrind, you can #define NOVALGRIND, and youʼll still have the
INVALID thing in the alt field to help you.
S356a. 〈gcdebug.c S356a〉≡ S356d ▷

#ifndef NOVALGRIND
#include <valgrind/memcheck.h>

#else
〈define do-nothing replacements for Valgrind macros S356b〉

#endif

To prevent compiler warnings, the do-nothing macros “evaluate” their argu-
ments by casting them to void.
S356b. 〈define do-nothing replacements for Valgrind macros S356b〉≡ (S356a)

#define VALGRIND_CREATE_BLOCK(p, n, s) ((void)(p),(void)(n),(void)(s))
#define VALGRIND_CREATE_MEMPOOL(p, n, z) ((void)(p),(void)(n),(void)(z))
#define VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(p, n) \

((void)(p),(void)(n))
#define VALGRIND_MAKE_MEM_DEFINED(p, n) ((void)(p),(void)(n))
#define VALGRIND_MAKE_MEM_UNDEFINED(p, n) ((void)(p),(void)(n))
#define VALGRIND_MAKE_MEM_NOACCESS(p, n) ((void)(p),(void)(n))
#define VALGRIND_MEMPOOL_ALLOC(p1, p2, n) ((void)(p1),(void)(p2),(void)(n))
#define VALGRIND_MEMPOOL_FREE(p1, p2) ((void)(p1),(void)(p2))

The Valgrind calls are described in Valgrind s̓ documentation for “custom memory
allocators.”

At initialization we create a gc_pool, which stands for all objects allocated using
allocloc. The flag gc_uses_mark_bits, if set, tells Valgrind that when memory is
first allocated, its contents are zero. We also initialize the gcverbose flag.
S356c. 〈global variables used in garbage collection S356c〉≡ (S349c)

extern bool gc_uses_mark_bits;

S356d. 〈gcdebug.c S356a〉+≡ ◁ S356a S356e ▷
static int gc_pool_object;
static void *gc_pool = &gc_pool_object; /* valgrind needs this */
static int gcverbose; /* GCVERBOSE tells gcprintf & gcprint to make noise */

void gc_debug_init(void) {
VALGRIND_CREATE_MEMPOOL(gc_pool, 0, gc_uses_mark_bits);
gcverbose = getenv("GCVERBOSE") != NULL;

}

When we acquire objects, we make each one invalid, we tell Valgrind that each
one exists, and we mark all the memory as inaccessible (because it belongs to the
collector).
S356e. 〈gcdebug.c S356a〉+≡ ◁ S356d S356f ▷

void gc_debug_post_acquire(Value *mem, unsigned nvalues) {
unsigned i;
for (i = 0; i < nvalues; i++) {

gcprintf("ACQUIRE %p\n", (void*)&mem[i]);
mem[i] = mkInvalid("memory acquired from OS");
VALGRIND_CREATE_BLOCK(&mem[i], sizeof(*mem), "managed Value");

}
〈when using mark bits, barf unless nvalues is 1 S357d〉
VALGRIND_MAKE_MEM_NOACCESS(mem, nvalues * sizeof(*mem));

}

Before we release memory, we check that the objects are invalid. We have to
tell Valgrind that it s̓ temporarily OK to look at the object.
S356f. 〈gcdebug.c S356a〉+≡ ◁ S356e S357a ▷

void gc_debug_pre_release(Value *mem, unsigned nvalues) {

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.3
GC debugging,
with or without

Valgrind

S357

unsigned i;
for (i = 0; i < nvalues; i++) {

gcprintf("RELEASE %p\n", (void*)&mem[i]);
VALGRIND_MAKE_MEM_DEFINED(&mem[i].alt, sizeof(mem[i].alt));
assert(mem[i].alt == INVALID);

}
VALGRIND_MAKE_MEM_NOACCESS(mem, nvalues * sizeof(*mem));

}

Before handing an object to the interpreter, we tell Valgrind it s̓ been allocated,
we make it invalid, and finally tell Valgrind that it s̓ writable but uninitialized.
S357a. 〈gcdebug.c S356a〉+≡ ◁ S356f S357b ▷

void gc_debug_pre_allocate(Value *mem) {
gcprintf("ALLOC %p\n", (void*)mem);
VALGRIND_MEMPOOL_ALLOC(gc_pool, mem, sizeof(*mem));
VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&mem->alt, sizeof(mem->alt));
assert(mem->alt == INVALID);
*mem = mkInvalid("allocated but uninitialized");
VALGRIND_MAKE_MEM_UNDEFINED(mem, sizeof(*mem));

}

When we get an object back, we check that it s̓ not invalid (because it should
have been initialized to a valid value immediately after it was allocated). Then we
mark it invalid and tell Valgrind it s̓ been freed.
S357b. 〈gcdebug.c S356a〉+≡ ◁ S357a S357c ▷

void gc_debug_post_reclaim(Value *mem) {
gcprintf("FREE %p\n", (void*)mem);
assert(mem->alt != INVALID);
*mem = mkInvalid("memory reclaimed by the collector");
VALGRIND_MEMPOOL_FREE(gc_pool, mem);

}

The loop to reclaim a block works only if the pointer is a pointer to an array of
Value, not an array of Mvalue.
S357c. 〈gcdebug.c S356a〉+≡ ◁ S357b S358a ▷

void gc_debug_post_reclaim_block(Value *mem, unsigned nvalues) {
unsigned i;
〈when using mark bits, barf unless nvalues is 1 S357d〉
for (i = 0; i < nvalues; i++)

gc_debug_post_reclaim(&mem[i]);
}

S357d. 〈when using mark bits, barf unless nvalues is 1 S357d〉≡ (S356e 357c)
if (gc_uses_mark_bits) /* mark and sweep */

assert(nvalues == 1);

Function validate is used freely in the interpreter to make sure all values are
good. Calling validate(v) returns v, unless v is invalid, in which case it causes an
assertion failure.
S357e. 〈validate.c S357e〉≡

Value validate(Value v) {
assert(v.alt != INVALID);
return v;

}

Collector initialization uses the ANSI C function atexit to make sure that be-
fore the program exits, final garbage-collection statistics are printed.
S357f. 〈loc.c S354e〉+≡ ◁ S354e

extern void printfinalstats(void);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

emptystack 226a
type Env 155a
gc_debug_init

287a
gc_debug_post_

reclaim
286d

gcprintf 286g
mkInvalid A
printfinalstats,

in µScheme (in
GC?!)

S362c
in µScheme (in

GC?!)
S362b

roots 269b
type Value A

Supporting code
for garbage
collectionN

S358

void initallocate(Env *globals) {
gc_debug_init();
roots.globals.user = globals;
roots.globals.internal.pending_tests = NULL;
roots.stack = emptystack();
roots.registers = NULL;
atexit(printfinalstats);

}

Here are the printing functions.
S358a. 〈gcdebug.c S356a〉+≡ ◁ S357c S358b ▷

void gcprint(const char *fmt, ...) {
if (gcverbose) {
va_list_box box;
Printbuf buf = printbuf();

assert(fmt);
va_start(box.ap, fmt);
vbprint(buf, fmt, &box);
va_end(box.ap);
fwritebuf(buf, stderr);
fflush(stderr);
freebuf(&buf);

}
}

S358b. 〈gcdebug.c S356a〉+≡ ◁ S358a S361c ▷
void gcprintf(const char *fmt, ...) {
if (gcverbose) {
va_list args;

assert(fmt);
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fflush(stderr);

}
}

N.4 CODE THAT IS CHANGED TO SUPPORT GARBAGE COLLECTION

Most parts of the µScheme+ interpreter are either replaced completely or used
without change. But a few are modified versions of the originals. The modifications
have to do with keeping track of the root set: they are codes than can allocate, and
the modifications make sure that before allocloc can be called, the root set is up
to date. To keep the root set up to date, I frequently abuse the stack of evaluation
contexts. If I need to save an Exp or an Env, for example, I push an appropriate
context. Because I pop the context immediately afterward, the evaluator never sees
these abusive contexts, and they donʼt interfere with evaluation. (If I need to save
a Value, on the other hand, I simply use pushreg or pushregs as intended.)

Code that is modified or added to support garbage collection is shown in
typewriter italics.

N.4.1 Revised environment-extension routines

To be sure that the current environment is always visible to the garbage collector,
we need a new version of bindalloc. When bindalloc is called, its env argument

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.4
Code that is

changed to support
garbage collection

S359

contains bindings to heap-allocated locations. And because env is a local variable
in eval, it doesnʼt appear on the stack of evaluation contexts. We put it on the stack
so that when allocate is called, the bindings in env are kept live.
S359a. 〈env.c S359a〉≡ S359b ▷

Env bindalloc(Name name, Value val, Env env) {
Env newenv = malloc(sizeof(*newenv));
assert(newenv != NULL);

newenv->name = name;
pushframe(mkEnvStruct(env, NONCALL), roots.stack);
newenv->loc = allocate(val);
popframe(roots.stack);
newenv->tl = env;
return newenv;

}

Please also observe that val is a parameter passed by value, so we have a fresh copy
of it. It contains Value* pointers, so you might think it needs to be on the root stack
for the copying collector (so that the pointers can be updated if necessary). But by
the time we get to allocate, our copy of val is dead—only allocate s̓ private copy
matters.

In bindalloclist, by contrast, when we call bindalloc with vs->hd, our copy
of vs->hd is dead, as is everything that precedes it. But values reachable from
vs->tl are still live. To make them visible to the garbage collector, we treat them
as “machine registers.”
S359b. 〈env.c S359a〉+≡ ◁ S359a

Env bindalloclist(Namelist xs, Valuelist vs, Env env) {
Valuelist oldvals = vs;
pushregs(oldvals);
for (; xs && vs; xs = xs->tl, vs = vs->tl)

env = bindalloc(xs->hd, vs->hd, env);
popregs(oldvals);
return env;

}

N.4.2 Revisions to eval

Chapter 3 s̓ eval function needs just a couple of changes to support garbage collec-
tion. First, the evaluation stack is part of the root set:
S359c. 〈ensure that evalstack is initialized and empty S359c〉≡ (229a)

assert(topframe(roots.stack) == NULL);
roots.stack = evalstack;

Second, the primitive cons can allocate. So the local variable envhas to be made
visible to the garbage collector. I just put it on the stack.
S359d. 〈apply fn.primitive to vs and transition to the next state S359d〉≡

N.4.3 Revised evaldef

When given a VAL or DEFINE binding to a variable that is not already in the envi-
ronment, evaldef has to extend the environment before evaluating the right-hand
side. That means the right-hand side needs to be made a root—so we push it onto

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

allocate 156a
bindalloc 155c
type Env 155a
evalstack 229a
freebuf S186e
gcverbose S356d
mkEnvStruct A
type Name 43b
type Namelist

43b
popframe 226a
popregs 270b
type Printbuf

S186d
printbuf S186e
pushframe 226a
pushregs 270b
roots 269b
type va_list_box

S189c
type Value A
type Valuelist

S303c
vbprint S189d

Supporting code
for garbage
collectionN

S360

the context stack. And because the garbage collector might move objects, after al-
locating, we overwrite the original right-hand side with the version from the top of
the stack.
S360a. 〈evaluate val binding and return new environment S360a〉≡ (161e)

{
pushframe(*d->val.exp, roots.stack);
if (find(d->val.name, env) == NULL)

env = bindalloc(d->val.name, unspecified(), env);
*d->val.exp = topframe(roots.stack)->form;
popframe(roots.stack);
Value v = eval(d->val.exp, env);
*find(d->val.name, env) = v;
〈if echo calls for printing, print either v or the bound name S305c〉
return env;

}

N.4.4 The revised parser

In a definition like

(reverse '(1 2 3 4 5))

the cons cells for the list are allocated on the heap by the parser. Since any expres-
sion might be a quoted S-expression, any call to parseexp can allocate. Therefore,
before making a call to parseexp or parselist, or sExp or sExps, we must make
sure that any quoted S-expression is visible as a root. Again, I make them visible
by abusing the stack of evaluation contexts: in reduce_to_exp, if I see a quoted
S-expression, I put in on the stack. Since it s̓ the Exp we want on the stack, not just
the struct Exp, I wrap it in a BEGIN expression:
S360b. 〈parse.c S360b〉≡

Exp reduce_to_exp(int code, struct Component *comps) {
switch(code) {
case ANEXP(SET): return mkSet(comps[0].name, comps[1].exp);
case ANEXP(IFX): return mkIfx(comps[0].exp, comps[1].exp, comps[2].exp);
case ANEXP(BEGIN): return mkBegin(comps[0].exps);
〈cases for reduce_to_exp that are sugared in µScheme+ generated automatically〉
case ANEXP(LAMBDAX): return mkLambdax(mkLambda(comps[0].names, comps[1].exp));
case ANEXP(APPLY): return mkApply(comps[0].exp, comps[1].exps);
case ANEXP(LITERAL):
{ Exp e = mkLiteral(comps[0].value);
pushframe(mkBeginStruct(mkEL(e, NULL)), roots.stack);
return e;

}
〈cases for µScheme’s reduce_to_exp added in exercises S315f〉
}
assert(0);

}

Expression e canʼt come off the stack until parsing is complete. It is actually left
there until eval is called, at which point it is safe to remove it using clearstack.

The other part of the parser that has to change is the part that interprets a list
as an S-Expression, as in '(a b c). In chunk S317a, because there s̓ no garbage
collector in play, we simply call parsesx on the hd and tl and then call cons on
the result. With a garbage collector, this simple code wonʼt work: if the second call

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.4
Code that is

changed to support
garbage collection

S361

triggers a garbage collection, the result of the first call has to be a root. So the first
result goes (temporarily) into a “machine register.”
S361a. 〈return p->list interpreted as an S-expression S361a〉≡ (S316c)

if (p->list == NULL)
return mkNil();

else {
Value v = parsesx(p->list->hd, source);
pushreg(&v);
Value w = parsesx(mkList(p->list->tl), source);
popreg(&v);
Value pair = cons(v, w);
cyclecheck(&pair);
return pair;

}

N.4.5 Checking for cycles in cons

Iʼve left in this early-stage debugging code, which looks for a cycle after every cons.
S361b. 〈function prototypes for µScheme+ S361b〉≡ (S346)

void cyclecheck(Value *l);

The code uses depth-first search to make sure no value is ever its own ancestor.
S361c. 〈gcdebug.c S356a〉+≡ ◁ S358b S361d ▷

struct va { /* value ancestors */
Value *l;
struct va *parent;

};

S361d. 〈gcdebug.c S356a〉+≡ ◁ S361c S361e ▷
static void check(Value *l, struct va *ancestors) {

struct va *c;
for (c = ancestors; c; c = c->parent)

if (l == c->l) {
fprintf(stderr, "%p is involved in a cycle\n", (void *)l);
if (c == ancestors) {

fprintf(stderr, "%p -> %p\n", (void *)l, (void *)l);
} else {

fprintf(stderr, "%p -> %p\n", (void *)l, (void *)ancestors->l);
while (ancestors->l != l) {

fprintf(stderr, "%p -> %p\n",
(void *)ancestors->l, (void *)ancestors->parent->l);

ancestors = ancestors->parent;
}

}
runerror("cycle of cons cells");

}
}

S361e. 〈gcdebug.c S356a〉+≡ ◁ S361d
static void search(Value *v, struct va *ancestors) {

if (v->alt == PAIR) {
struct va na; /* new ancestors */
check(v->pair.car, ancestors);
check(v->pair.cdr, ancestors);
na.l = v;
na.parent = ancestors;
search(v->pair.car, &na);
search(v->pair.cdr, &na);

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bindalloc 155c
cons S307d
env 161e
eval 157a
type Exp A
find 155b
mkApply A
mkBegin A
mkIfx A
mkLambda A
mkLambdax A
mkList A
mkLiteral A
mkNil A
mkSet A
parsesx S316b
popframe 226a
popreg 270a
pushframe 226a
pushreg 270a
roots 269b
runerror 47
source S316c
topframe 226b
unspecified 156d
type Value A

Supporting code
for garbage
collectionN

S362

}
}

void cyclecheck(Value *l) {
search(l, NULL);

}

N.5 PLACEHOLDERS FOR EXERCISES

S362a. 〈private declarations for copying collection S362a〉≡
static void collect(void);

S362b. 〈copy.c [[prototype]] S362b〉≡
/* you need to redefine these functions */
static void collect(void) { (void)scanframe; (void)scantests; assert(0); }
void printfinalstats(void) { assert(0); }
/* you need to initialize this variable */
bool gc_uses_mark_bits;

S362c. 〈ms.c [[prototype]] S362c〉≡ S362d ▷

/* you need to redefine these functions */
void printfinalstats(void) {
(void)nalloc; (void)ncollections; (void)nmarks;
assert(0);

}

S362d. 〈ms.c [[prototype]] S362c〉+≡ ◁ S362c
void avoid_unpleasant_compiler_warnings(void) {

(void)visitroots;
}

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§N.5
Placeholders for

exercises

S363

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

nalloc S615a
ncollectionsS615a
nmarks S615a
scanframe 281d
scantests 281d
visitroots 273b

CHAPTER CONTENTS
O.1 INTERPRETER INFRAS-

TRUCTURE S365

O.1.1 Error detection and sig-
naling S366

O.1.2 Extra checking for
letrec S367

O.1.3 Primitives S367

O.2 OVERALL INTERPRETER
STRUCTURE S368

O.2.1 A reusable read-eval-
print loop S368

O.2.2 Recovering from excep-
tions S371

O.2.3 Initializing and running
the interpreter S371

O.2.4 Pulling the pieces to-
gether in the right order S372

O.3 LEXICAL ANALYSIS AND
PARSING S373

O.3.1 Tokens of the µScheme
language S373

O.3.2 Lexical analysis for
µScheme S373

O.3.3 Parsers for µScheme S374

O.4 UNIT TESTS FORµSCHEME S377
O.5 UNSPECIFIED VALUES S378
O.6 FURTHER READING S379

OSupporting code for theML interpreter forµScheme

This appendix describes language-specific code that is used to implementµScheme
but is not interesting enough to include in Chapter 5. This code includes code for
lexical analysis, for parsing, and for running unit tests, as does a similar appendix
for every bridge language that is implemented in ML. The code for µScheme also
includes an implementation of the “unspecified” values in the operational seman-
tics.

O.1 INTERPRETER INFRASTRUCTURE

The code in this section is a late addition to the Supplement. Some of it ought to
migrate into Appendix I.

Extended definitions

S365a. 〈definition of unit_test for untyped languages (shared) S365a〉≡ (S365c)
datatype unit_test = CHECK_EXPECT of exp * exp

| CHECK_ASSERT of exp
| CHECK_ERROR of exp

S365b. 〈definition of xdef (shared) S365b〉≡ (S365c)
datatype xdef = DEF of def

| USE of name
| TEST of unit_test

All these type definitions, together with definitions of functions valueString
and expString, are pulled together in one Noweb code chunk labeled 〈abstract syn-
tax and values for µScheme S365c〉.
S365c.

valueString : value -> string
expString : exp -> string

〈abstract syntax and values for µScheme S365c〉≡ (S373a)

〈definitions of exp and value for µScheme 313a〉
〈definition of def for µScheme 313b〉
〈definition of unit_test for untyped languages (shared) S365a〉
〈definition of xdef (shared) S365b〉
〈definition of valueString for µScheme, Typed µScheme, and nano-ML 314〉
〈definition of expString for µScheme S378c〉

Operations on values

Equality The interpreter uses equality in two places: in the = primitive and in the
check-expect unit test. The primitive version permits only atoms to be considered
equal.
S365d.

equalatoms : value * value -> bool
〈utility functions on µScheme, Typed µScheme, and nano-ML values S365d〉≡ (S373a) S366a ▷

fun equalatoms (NIL, NIL) = true
| equalatoms (NUM n1, NUM n2) = (n1 = n2)

S365
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µScheme in MLO

S366

| equalatoms (SYM v1, SYM v2) = (v1 = v2)
| equalatoms (BOOLV b1, BOOLV b2) = (b1 = b2)
| equalatoms _ = false

In a unit test written with check-expect, lists are compared for equality struc-
turally, the way the µScheme function equal? does.
S366a.

equalpairs : value * value -> bool
〈utility functions on µScheme, Typed µScheme, and nano-ML values S365d〉+≡ (S373a) ◁ S365d S366b ▷

fun equalpairs (PAIR (car1, cdr1), PAIR (car2, cdr2)) =
equalpairs (car1, car2) andalso equalpairs (cdr1, cdr2)

| equalpairs (v1, v2) = equalatoms (v1, v2)

The testing infrastructure expects this function to be called testEqual.
S366b.

testEqual : value * value -> bool
〈utility functions on µScheme, Typed µScheme, and nano-ML values S365d〉+≡ (S373a) ◁ S366a S379 ▷

val testEqual = equalpairs

O.1.1 Error detection and signaling

Every run-time error is signaled by raising the RuntimeError exception, which car-
ries an error message.
S366c. 〈support for detecting and signaling errors detected at run time S366c〉≡ (S237a) S366e ▷

exception RuntimeError of string (* error message *)

As in Chapter 2, duplicate names are treated as run-time errors. If a name x oc-
curs more than twice on a list, function duplicatename returns SOME x; otherwise
it returns NONE.
S366d.

duplicatename : name list -> name option
〈support for names and environments S366d〉≡ (S237a)

fun duplicatename [] = NONE
| duplicatename (x::xs) =

if List.exists (fn x' => x' = x) xs then
SOME x

else
duplicatename xs

Function errorIfDups raises the exception if a duplicate name is found. Pa-
rameter what says what kind of name weʼre looking at, and context says in what
context.
S366e.

errorIfDups : string * name list * string -> unit
〈support for detecting and signaling errors detected at run time S366c〉+≡ (S237a) ◁ S366c S366f ▷

fun errorIfDups (what, xs, context) =
case duplicatename xs
of NONE => ()
| SOME x => raise RuntimeError (what ^ " " ^ x ^ " appears twice in " ^ context)

Some errors might be caused not by a fault in µScheme code but in my imple-
mentation of µScheme. For those times, there s̓ the InternalError exception.
S366f. 〈support for detecting and signaling errors detected at run time S366c〉+≡ (S237a) ◁ S366e

exception InternalError of string (* bug in the interpreter *)

Raising InternalError is the equivalent of an assertion failure in a language like C.
I must not confuse InternalError with RuntimeError. When the interpreter

raises RuntimeError, it means that a user s̓ program got stuck: evaluation led to a
state in which the operational semantics couldnʼt make progress. The fault is the
user s̓. But when the interpreter raises InternalError, it means there is a fault in
my code; the user s̓ program is blameless.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.1
Interpreter

infrastructure

S367

O.1.2 Extra checking for letrec

S367a. 〈if any expression in values is not a lambda, reject the letrec S367a〉≡ (318a)
fun insistLambda (LAMBDA _) = ()
| insistLambda e =

raise RuntimeError ("letrec tries to bind non-lambda expression " ^
expString e)

val _ = app insistLambda values

O.1.3 Primitives

More type predicates.
S367b. 〈primitives for µScheme :: S367b〉≡ (S372a) S367c ▷

("number?", predOp (fn (NUM _) => true | _ => false)) ::
("symbol?", predOp (fn (SYM _) => true | _ => false)) ::
("pair?", predOp (fn (PAIR _) => true | _ => false)) ::
("function?",

predOp (fn (PRIMITIVE _) => true | (CLOSURE _) => true | _ => false)) ::

The list primitives are also implemented by simple anonymous functions:
S367c. 〈primitives for µScheme :: S367b〉+≡ (S372a) ◁ S367b S367d ▷

("cons", binaryOp (fn (a, b) => PAIR (a, b))) ::
("car", unaryOp (fn (PAIR (car, _)) => car

| NIL => raise RuntimeError "car applied to empty list"
| v => raise RuntimeError

("car applied to non-list " ^ valueString v))) ::
("cdr", unaryOp (fn (PAIR (_, cdr)) => cdr

| NIL => raise RuntimeError "cdr applied to empty list"
| v => raise RuntimeError

("cdr applied to non-list " ^ valueString v))) ::

The last primitives I can define with type value list -> value are the printing
primitives.
S367d. 〈primitives for µScheme :: S367b〉+≡ (S372a) ◁ S367c S367e ▷

("println", unaryOp (fn v => (print (valueString v ^ "\n"); v))) ::
("print", unaryOp (fn v => (print (valueString v); v))) ::
("printu", unaryOp (fn NUM n => (printUTF8 n; NUM n)

| v => raise RuntimeError (valueString v ^
" is not a Unicode code point"))) ::

S367e. 〈primitives for µScheme :: S367b〉+≡ (S372a) ◁ S367d
("hash", unaryOp (fn SYM s => NUM (fnvHash s)

| v => raise RuntimeError (valueString v ^
" is not a symbol"))) ::

The error primitive is special because although it raises the RuntimeError ex-
ception, this behavior is expected, and therefore the context in which the exception
is raised should not be shown—unless error is given the wrong number of argu-
ments. To maintain such fine control over its behavior, errorPrimitive takes an
exp parameter on its own, and it delegates reporting to inExp only in the case of an
arity error.
S367f.

errorPrimitive : exp * value list -> value list
〈utility functions for building primitives in µScheme S367f〉≡ (S372a)

fun errorPrimitive (_, [v]) = raise RuntimeError (valueString v)
| errorPrimitive (e, vs) = inExp (arityError 1) (e, vs)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arityError 320b
binaryOp 320b
CLOSURE 313a
equalatoms S365d
expString S378c
fnvHash S239c
inExp 320a
LAMBDA 313a
NIL 313a
NUM 313a
PAIR,

in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
predOp 321a
PRIMITIVE 313a
printUTF8 S239b
SYM 313a
unaryOp 320b
values 318a
valueString 314

Supporting code
for µScheme in MLO

S368

O.2 OVERALL INTERPRETER STRUCTURE

O.2.1 A reusable read-eval-print loop

Functions eval and evaldef process expressions and true definitions. But an in-
terpreter for µScheme also has to process the extended definitions USE and TEST,
which need more tooling:

• To process a USE, we must be able to parse definitions from a file and enter a
read-eval-print loop recursively.

• To process a TEST (like check_expect or check_error), we must be able to
run tests, and to run a test, we must call eval.

A lot of the tooling can be shared among more than one bridge language. To make
sharing easy, I introduce some abstraction.

• Type basis, which is different for each bridge language, stands for the collec-
tion of environment or environments that are used at top level to evaluate a
definition. The name basis comes from The Definition of Standard ML (Milner
et al. 1997).

For µScheme, a basis is a single environment that maps each name to
a mutable location holding a value. For Impcore, a basis would include
both global-variable and function environments. And for later languages
that have static types, a basis includes environments that store information
about types.

• Function processDef, which is different for each bridge language, takes a
def and a basis and returns an updated basis. For µScheme, processDef
just evaluates the definition, using evaldef. For languages that have static
types (Typed Impcore, Typed µScheme, and nano-ML in Chapters 6 and 7,
among others), processDef includes two phases: type checking followed by
evaluation.

Function processDef also needs to be told about interaction, which has two
dimensions: input and output. On input, an interpreter may or may not
prompt:
S368a. 〈type interactivity plus related functions and value S368a〉≡ (S237a) S368b ▷

datatype input_interactivity = PROMPTING | NOT_PROMPTING

On output, an interpreter may or may not show a response to each definition.
S368b. 〈type interactivity plus related functions and value S368a〉+≡ (S237a) ◁ S368a S368c ▷

datatype output_interactivity = PRINTING | NOT_PRINTING

Both kinds of information go toprocessDef, as a value of typeinteractivity.
S368c.

type interactivity
noninteractive : interactivity
prompts : interactivity -> bool
prints : interactivity -> bool

〈type interactivity plus related functions and value S368a〉+≡ (S237a) ◁ S368b
type interactivity =
input_interactivity * output_interactivity

val noninteractive =
(NOT_PROMPTING, NOT_PRINTING)

fun prompts (PROMPTING, _) = true
| prompts (NOT_PROMPTING, _) = false

fun prints (_, PRINTING) = true
| prints (_, NOT_PRINTING) = false

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.2
Overall interpreter

structure

S369

When reading definitions of predefined functions, there s̓ no interactivity.
S369a.

noninteractive : interactivity
processPredefined : def * basis -> basis

〈shared read-eval-print loop and processPredefined S369a〉≡ (S369b) S369c ▷

fun processPredefined (def,basis) =
processDef (def, basis, noninteractive)

• Function testIsGood, which can be shared among languages that share the
same definition of unit_test, says whether a test passes (or in a typed lan-
guage, whether the test is well-typed and passes). Function testIsGood has a
slightly different interface from the corresponding C function test_result.
The reasons are discussed in Appendix O on page S377.

If have these pieces, I can define one version of processTests (Section I.3 on
page S247) and one read-eval-print loop, each of which is shared among many
bridge languages. The pieces are organized as follows:
S369b.

type basis
processDef : def * basis * interactivity -> basis
testIsGood : unit_test * basis -> bool
processTests : unit_test list * basis -> unit

〈evaluation, testing, and the read-eval-print loop for µScheme S369b〉≡ (S373a)

〈definitions of eval, evaldef, basis, and processDef for µScheme S370c〉
〈shared unit-testing utilities S246d〉
〈shared definition of withHandlers S371a〉
〈definition of testIsGood for µScheme S378a〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉

Given processDef and testIsGood, function readEvalPrintWith processes a
stream of extended definitions. A stream is like a list, except that when client code
first looks at an element of a stream, the stream abstraction may do some input or
output. As in the C version, a stream is created using filexdefs or stringsxdefs.

Function readEvalPrintWith has a type that resembles the type of the C func-
tion readevalprint, but the ML version takes an extra parameter errmsg. Using
this parameter, I issue a special error message when there s̓ a problem in the ini-
tial basis (see function predefinedError on page S238). The special error mes-
sage helps with some of the exercises in Chapters 6 and 7, where if something goes
wrong with the implementation of types, an interpreter could fail while trying to
read its initial basis. (Failure while reading the basis can manifest in mystifying
ways; the special message demystifies the failure.)
S369c.

readEvalPrintWith : (string -> unit) ->
xdef stream * basis * interactivity -> basis

processXDef : xdef * basis -> basis

〈shared read-eval-print loop and processPredefined S369a〉+≡ (S369b) ◁ S369a

fun readEvalPrintWith errmsg (xdefs, basis, interactivity) =
let val unitTests = ref []

〈definition of processXDef, which can modify unitTests and call errmsg S370b〉
val basis = streamFold processXDef basis xdefs
val _ = processTests (!unitTests, basis)

in basis
end

Function readEvalPrintWith executes essentially the same imperative actions as
the C function readevalprint (chunk S305e): allocate space for a list of pending
unit tests; loop through a stream of extended definitions, using each one to update
the environment(s); and process the pending unit tests. (The looping action in the
ML code is implemented by function streamFold, which applies processXDef to

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

processDef,
in molecule S471e
in nano-ML S410b
in Typed Impcore

S382a
in Typed µScheme

S393d
in µML S430a
in µScheme S370c
in µSmalltalk

S558b
processTestsS247b
processXDef S370b
streamFold S253b

Supporting code
for µScheme in MLO

S370

every element of xdefs. Function streamFold is the stream analog of the list func-
tion foldl.) Unlike the C readevalprint, which updates the environment in place
by writing through a pointer, the ML function ends by returning the updated envi-
ronment(s).

Please pause and look at the names of the functions. Functions eval and
evaldef are named after a specific, technical action: they evaluate. But functions
processDef, processXDef, and processTests are named after a vague action: they
process. Iʼve chosen this vague word deliberately, because the “processing” is dif-
ferent in different languages:

• In an untyped language like µScheme or µSmalltalk, “process” means “eval-
uate.”

• In a typed language like Typed Impcore, Typed µScheme, nano-ML, orµML,
“process” means “first typecheck, then evaluate.”

Using the vague word “process” to cover both language families helps me write ge-
neric code that works with both language families.

Let s̓ see the generic code that “processes” an extended definition. To process a
USE form, we call function useFile, which reads definitions from a file and recur-
sively passes them to readEvalPrintWith.
S370a. 〈definition of useFile, to read from a file S370a〉≡ (S370b)

fun useFile filename =
let val fd = TextIO.openIn filename

val (_, printing) = interactivity
val inter' = (NOT_PROMPTING, printing)

in readEvalPrintWith errmsg (filexdefs (filename, fd, noPrompts), basis, inter')
before TextIO.closeIn fd

end

The extended-definition forms USE and TEST are implemented in exactly the same
way for every language: internal function try passes each USE to useFile, and
it adds each TEST to the mutable list unitTests—just as in the C code in Section 1.6.2
on page 53. Function try passes each true definition DEF to function processDef,
which does the language-dependent work.
S370b.

errmsg : string -> unit
processDef : def * basis * interactivity -> basis

〈definition of processXDef, which can modify unitTests and call errmsg S370b〉≡ (S369c)

fun processXDef (xd, basis) =
let 〈definition of useFile, to read from a file S370a〉

fun try (USE filename) = useFile filename
| try (TEST t) = (unitTests := t :: !unitTests; basis)
| try (DEF def) = processDef (def, basis, interactivity)

fun caught msg = (errmsg (stripAtLoc msg); basis)
in withHandlers try xd caught
end

When processing a bad definition, processXDef must recover from errors. It uses
functions withHandlers and caught. Calling withHandlers f a caught normally
applies function f to argument a and returns the result. But when the application
of f raises an exception that the interpreter should recover from, withHandlers
calls caught with an appropriate error message. Here, caught passes the message
to errmsg, then returns the original basis unchanged.

The language-dependent basis is, for µScheme, the single environment ρ,
which maps each name to a mutable location that holds a value. Function
processDef calls evaldef, prints its response, and returns its environment.
S370c. 〈definitions of eval, evaldef, basis, and processDef for µScheme S370c〉≡ (S369b)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.2
Overall interpreter

structure

S371

type basis = value ref env
fun processDef (d, rho, interactivity) =
let val (rho', response) = evaldef (d, rho)

val _ = if prints interactivity then println response else ()
in rho'
end

A last word about readEvalPrintWith: you might be wondering, “where does
it read, evaluate, and print?” Well, readEvalPrintWith doesnʼt do those things
itself—reading is a side effect of streamGet, which is called by streamFold, and
evaluating and printing are done by processDef. But the function is called
readEvalPrintWith because when you want reading, evaluating, and printing to
happen, what you do is call readEvalPrintWith eprintln, passing your extended
definitions and your environments.

O.2.2 Recovering from exceptions

In normal execution, calling withHandlers f a caught applies function f to argu-
ment a and returns the result. But when the application of f raises an exception,
withHandlers uses Standard MLs̓ handle construct to recover from the exception
and to pass an error message to caught, which acts as a failure continuation, as
described in Section 2.10 on page 138. Each error message contains the string "<at
loc>", which can be removed (by stripAtLoc) or can be filled in with an appropri-
ate source-code location (by fillAtLoc).

The most important exceptions are RuntimeError, NotFound, and Located. Ex-
ceptions RuntimeError and NotFound are defined above; they signal problems with
evaluation or with an environment, respectively. Exception Located, which is de-
fined in Appendix I, is a special exception that wraps another exception exn in a
source-code location. When Located is caught, we “re-raise” exception exn, and
we fill in the source location in exn s̓ error message.
S371a.

withHandlers : ('a -> 'b) -> 'a -> (string -> 'b) -> 'b
〈shared definition of withHandlers S371a〉≡ (S369b)

fun withHandlers f a caught =
f a
handle RuntimeError msg => caught ("Run-time error <at loc>: " ^ msg)

| NotFound x => caught ("Name " ^ x ^ " not found <at loc>")
| Located (loc, exn) =>

withHandlers (fn _ => raise exn) a (fn s => caught (fillAtLoc (s, loc)))
〈other handlers that catch non-fatal exceptions and pass messages to caught S371b〉

In addition to RuntimeError, NotFound, and Located, withHandlers catches
many exceptions that are predefined MLs̓ Standard Basis Library. These exceptions
signal things that can go wrong while evaluating an expression or when reading a
file.
S371b. 〈other handlers that catch non-fatal exceptions and pass messages to caught S371b〉≡ (S371a)

| Div => caught ("Division by zero <at loc>")
| Overflow => caught ("Arithmetic overflow <at loc>")
| Subscript => caught ("Array index out of bounds <at loc>")
| Size => caught ("Array length too large (or negative) <at loc>")
| IO.Io { name, ...} => caught ("I/O error <at loc>: " ^ name)

I reuse the same exception handlers in later interpreters.

O.2.3 Initializing and running the interpreter

To get a complete interpreter running, what s̓ left to do is what s̓ done in C function
main (page S309): decide if the interpreter is interactive, initialize the environment

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ASSERT_PTYPES453c
assertPtype,

in molecule S501b
in µML S453d
DEF S365b
DEFS S365b
type env 310b
errmsg S369c
evaldef 318c
filexdefs S254c
fillAtLoc S255g
fst S263d
interactivity

S369c
Located S255b
noPrompts S280a
NOT_PROMPTING

S368a
NotFound 311b
println S238a
prints S368c
processDef,

in molecule S471e
in nano-ML S410b
in Typed Impcore

S382a
in Typed µScheme

S393d
in µML S430a
in µSmalltalk

S558b
readEvalPrintWith

S369c
resetOverflowCheck

S242b
RuntimeErrorS366c
stripAtLoc S255g
TEST S365b
unitTests S369c
USE S365b
type value 313a

Supporting code
for µScheme in MLO

S372

and the error format, and start the read-eval-print loop on the standard input. First,
the initial environment.

A basis for µScheme comprises a single value environment. I create the ini-
tial basis by starting with the empty environment, binding the primitive operators,
then reading the predefined functions. When reading predefined functions, the
interpreter echoes no responses, and to issue error messages, it uses the special
function predefinedError.
S372a.

initialBasis : basis
〈implementations of µScheme primitives and definition of initialBasis S372a〉≡ (S373a)

〈utility functions for building primitives in µScheme S367f〉
val initialBasis =
let val rho =

foldl (fn ((name, prim), rho) => bind (name, ref (PRIMITIVE (inExp prim)), rho))
emptyEnv (〈primitives for µScheme :: S367b〉 [])

val rho = bind ("error", ref (PRIMITIVE errorPrimitive), rho)
val fundefs = 〈predefined µScheme functions, as strings (from ⟨additions to the µScheme initial basis 98a⟩)〉
val xdefs = stringsxdefs ("predefined functions", fundefs)

in readEvalPrintWith predefinedFunctionError (xdefs, rho, noninteractive)
end

The reusable function setup_error_format uses interactivity to set the error
format, which, as in the C versions, determines whether syntax-error messages in-
clude source-code locations (see functions errorAt and synerrormsg in Section I.5
on pages S254 and S256).
S372b. 〈shared utility functions for initializing interpreters S372b〉≡ (S237a)

fun setup_error_format interactivity =
if prompts interactivity then
toplevel_error_format := WITHOUT_LOCATIONS

else
toplevel_error_format := WITH_LOCATIONS

Function runAs looks at the interactivity mode and sets both the error format
and the prompts. It then starts the read-eval-print loop on standard input, with the
initial basis.
S372c.

runAs : interactivity -> unit
〈function runAs, which evaluates standard input given initialBasis S372c〉≡ (S373a)

fun runAs interactivity =
let val _ = setup_error_format interactivity

val prompts = if prompts interactivity then stdPrompts else noPrompts
val xdefs = filexdefs ("standard input", TextIO.stdIn, prompts)

in ignore (readEvalPrintWith eprintln (xdefs, initialBasis, interactivity))
end

To launch the interpreter, I look at command-line arguments and call runAs.
The code is executed only for its side effect, so I put it on the right-hand side of a
valbinding with no name. Function CommandLine.arguments returns an argument
list; CommandLine.name returns the name by which the interpreter was invoked.
S372d. 〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉≡ (S373a)

val _ = case CommandLine.arguments ()
of [] => runAs (PROMPTING, PRINTING)
| ["-q"] => runAs (NOT_PROMPTING, PRINTING)
| _ => eprintln ("Usage: " ^ CommandLine.name () ^ " [-q]")

O.2.4 Pulling the pieces together in the right order

As mentioned in the introduction to this chapter, the ML language requires that
every type and function be defined before it is used. Definitions come not only
from this chapter but also from Appendices J and O. To get all the definitions in the
right order, I use Noweb code chunks. The interpreters differ in detail, but each

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.3
Lexical analysis

and parsing

S373

is put together along the same lines: shared infrastructure; abstract syntax and
values, with utility functions; lexical analysis and parsing; evaluation (including
unit testing and the read-eval-print loop); and initialization. As shown in the next
chapter, interpreters for typed languages also have chunks devoted to types and
type checking (or type inference).
S373a. 〈mlscheme.sml S373a〉≡

〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈abstract syntax and values for µScheme S365c〉
〈utility functions on µScheme, Typed µScheme, and nano-ML values S365d〉

〈lexical analysis and parsing for µScheme, providing filexdefs and stringsxdefs S373b〉

〈evaluation, testing, and the read-eval-print loop for µScheme S369b〉

〈implementations of µScheme primitives and definition of initialBasis S372a〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

O.3 LEXICAL ANALYSIS AND PARSING

Lexical analysis and parsing is implemented by these code chunks:
S373b. 〈lexical analysis and parsing for µScheme, providing filexdefs and stringsxdefs S373b〉≡ (S373a)

〈lexical analysis for µScheme and related languages S373c〉
〈parsers for single µScheme tokens S374d〉
〈parsers and parser builders for formal parameters and bindings S375a〉
〈parsers and parser builders for Scheme-like syntax S375d〉
〈parsers and xdef streams for µScheme S376b〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

O.3.1 Tokens of the µScheme language

Our general parsing mechanism from Appendix J requires a language-specific
token type and two functions tokenString and isLiteral.
S373c. 〈lexical analysis for µScheme and related languages S373c〉≡ (S373b) S373d ▷

datatype pretoken = QUOTE
| INT of int
| SHARP of bool
| NAME of string

type token = pretoken plus_brackets

I define isLiteral by comparing the given string s with the string form of token t.
S373d. 〈lexical analysis for µScheme and related languages S373c〉+≡ (S373b) ◁ S373c S374a ▷

fun pretokenString (QUOTE) = "'"
| pretokenString (INT n) = intString n
| pretokenString (SHARP b) = if b then "#t" else "#f"
| pretokenString (NAME x) = x

val tokenString = plusBracketsString pretokenString

O.3.2 Lexical analysis for µScheme

Before a µScheme token, whitespace is ignored. The schemeToken function tries
each alternative in turn: the two brackets, a quote mark, an integer literal, an atom,
or end of line. An atom may be a SHARP name or a normal name.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bind 312b
dump_names,

in molecule S471e
in nano-ML S410b
in Typed Impcore

S382a
in Typed µScheme

S393d
in µML S430a
in µScheme S370c
in µSmalltalk

S558b
emptyEnv 311a
eprintln S238a
errorPrimitive

S367f
filexdefs S254c
inExp 320a
initialBasis,
in molecule S490b
in nano-ML S411b
in Typed Impcore

S382d
in Typed µScheme

S394a
in µML S431d
in µSmalltalk

S560d
intString S238f
noninteractive

S368c
noPrompts S280a
NOT_PRINTINGS368b
NOT_PROMPTING

S368a
plusBracketsString

S271b
predefined-

FunctionError
S238e

PRIMITIVE 313a
PRINTING S368b
PROMPTING S368a
prompts S368c
readEvalPrintWith

S369c
runAs S568a
stdPrompts S280a
stringsxdefsS254c
toplevel_error_

format
S254e

WITH_LOCATIONS
S254e

WITHOUT_LOCATIONS
S254e

Supporting code
for µScheme in MLO

S374

S374a.

schemeToken : token lexer
atom : string -> pretoken

〈lexical analysis for µScheme and related languages S373c〉+≡ (S373b) ◁ S373d

local
〈functions used in all lexers S374c〉
〈functions used in the lexer for µScheme S374b〉

in
val schemeToken =
whitespace *>
bracketLexer (QUOTE <$ eqx #"'" one

<|> INT <$> intToken isDelim
<|> (atom o implode) <$> many1 (sat (not o isDelim) one)
<|> noneIfLineEnds
)

end

The atom function identifies the special literals #t and #f; all other atoms are
names.
S374b. 〈functions used in the lexer for µScheme S374b〉≡ (S374a)

fun atom "#t" = SHARP true
| atom "#f" = SHARP false
| atom x = NAME x

If the lexer doesnʼt recognize a bracket, quote mark, integer, or other atom,
weʼre expecting the line to end. The end of the line may present itself as the
end of the input stream or as a stream of characters beginning with a semicolon,
which marks a comment. If we encounter any other character, something has gone
wrong. (The polymorphic type of noneIfLineEnds provides a subtle but powerful
hint that no token can be produced; the only possible outcomes are that nothing is
produced, or the lexer detects an error.)
S374c.

noneIfLineEnds : 'a lexer
〈functions used in all lexers S374c〉≡ (S374a)

fun noneIfLineEnds chars =
case streamGet chars
of NONE => NONE (* end of line *)
| SOME (#";", cs) => NONE (* comment *)
| SOME (c, cs) =>

let val msg = "invalid initial character in `" ^
implode (c::listOfStream cs) ^ "'"

in SOME (ERROR msg, EOS)
end

O.3.3 Parsers for µScheme

A parser consumes a stream of tokens and produces an abstract-syntax tree. The
easiest way to write a parser is to begin with code for parsing the smallest things
and finish with the code for parsing the biggest things. I parse tokens, literal S-
expressions, µScheme expressions, and finally µScheme definitions.

Parsers for µScheme expressions

Usually a parser knows what kind of token it is looking for. To make such a parser
easier to write, I create a special parsing combinator for each kind of token. Each
one succeeds when given a token of the kind it expects; when given any other token,
it fails.
S374d. 〈parsers for single µScheme tokens S374d〉≡ (S373b)

type 'a parser = (token, 'a) polyparser
val pretoken = (fn (PRETOKEN t)=> SOME t | _ => NONE) <$>? token : pretoken parser
val quote = (fn (QUOTE) => SOME () | _ => NONE) <$>? pretoken

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.3
Lexical analysis

and parsing

S375

val int = (fn (INT n) => SOME n | _ => NONE) <$>? pretoken
val booltok = (fn (SHARP b) => SOME b | _ => NONE) <$>? pretoken
val name = (fn (NAME n) => SOME n | _ => NONE) <$>? pretoken
val any_name = name

The next step up is syntactic elements used in multiple Scheme-like languages.
Function formals parses a list of formal parameters. If the formal parameters con-
tain duplicates, it s̓ treated as a syntax error. Function bindings produces a list of
bindings suitable for use in let* expressions. For let and letrec expressions,
which do not permit multiple bindings to the same name, use distinctBsIn.
S375a.

formalsOf : string -> name parser -> string -> name list parser
bindingsOf : string -> 'x parser -> 'e parser -> ('x * 'e) list parser
distinctBsIn : (name * 'e) list parser -> string -> (name * 'e) list parser

〈parsers and parser builders for formal parameters and bindings S375a〉≡ (S373b) S375b ▷

fun formalsOf what name context =
nodups ("formal parameter", context) <$>! @@ (bracket (what, many name))

fun bindingsOf what name exp =
let val binding = bracket (what, pair <$> name <*> exp)
in bracket ("(... " ^ what ^ " ...) in bindings", many binding)
end

fun distinctBsIn bindings context =
let fun check (loc, bs) =

nodups ("bound name", context) (loc, map fst bs) >>=+ (fn _ => bs)
in check <$>! @@ bindings
end

Record fields also may not contain duplicates.
S375b.

recordFieldsOf : name parser -> name list parser
〈parsers and parser builders for formal parameters and bindings S375a〉+≡ (S373b) ◁ S375a S375c ▷

fun recordFieldsOf name =
nodups ("record fields", "record definition") <$>!

@@ (bracket ("(field ...)", many name))

We parse any keyword as the name represented by the same string as the key-
word. And using the keyword parser, we can string together “usage” parsers.
S375c.

kw : string -> string parser
usageParsers : (string * 'a parser) list -> 'a parser

〈parsers and parser builders for formal parameters and bindings S375a〉+≡ (S373b) ◁ S375b

fun kw keyword =
eqx keyword any_name

fun usageParsers ps = anyParser (map (usageParser kw) ps)

Iʼm now ready to parse a quoted S-expression, which is a symbol, a number,
a Boolean, a list of S-expressions, or a quoted S-expression.
S375d.

sexp : value parser
〈parsers and parser builders for Scheme-like syntax S375d〉≡ (S373b) S376a ▷

fun sexp tokens = (
SYM <$> (notDot <$>! @@ any_name)

<|> NUM <$> int
<|> embedBool <$> booltok
<|> leftCurly <!> "curly brackets may not be used in S-expressions"
<|> embedList <$> bracket ("list of S-expressions", many sexp)
<|> (fn v => embedList [SYM "quote", v])

<$> (quote *> sexp)
) tokens
and notDot (loc, ".") =

errorAt "this interpreter cannot handle . in quoted S-expressions" loc
| notDot (_, s) = OK s

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<$>? S266c
<*> S263a
<|> S264a
>>=+ S244b
any_name,

in molecule S519a
in µML S437d
in µSmalltalk

S562a
anyParser S264c
bracket S276b
bracketLexerS271b
embedBool,
in Typed µScheme

315b
in µML S433e
embedList,
in Typed µScheme

315c
in µML S433c
EOS S250a
eqx S266b
ERROR S243b
errorAt S256a
fst S263d
INT S373c
intToken S270d
isDelim S268c
leftCurly S274
listOfStreamS250d
many S267b
many1 S267c
NAME S373c
nodups S277c
NUM,
in nano-ML 415b
in Typed µScheme

370b
in µML 498d
in µScheme 313a
OK S243b
one S265a
pair S263d
type polyparser

S272c
PRETOKEN S271b
type pretoken

S373c
QUOTE S373c
sat S266a
SHARP S373c
streamGet S250b
SYM,
in nano-ML 415b
in Typed µScheme

370b
in µML 498d
in µScheme 313a

type token S373c
token S273a
usageParser S277a
whitespace S270a

Supporting code
for µScheme in MLO

S376

Full Scheme allows programmers to notate arbitrary cons cells using a dot in a
quoted S-expression. µScheme doesnʼt support this notation.

S376a. 〈parsers and parser builders for Scheme-like syntax S375d〉+≡ (S373b) ◁ S375d S376d ▷

fun atomicSchemeExpOf name = VAR <$> name
<|> LITERAL <$> NUM <$> int
<|> LITERAL <$> embedBool <$> booltok

Function exptable, when given a parser exp for all expressions, produces a
parser for bracketed expressions. In the C code in Appendix L the data structure
exptable is mutually recursive with functionsparseexp, sExp, andreduce_to_exp.
In ML, such mutual recursion is difficult to achieve. The technique I use here is to
define exptable as a function, which is passed function exp as a parameter. Below,
recursive function exp is defined to use both itself and exptable.

The exptable itself uses the format described in Section J.3.4 on page S277:
each alternative is specified by a pair containing a usage string and a parser.
S376b.

exptable : exp parser -> exp parser
exp : exp parser
bindings : (name * exp) list parser

〈parsers and xdef streams for µScheme S376b〉≡ (S373b) S376e ▷

fun exptable exp =
let val bindings = bindingsOf "(x e)" name exp

val formals = formalsOf "(x1 x2 ...)" name "lambda"
val dbs = distinctBsIn bindings

in usageParsers
[("(if e1 e2 e3)", curry3 IFX <$> exp <*> exp <*> exp)
, ("(while e1 e2)", curry WHILEX <$> exp <*> exp)
, ("(set x e)", curry SET <$> name <*> exp)
, ("(begin e1 ...)", BEGIN <$> many exp)
, ("(lambda (names) body)", curry LAMBDA <$> formals <*> exp)
, ("(let (bindings) body)", curry3 LETX LET <$> dbs "let" <*> exp)
, ("(letrec (bindings) body)", curry3 LETX LETREC <$> dbs "letrec" <*> exp)
, ("(let* (bindings) body)", curry3 LETX LETSTAR <$> bindings <*> exp)
, ("(quote sexp)", LITERAL <$> sexp)
〈rows added to ML µScheme’s exptable in exercises S376c〉
]

end

There is a placeholder for adding more syntax in exercises.
S376c. 〈rows added to ML µScheme’s exptable in exercises S376c〉≡ (S376b)

(* add syntactic sugar here, each row preceded by a comma *)

The exp parser handles atomic expressions, quoted S-expressions, the table of
bracketed expressions, a couple of error cases, and function application, which
uses parentheses but no keyword.
S376d. 〈parsers and parser builders for Scheme-like syntax S375d〉+≡ (S373b) ◁ S376a

fun fullSchemeExpOf atomic keywordsOf =
let val exp = fn tokens => fullSchemeExpOf atomic keywordsOf tokens
in atomic

<|> keywordsOf exp
<|> quote *> (LITERAL <$> sexp)
<|> quote *> badRight "quote ' followed by right bracket"
<|> leftCurly <!> "curly brackets are not supported"
<|> left *> right <!> "(): unquoted empty parentheses"
<|> bracket("function application", curry APPLY <$> exp <*> many exp)

end

S376e. 〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S376b S377a ▷
val exp = fullSchemeExpOf (atomicSchemeExpOf name) exptable

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.4
Unit tests for
µScheme

S377

Parsers for µScheme definitions

I segregate the definition parsers by the ML type of definition they produce. Parser
deftable parses the true definitions. Function define is a Curried function that
creates a DEFINE node.
S377a.

deftable : def parser
〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S376e S377b ▷

val deftable = usageParsers
[("(define f (args) body)",

let val formals = formalsOf "(x1 x2 ...)" name "define"
in curry DEFINE <$> name <*> (pair <$> formals <*> exp)
end)

, ("(val x e)", curry VAL <$> name <*> exp)
]

Parser testtable parses a unit test.
S377b.

testtable : unit_test parser
〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S377a S377c ▷

val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)
, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
]

Parser xdeftablehandles those extended definitions that are not unit tests. It is
also where you would extend the parser with new syntactic forms of definition, like
the record form described in Section 2.13.6 on page 169.
S377c.

xdeftable : xdef parser
〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S377b S377e ▷

val xdeftable = usageParsers
[("(use filename)", USE <$> name)
〈rows added to µScheme xdeftable in exercises S377d〉
]

S377d. 〈rows added to µScheme xdeftable in exercises S377d〉≡ (S377c)
(* add syntactic sugar here, each row preceded by a comma *)

The xdef parser combines all the types of extended definition, plus an error
case.
S377e.

xdef : xdef parser
〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S377c S377f ▷

val xdef = DEF <$> deftable
<|> TEST <$> testtable
<|> xdeftable
<|> badRight "unexpected right bracket"
<|> DEF <$> EXP <$> exp
<?> "definition"

Finally, function xdefstream, which is the externally visible interface to the
parsing, uses the lexer and parser to make a function that converts a stream of
lines to a stream of extended definitions.
S377f.

xdefstream : string * line stream * prompts -> xdef stream
〈parsers and xdef streams for µScheme S376b〉+≡ (S373b) ◁ S377e

val xdefstream =
interactiveParsedStream (schemeToken, xdef)

O.4 UNIT TESTS FOR µSCHEME

Interpreters that are written in ML use a single language-dependent testing func-
tion, called testIsGood. Unlike the corresponding C function, test_result,
testIsGood returns a Boolean. That s̓ because the implementation is simple
enough, and it uses enough named auxiliary functions—likepasses, checkExpectPasses,

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<*> S263a
<?> S273c
<|> S264a
APPLY,
in nano-ML 414
in Typed µScheme

370a
in µML S421c
in µScheme 313a
badRight S274
BEGIN 313a
bindingsOf S375a
booltok S374d
bracket S276b
CHECK_ASSERTS365a
CHECK_ERROR S365a
CHECK_EXPECTS365a
curry S263d
curry3 S263d
DEF S365b
DEFINE 313b
distinctBsInS375a
embedBool,
in Typed µScheme

315b
in µML S433e
EXP 313b
formalsOf S375a
IFX 313a
int S374d
interactiveParsed-

Stream
S280b

LAMBDA 313a
left S274
leftCurly S274
LET 313a
LETREC 313a
LETSTAR 313a
LETX 313a
LITERAL,
in nano-ML 414
in Typed µScheme

370a
in µML S421c
in µScheme 313a
many S267b
name S374d
NUM,
in nano-ML 415b
in Typed µScheme

370b
in µML 498d
in µScheme 313a
pair S263d
quote S374d
right S274
schemeToken S374a
SET 313a
sexp S375d
TEST S365b
usageParsersS375c
USE S365b
VAL 313b
VAR,
in nano-ML 414
in Typed µScheme

370a
in µML S421c
in µScheme 313a
WHILEX 313a

Supporting code
for µScheme in MLO

S378

checkAssertPasses, and checkErrorPasses—that I always know from context
what a Boolean value is supposed to mean. You might enjoy comparing the code
below with the C code on pages S295 to S297, which returns a value of enumeration
type, not a Boolean. The C code is so complicated that I don’t know from context
what a Boolean result is supposed to mean; that s̓ why I define and use the enumer-
ation type TestResult on page S295.

InµScheme, a test is good if it passes. (In some other languages, tests must also
be well typed.)
S378a.

testIsGood : unit_test * basis -> bool
outcome : exp -> value error

〈definition of testIsGood for µScheme S378a〉≡ (S369b)

fun testIsGood (test, rho) =
let fun outcome e = withHandlers (fn e => OK (eval (e, rho))) e (ERROR o stripAtLoc)

〈asSyntacticValue for µScheme, Typed Impcore, Typed µScheme, and nano-ML S378b〉
〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c

in passes test
end

In most languages, the only expressions that are syntactic values are literal ex-
pressions.
S378b.

asSyntacticValue : exp -> value option
〈asSyntacticValue for µScheme, Typed Impcore, Typed µScheme, and nano-ML S378b〉≡ (S378a)

fun asSyntacticValue (LITERAL v) = SOME v
| asSyntacticValue _ = NONE

To print information about a failed test, we need function expString.
S378c. 〈definition of expString for µScheme S378c〉≡ (S365c)

fun expString e =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun exps es = map expString es
fun withBindings (keyword, bs, e) =
bracket (spaceSep [keyword, bindings bs, expString e])

and bindings bs = bracket (spaceSep (map binding bs))
and binding (x, e) = bracket (x ^ " " ^ expString e)
val letkind = fn LET => "let" | LETSTAR => "let*" | LETREC => "letrec"

in case e
of LITERAL (v as NUM _) => valueString v
| LITERAL (v as BOOLV _) => valueString v
| LITERAL v => "'" ^ valueString v
| VAR name => name
| SET (x, e) => bracketSpace ["set", x, expString e]
| IFX (e1, e2, e3) => bracketSpace ("if" :: exps [e1, e2, e3])
| WHILEX (cond, body) =>

bracketSpace ["while", expString cond, expString body]
| BEGIN es => bracketSpace ("begin" :: exps es)
| APPLY (e, es) => bracketSpace (exps (e::es))
| LETX (lk, bs, e) => bracketSpace [letkind lk, bindings bs, expString e]
| LAMBDA (xs, body) => bracketSpace ["lambda", bracketSpace xs, expString body]

end

O.5 UNSPECIFIED VALUES

In a val or letrec binding, the operational semantics of µScheme call for the al-
location of a location containing an unspecified value. My C code chooses a value
at random, but the initial basis of Standard ML has no random-number generator.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§O.6
Further reading

S379

So unlike the C unspecified function in chunk S318c, the ML version just cycles
through a few different values. It s̓ enough to prevent careless people from assum-
ing that such a value is always NIL.
S379.

cycleThrough : 'a list -> (unit -> 'a)
unspecified : unit -> value

〈utility functions on µScheme, Typed µScheme, and nano-ML values S365d〉+≡ (S373a) ◁ S366b
fun cycleThrough xs =
let val remaining = ref xs

fun next () = case !remaining
of [] => (remaining := xs; next ())
| x :: xs => (remaining := xs; x)

in if null xs then
raise InternalError "empty list given to cycleThrough"

else
next

end
val unspecified =
cycleThrough [BOOLV true, NUM 39, SYM "this value is unspecified", NIL,

PRIMITIVE (fn _ => let exception Unspecified in raise Unspecified end)]

O.6 FURTHER READING

Koenig (1994) describes an experience with ML type inference which leads to a
conclusion that resembles my conclusion about the type of noneIfLineEnds on
page S374c.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY 313a
BEGIN 313a
BOOLV,
in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
CHECK_ASSERTS365a
CHECK_ERROR S365a
CHECK_EXPECTS365a
checkAssertPasses

S246a
checkErrorPasses

S246b
checkExpectPasses

S246c
ERROR S243b
eval 316a
IFX 313a
InternalError

S366f
LAMBDA 313a
LET 313a
LETREC 313a
LETSTAR 313a
LETX 313a
LITERAL,
in nano-ML 414
in Typed Impcore

341a
in Typed µScheme

370a
in µScheme 313a
NIL,
in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
NUM,
in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
OK S243b
PRIMITIVE,
in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
SET 313a
spaceSep S239a
stripAtLoc S255g
SYM,
in nano-ML 415b
in Typed µScheme

370b
in µScheme 313a
valueString 314
VAR 313a
WHILEX 313a
withHandlersS371a

CHAPTER CONTENTS
P.1 PREDEFINED FUNC-

TIONS S381
P.2 UNWORTHY INTER-

PRETER CODE S381
P.2.1 Processing definitions:

typing and evaluation S381
P.2.2 The read-eval-print loop S382
P.2.3 Building the initial basis S382

P.2.4 Pulling the pieces to-
gether S383

P.3 UNIT TESTING S383
P.4 PRINTING TYPES AND

VALUES S385
P.5 PARSING S386
P.6 EVALUATION S388

PSupporting code for Typed Impcore

P.1 PREDEFINED FUNCTIONS

As in Chapter 1, we define modulus in terms of division.
S381a. 〈predefined Typed Impcore functions S381a〉≡

(define int mod ([m : int] [n : int]) (- m (* n (/ m n))))
(define int negated ([n : int]) (- 0 n))

P.2 UNWORTHY INTERPRETER CODE

The full story about abstract syntax: the definition of xdef is shared with
µScheme, and functions valueString and expString are defined below.
S381b. 〈abstract syntax and values for Typed Impcore S381b〉≡ (S383a)

〈definitions of exp and value for Typed Impcore 340f〉
〈definition of type func, to represent a Typed Impcore function 341e〉
〈definition of def for Typed Impcore 341c〉
〈definition of unit_test for Typed Impcore 341d〉
〈definition of xdef (shared) S365b〉
〈definition of valueString for Typed Impcore S386b〉
〈definition of expString for Typed Impcore S385b〉
〈definitions of defString and defName for Typed Impcore S385c〉
〈definitions of functions toArray and toInt for Typed Impcore 354a〉

S381c. 〈definition of badParameter S381c〉≡ (350b)
fun badParameter (n, atau::actuals, ftau::formals) =

if eqType (atau, ftau) then
badParameter (n+1, actuals, formals)

else
raise TypeError ("In call to " ^ f ^ ", parameter " ^

intString n ^ " has type " ^ typeString atau ^
" where type " ^ typeString ftau ^ " is expected")

| badParameter _ =
raise TypeError ("Function " ^ f ^ " expects " ^

countString formaltypes "parameter" ^
" but got " ^ intString (length actualtypes))

P.2.1 Processing definitions: typing and evaluation

Now that we can both type and evaluate definitions, we can define the type topenv
and functionprocessDefneeded for Typed Impcore to work with the reusable read-
eval-print loop described in Section O.2.1 on page S368. The processDef function
for a dynamically typed language such as Impcore orµScheme can simply evaluate
a definition. But the processDef function for a statically typed language such as
Typed Impcore also needs a typechecking step. Function processDef needs not

S381
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for Typed ImpcoreP

S382

only the top-level type environments Γϕ and Γξ but also the top-level value and
function environments ϕ and ξ. These environments are put into a tuple whose
type is basis. Of the four environments, the value environment ξ is the only one
that can be mutated during evaluation, so it is the only one that has a ref in its type.
S382a.

processDef : def * basis * interactivity -> basis
〈definitions of basis and processDef for Typed Impcore S382a〉≡ (S388c)

type basis = ty env * funty env * value ref env * func env
fun processDef (d, (tglobals, tfuns, vglobals, vfuns), interactivity) =
let val (tglobals, tfuns, tystring) = typdef (d, tglobals, tfuns)

val (vglobals, vfuns, valstring) = evaldef (d, vglobals, vfuns)
val _ = if prints interactivity then println (valstring ^ " : " ^ tystring)

else ()
in (tglobals, tfuns, vglobals, vfuns)
end

The distinction between “compile time,” where we run the typing phase typdef,
and “run time,” where we run the evaluator evaldef, is sometimes called the phase
distinction. The phase distinction is easy to overlook, especially when youʼre using
an interactive interpreter or compiler, but the code shows the phase distinction is
real.

The definition of the evaluation function evaldef appears in Appendix P.

P.2.2 The read-eval-print loop

Typed Impcore reuses the read-eval-print loop defined in Section O.2.1 on page S368.
But Typed Impcore needs handlers for new exceptions: TypeError andBugInTypeChecking.
TypeError is raised not at parsing time, and not at evaluation time, but at type-
checking time. BugInTypeChecking should never be raised.
S382b. 〈other handlers that catch non-fatal exceptions and pass messages to caught S382b〉≡

| TypeError msg => caught ("type error <at loc>: " ^ msg)
| BugInTypeChecking msg => caught ("bug in type checking: " ^ msg)

S382c. 〈more handlers for atLoc S382c〉≡
| e as TypeError _ => raise Located (loc, e)
| e as BugInTypeChecking _ => raise Located (loc, e)

P.2.3 Building the initial basis

The initial basis includes both primitive and predefined functions.
S382d. 〈implementations of Typed Impcore primitives and definition of initialBasis S382d〉≡ (S383a)

〈shared utility functions for building primitives in languages with type checking S389d〉
〈utility functions and types for making Typed Impcore primitives S389f〉
val initialBasis =
let fun addPrim ((name, prim, funty), (tfuns, vfuns)) =

(bind (name, funty, tfuns)
, bind (name, PRIMITIVE prim, vfuns)
)

val (tfuns, vfuns) = foldl addPrim (emptyEnv, emptyEnv)
(〈primitive functions for Typed Impcore :: S390a〉 nil)

val primBasis = (emptyEnv, tfuns, emptyEnv, vfuns)
val fundefs = 〈predefined Typed Impcore functions, as strings (from chunk 340a)〉
val xdefs = stringsxdefs ("predefined functions", fundefs)

in readEvalPrintWith predefinedFunctionError (xdefs, primBasis, noninteractive)
end

The code for the primitives appears in Appendix P. It resembles the code in Chap-
ter 5, but it supplies a type, not just a value, for each primitive.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§P.3. Unit testing

S383

P.2.4 Pulling the pieces together

The parts of the ML code are put together in much the same way as the parts of the
interpreter forµScheme in 〈mlscheme.sml S373a〉. And there are two new chunks that
have no counterpart in an interpreter for µScheme: 〈types for Typed Impcore 340c〉
and 〈type checking for Typed Impcore 347a〉.
S383a. 〈timpcore.sml S383a〉≡

〈exceptions used in languages with type checking S237b〉
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈types for Typed Impcore 340c〉

〈abstract syntax and values for Typed Impcore S381b〉
〈utility functions on Typed Impcore values S383b〉

〈type checking for Typed Impcore 347a〉

〈lexical analysis and parsing for Typed Impcore, providing filexdefs and stringsxdefs S386c〉

〈evaluation, testing, and the read-eval-print loop for Typed Impcore S388c〉

〈implementations of Typed Impcore primitives and definition of initialBasis S382d〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

P.3 UNIT TESTING

S383b. 〈utility functions on Typed Impcore values S383b〉≡ (S383a)
fun testEqual (NUM n, NUM n') = n = n'
| testEqual (ARRAY a, ARRAY a') = a = a'
| testEqual (_, _) = false

S383c. 〈definition of testIsGood for Typed Impcore S383c〉≡ (S388c)
fun testIsGood (test, (tglobals, tfuns, vglobals, vfuns)) =
let fun ty e = typeof (e, tglobals, tfuns, emptyEnv)

handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")
fun deftystring d =
let val (_, _, t) = typdef (d, tglobals, tfuns)
in t
end handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")

〈shared check{Expect,Assert,Error,Type{Checks, which call ty S384d〉
fun checks (CHECK_EXPECT (e1, e2)) = checkExpectChecks (e1, e2)
| checks (CHECK_ASSERT e) = checkAssertChecks e
| checks (CHECK_ERROR e) = checkErrorChecks e
| checks (CHECK_TYPE_ERROR d) = true
| checks (CHECK_FUNCTION_TYPE (f, fty)) = true

fun outcome e =
withHandlers (fn () => OK (eval (e, vglobals, vfuns, emptyEnv))) () (ERROR o stripAtLoc)

〈asSyntacticValue for µScheme, Typed Impcore, Typed µScheme, and nano-ML S378b〉
〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉
〈shared checkTypePasses and checkTypeErrorPasses, which call ty S384b〉
〈definition of checkFunctionTypePasses S384a〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_FUNCTION_TYPE (f, fty)) = checkFunctionTypePasses (f, fty)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY 340f
bind 312b
BugInTypeChecking

S237b
caught S371a
CHECK_ASSERT341d
CHECK_ERROR 341d
CHECK_EXPECT341d
CHECK_FUNCTION_

TYPE
341d

CHECK_TYPE_ERROR
341d

checkAssertChecks
S385a

checkAssertPasses
S246a

checkErrorChecks
S385a

checkErrorPasses
S246b

checkExpectChecks
S384d

checkExpectPasses
S246c

checkFunctionType-
Passes

S384a
checkTypeError-

Passes
S384c

emptyEnv 311a
type env 310b
ERROR S243b
eval S388e
evaldef S389b
fst S263d
type func 341e
type funty 340c
loc S255d
Located S255b
noninteractive

S368c
NotFound 311b
NUM 340f
OK S243b
predefined-

FunctionError
S238e

PRIMITIVE 341e
println S238a
prints S368c
readEvalPrintWith

S369c
stringsxdefsS254c
stripAtLoc S255g
type ty 340c
typdef 350c
TypeError S237b
typeof 347a
type value 340f
withHandlersS371a

Supporting code
for Typed ImpcoreP

S384

| passes (CHECK_TYPE_ERROR c) = checkTypeErrorPasses c

in checks test andalso passes test
end

S384a. 〈definition of checkFunctionTypePasses S384a〉≡ (S383c)
fun checkFunctionTypePasses (f, tau as FUNTY (args, result)) =
let val tau' as FUNTY (args', result') =

find (f, tfuns)
handle NotFound f => raise TypeError ("Function " ^ f ^ " is not defined")

in if eqTypes (args, args') andalso eqType (result, result') then
true

else
failtest ["check-function-type failed: expected ", f, " to have type ",

funtyString tau, ", but it has type ", funtyString tau']
end handle TypeError msg =>

failtest ["In (check-function-type ", f, " " ^ funtyString tau, "), ", msg]

S384b. 〈shared checkTypePasses and checkTypeErrorPasses, which call ty S384b〉≡ (S383c S401e) S384c ▷
fun checkTypePasses (e, tau) =
let val tau' = ty e
in if eqType (tau, tau') then

true
else
failtest ["check-type failed: expected ", expString e, " to have type ",

typeString tau, ", but it has type ", typeString tau']
end handle TypeError msg =>

failtest ["In (check-type ", expString e, " " ^ typeString tau, "), ", msg]

S384c. 〈shared checkTypePasses and checkTypeErrorPasses, which call ty S384b〉+≡ (S383c S401e) ◁ S384b
fun checkTypeErrorPasses (EXP e) =

(let val tau = ty e
in failtest ["check-type-error failed: expected ", expString e,

" not to have a type, but it has type ", typeString tau]
end handle TypeError msg => true

| Located (_, TypeError _) => true)
| checkTypeErrorPasses d =

(let val t = deftystring d
in failtest ["check-type-error failed: expected ", defString d,

" to cause a type error, but it successfully defined ",
defName d, " : ", t
]

end handle TypeError msg => true
| Located (_, TypeError _) => true)

S384d. 〈shared check{Expect,Assert,Error,Type{Checks, which call ty S384d〉≡ (S383c S401e) S385a ▷
fun checkExpectChecks (e1, e2) =
let val tau1 = ty e1

val tau2 = ty e2
in if eqType (tau1, tau2) then

true
else
raise TypeError ("Expressions have types " ^ typeString tau1 ^

" and " ^ typeString tau2)
end handle TypeError msg =>
failtest ["In (check-expect ", expString e1, " ", expString e2, "), ", msg]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§P.4
Printing types and

values

S385

S385a. 〈shared check{Expect,Assert,Error,Type{Checks, which call ty S384d〉+≡ (S383c S401e) ◁ S384d
fun checkOneExpChecks inWhat e =
let val tau1 = ty e
in true
end handle TypeError msg =>
failtest ["In (", inWhat, " ", expString e, "), ", msg]

val checkAssertChecks = checkOneExpChecks "check-assert"
val checkErrorChecks = checkOneExpChecks "check-error"

S385b. 〈definition of expString for Typed Impcore S385b〉≡ (S381b)
fun expString e =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun exps es = map expString es

in case e
of LITERAL v => valueString v
| VAR name => name
| SET (x, e) => bracketSpace ["set", x, expString e]
| IFX (e1, e2, e3) => bracketSpace ("if" :: exps [e1, e2, e3])
| WHILEX (cond, body) => bracketSpace ["while", expString cond, expString body]
| BEGIN es => bracketSpace ("begin" :: exps es)
| EQ (e1, e2) => bracketSpace ("=" :: exps [e1, e2])
| PRINTLN e => bracketSpace ["println", expString e]
| PRINT e => bracketSpace ["print", expString e]
| APPLY (f, es) => bracketSpace (f :: exps es)
| AAT (a, i) => bracketSpace ("array-at" :: exps [a, i])
| APUT (a, i, e) => bracketSpace ("array-put" :: exps [a, i, e])
| AMAKE (e, n) => bracketSpace ("make-array" :: exps [e, n])
| ASIZE a => bracketSpace ("array-size" :: exps [a])

end

S385c. 〈definitions of defString and defName for Typed Impcore S385c〉≡ (S381b)
fun defString d =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun formal (x, t) = "[" ^ x ^ " : " ^ typeString t ^ "]"

in case d
of EXP e => expString e
| VAL (x, e) => bracketSpace ["val", x, expString e]
| DEFINE (f, { formals, body, returns }) =>

bracketSpace ["define", typeString returns, f,
bracketSpace (map formal formals), expString body]

end
fun defName (VAL (x, _)) = x
| defName (DEFINE (x, _)) = x
| defName (EXP _) = raise InternalError "asked for name defined by expression"

P.4 PRINTING TYPES AND VALUES

This code prints types.
S385d. 〈definitions of typeString and funtyString for Typed Impcore S385d〉≡ S386a ▷

fun typeString BOOLTY = "bool"
| typeString INTTY = "int"
| typeString UNITTY = "unit"
| typeString (ARRAYTY tau) = "(array " ^ typeString tau ^ ")"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

AAT 353d
AMAKE 353d
APPLY 341a
APUT 353d
ARRAYTY 340c
ASIZE 353d
BEGIN 341a
BOOLTY 340c
DEFINE 341c
defName,
in molecule S466c
in Typed µScheme

S403
defString,
in molecule S533a
in Typed µScheme

S403
deftystring,

in molecule S526e
in Typed Impcore

S383c
in Typed µScheme

S401e
EQ 341b
eqType,
in molecule S494e
in Typed Impcore

340d
in Typed µScheme

379a
eqTypes 340d
EXP,
in molecule S462b
in Typed Impcore

341c
in Typed µScheme

370c
expString,
in molecule S532d
in Typed µScheme

S402b
failtest S246d
find 311b
FUNTY 340c
funtyString S386a
IFX 341a
InternalError

S366f
INTTY 340c
LITERAL 341a
Located S255b
NotFound 311b
PRINT 341b
PRINTLN 341b
SET 341a
spaceSep S239a
tfuns S383c
ty,
in molecule S526e
in Typed Impcore

S383c
in Typed µScheme

S401e
TypeError S237b
typeString,

in molecule S531c
in Typed µScheme

S394c
UNITTY 340c
VAL 341c
valueString S386b
VAR 341a
WHILEX 341a

Supporting code
for Typed ImpcoreP

S386

S386a. 〈definitions of typeString and funtyString for Typed Impcore S385d〉+≡ ◁ S385d
fun funtyString (FUNTY (args, result)) =
"(" ^ spaceSep (map typeString args) ^ " -> " ^ typeString result ^ ")"

It would be good to figure out how to use separate in this code.
S386b. 〈definition of valueString for Typed Impcore S386b〉≡ (S381b)

fun valueString (NUM n) = intString n
| valueString (ARRAY a) =

if Array.length a = 0 then
"[]"

else
let val elts = Array.foldr (fn (v, s) => " " :: valueString v :: s) ["]"] a
in String.concat ("[" :: tl elts)
end

P.5 PARSING

Typed Impcore can use µScheme s̓ lexical analysis, so all we have here is a parser.

S386c. 〈lexical analysis and parsing for Typed Impcore, providing filexdefs and stringsxdefs S386c〉≡ (S383a)
〈lexical analysis for µScheme and related languages S373c〉
〈parsers for single µScheme tokens S374d〉
〈parsers and parser builders for formal parameters and bindings S375a〉
〈parser builders for typed languages S387a〉
〈parsers and xdef streams for Typed Impcore S386d〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

S386d.

exp : exp parser
exptable : exp parser -> exp parser

〈parsers and xdef streams for Typed Impcore S386d〉≡ (S386c) S387b ▷

val name = sat (fn n => n <> "->") name (* an arrow is not a name *)
val arrow = (fn (NAME "->") => SOME () | _ => NONE) <$>? pretoken

fun exptable exp = usageParsers
[("(if e1 e2 e3)", curry3 IFX <$> exp <*> exp <*> exp)
, ("(while e1 e2)", curry WHILEX <$> exp <*> exp)
, ("(set x e)", curry SET <$> name <*> exp)
, ("(begin e ...)", BEGIN <$> many exp)
, ("(println e)", PRINTLN <$> exp)
, ("(print e)", PRINT <$> exp)
, ("(= e1 e2)", curry EQ <$> exp <*> exp)
, ("(array-at a i)", curry AAT <$> exp <*> exp)
, ("(array-put a i e)", curry3 APUT <$> exp <*> exp <*> exp)
, ("(make-array n e)", curry AMAKE <$> exp <*> exp)
, ("(array-size a)", ASIZE <$> exp)
]

fun impcorefun what exp = name
<|> exp <!> ("only named functions can be " ^ what)
<?> "function name"

val atomicExp = VAR <$> name
<|> LITERAL <$> NUM <$> int
<|> booltok <!> "Typed Impcore has no Boolean literals"
<|> quote <!> "Typed Impcore has no quoted literals"

fun exp tokens = (

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§P.5. Parsing

S387

atomicExp
<|> exptable exp
<|> leftCurly <!> "curly brackets are not supported"
<|> left *> right <!> "empty application"
<|> bracket("function application",

curry APPLY <$> impcorefun "applied" exp <*> many exp)
) tokens

S387a.

typedFormalsOf : string parser -> 'b parser -> 'a parser -> string -> (string * 'a) list parser
〈parser builders for typed languages S387a〉≡ (S386c S395a)

fun typedFormalOf name colon ty =
bracket ("[x : ty]", pair <$> name <* colon <*> ty)

fun typedFormalsOf name colon ty context =
let val formal = typedFormalOf name colon ty
in distinctBsIn (bracket("(... [x : ty] ...)", many formal)) context
end

S387b. 〈parsers and xdef streams for Typed Impcore S386d〉+≡ (S386c) ◁ S386d S387c ▷
fun repeatable_ty tokens = (

BOOLTY <$ kw "bool"
<|> UNITTY <$ kw "unit"
<|> INTTY <$ kw "int"
<|> (fn (loc, n) => errorAt ("Cannot recognize name " ^ n ^ " as a type") loc)

<$>! @@ name
<|> usageParsers [("(array ty)", ARRAYTY <$> ty)]
) tokens
and ty tokens = (repeatable_ty <?> "int, bool, unit, or (array ty)") tokens

val funty = bracket ("function type",
curry FUNTY <$> many repeatable_ty <* arrow <*> ty)

S387c. 〈parsers and xdef streams for Typed Impcore S386d〉+≡ (S386c) ◁ S387b S387d ▷

fun define ty f formals body =
DEFINE (f, { returns = ty, formals = formals, body = body })

val formals = typedFormalsOf name (kw ":") ty "formal parameters in 'define'"
val deftable = usageParsers
[("(define ty f (args) body)", define <$> ty <*> name <*> formals <*> exp)
, ("(val x e)", curry VAL <$> name <*> exp)
]

Function unit_test parses a unit test.
S387d.

testtable : unit_test parser
〈parsers and xdef streams for Typed Impcore S386d〉+≡ (S386c) ◁ S387c S387e ▷

val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)
, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
, ("(check-type-error d)", CHECK_TYPE_ERROR <$> (deftable <|> EXP <$> exp))
, ("(check-function-type f (tau ... -> tau))",

curry CHECK_FUNCTION_TYPE <$> impcorefun "checked" exp <*> funty)
]

S387e. 〈parsers and xdef streams for Typed Impcore S386d〉+≡ (S386c) ◁ S387d S388a ▷
val xdeftable = usageParsers
[("(use filename)", USE <$> name)
〈rows added to Typed Impcore xdeftable in exercises S388b〉
]

val xdef = DEF <$> deftable
<|> TEST <$> testtable

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<$>? S266c
<*> S263a
<?> S273c
<|> S264a
AAT 353d
AMAKE 353d
APPLY 341a
APUT 353d
ARRAY 340f
ARRAYTY 340c
ASIZE 353d
badRight S274
BEGIN 341a
booltok S374d
BOOLTY 340c
bracket S276b
CHECK_ASSERT341d
CHECK_ERROR 341d
CHECK_EXPECT341d
CHECK_FUNCTION_

TYPE
341d

CHECK_TYPE_ERROR
341d

curry S263d
curry3 S263d
DEF S365b
DEFINE 341c
distinctBsInS375a
EQ 341b
errorAt S256a
EXP 341c
FUNTY 340c
IFX 341a
int S374d
intString S238f
INTTY 340c
kw S375c
left S274
leftCurly S274
LITERAL 341a
many S267b
NAME S373c
name S374d
NUM 340f
pair S263d
pretoken S374d
PRINT 341b
PRINTLN 341b
quote S374d
right S274
sat S266a
SET 341a
spaceSep S239a
TEST S365b
typeString S385d
UNITTY 340c
usageParsersS375c
USE S365b
VAL 341c
VAR 341a
WHILEX 341a

Supporting code
for Typed ImpcoreP

S388

<|> xdeftable
<|> badRight "unexpected right bracket"
<|> DEF <$> EXP <$> exp
<?> "definition"

S388a. 〈parsers and xdef streams for Typed Impcore S386d〉+≡ (S386c) ◁ S387e
val xdefstream = interactiveParsedStream (schemeToken, xdef)

S388b. 〈rows added to Typed Impcore xdeftable in exercises S388b〉≡ (S387e)
(* add syntactic extensions here, each preceded by a comma *)

P.6 EVALUATION

S388c. 〈evaluation, testing, and the read-eval-print loop for Typed Impcore S388c〉≡ (S383a)
〈definitions of eval and evaldef for Typed Impcore S388d〉
〈definitions of basis and processDef for Typed Impcore S382a〉
〈shared definition of withHandlers S371a〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for Typed Impcore S383c〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉

All values of unit type must test equal with =, so they must have the same rep-
resentation. Because that representation is the result of evaluating a WHILE loop or
an empty BEGIN, it is defined here.
S388d.

ev : exp -> value
〈definitions of eval and evaldef for Typed Impcore S388d〉≡ (S388c) S388e ▷

val unitVal = NUM 1983

The implementation of the evaluator uses the same techniques we use to im-
plement µScheme in Chapter 5. Because of Typed Impcore s̓ many environments,
the evaluator does more bookkeeping.
S388e.

eval : exp * value ref env * func env * value ref env -> value
〈definitions of eval and evaldef for Typed Impcore S388d〉+≡ (S388c) ◁ S388d S389b ▷

fun projectBool (NUM 0) = false
| projectBool _ = true

fun eval (e, globals, functions, formals) =
let val toBool = projectBool

fun ofBool true = NUM 1
| ofBool false = NUM 0

fun eq (NUM n1, NUM n2) = (n1 = n2)
| eq (ARRAY a1, ARRAY a2) = (a1 = a2)
| eq _ = false

fun findVar v = find (v, formals) handle NotFound _ => find (v, globals)
fun ev (LITERAL n) = n
| ev (VAR x) = !(findVar x)
| ev (SET (x, e)) = let val v = ev e in v before findVar x := v end
| ev (IFX (cond, t, f)) = if toBool (ev cond) then ev t else ev f
| ev (WHILEX (cond, exp)) =

if toBool (ev cond) then
(ev exp; ev (WHILEX (cond, exp)))

else
unitVal

| ev (BEGIN es) =
let fun b (e::es, lastval) = b (es, ev e)

| b ([], lastval) = lastval
in b (es, unitVal)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§P.6. Evaluation

S389

end
| ev (EQ (e1, e2)) = ofBool (eq (ev e1, ev e2))
| ev (PRINTLN e) = (print (valueString (ev e)^"\n"); unitVal)
| ev (PRINT e) = (print (valueString (ev e)); unitVal)
| ev (APPLY (f, args)) =

(case find (f, functions)
of PRIMITIVE p => p (map ev args)
| USERDEF func => 〈apply user-defined function func to args S389a〉)

〈more alternatives for ev for Typed Impcore 354b〉
in ev e
end

To apply a function, we build an evaluation environment. We strip the types
off the formals and we put the actuals in mutable ref cells. The number of ac-
tuals should be the same as the number of formals, or the call would have been
rejected by the type checker. If the number isnʼt the same, we catch exception
BindListLength and raise BugInTypeChecking.
S389a.

formals : name list
actuals : value ref list

〈apply user-defined function func to args S389a〉≡ (S388e)

let val (formals, body) = func
val actuals = map (ref o ev) args

in eval (body, globals, functions, bindList (formals, actuals, emptyEnv))
handle BindListLength =>

raise BugInTypeChecking "Wrong number of arguments to function"
end

Evaluating a definition produces two environments, plus a string representing
the thing defined.
S389b.

evaldef : def * value ref env * func env -> value ref env * func env * string
〈definitions of eval and evaldef for Typed Impcore S388d〉+≡ (S388c) ◁ S388e

fun evaldef (d, globals, functions) =
case d
of VAL (x, e) => 〈evaluate e and bind the result to x S389c〉
| EXP e => evaldef (VAL ("it", e), globals, functions)
| DEFINE (f, { body = e, formals = xs, returns = rt }) =>

(globals, bind (f, USERDEF (map #1 xs, e), functions), f)

S389c. 〈evaluate e and bind the result to x S389c〉≡ (S389b)
let val v = eval (e, globals, functions, emptyEnv)
in (bind (x, ref v, globals), functions, valueString v)
end

Here are the primitives. As in Chapter 5, all are either binary or unary oper-
ators. Type checking should guarantee that operators are used with the correct
arity.
S389d.

unaryOp : (value -> value) -> (value list -> value)
binaryOp : (value * value -> value) -> (value list -> value)

〈shared utility functions for building primitives in languages with type checking S389d〉≡ (S382d S394a) S389e ▷

fun binaryOp f = (fn [a, b] => f (a, b) | _ => raise BugInTypeChecking "arity 2")
fun unaryOp f = (fn [a] => f a | _ => raise BugInTypeChecking "arity 1")

Arithmetic primitives expect and return integers.
S389e.

arithOp : (int * int -> int) -> (value list -> value)
〈shared utility functions for building primitives in languages with type checking S389d〉+≡ (S382d S394a) ◁ S389d

fun arithOp f =
binaryOp (fn (NUM n1, NUM n2) => NUM (f (n1, n2))

| _ => raise BugInTypeChecking "arithmetic on non-numbers")

S389f.

arithtype : funty
〈utility functions and types for making Typed Impcore primitives S389f〉≡ (S382d) S390c ▷

val arithtype = FUNTY ([INTTY, INTTY], INTTY)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY 341a
applyChecking-

Overflow
S242b

ARRAY 340f
BEGIN 341a
bind 312b
bindList 312c
BindListLength

312c
BugInTypeChecking

S237b
DEFINE 341c
emptyEnv 311a
EQ 341b
EXP 341c
find 311b
FUNTY 340c
id S263d
IFX 341a
interactiveParsed-

Stream
S280b

INTTY 340c
LITERAL 341a
NotFound 311b
NUM,
in molecule S499d
in Typed Impcore

340f
in Typed µScheme

370b
PRIMITIVE 341e
PRINT 341b
PRINTLN 341b
schemeToken S374a
SET 341a
USERDEF 341e
VAL 341c
valueString S386b
VAR 341a
WHILEX 341a
xdef S387e

Supporting code
for Typed ImpcoreP

S390

As in Chapter 5, we use the chunk 〈primitive functions for Typed Impcore :: S390a〉
to cons up all the primitives into one giant list, and we use that list to build the
initial environment for the read-eval-print loop. The big difference is that in Typed
Impcore, each primitive has a type as well as a value.
S390a. 〈primitive functions for Typed Impcore :: S390a〉≡ (S382d) S390b ▷

("+", arithOp op +, arithtype) ::
("-", arithOp op -, arithtype) ::
("*", arithOp op *, arithtype) ::
("/", arithOp op div, arithtype) ::

And printing Unicode.
S390b. 〈primitive functions for Typed Impcore :: S390a〉+≡ (S382d) ◁ S390a S390d ▷

("printu", unaryOp (fn (NUM n) => (printUTF8 n; unitVal)
| _ => raise BugInTypeChecking "printu of non-number"),

FUNTY ([INTTY], UNITTY)) ::

Comparisons take two arguments. Most comparisons (except for equality) ap-
ply only to integers.
S390c.

comparison : (value * value -> bool) -> (value list -> value)
intcompare : (int * int -> bool) -> (value list -> value)
comptype : funty

〈utility functions and types for making Typed Impcore primitives S389f〉+≡ (S382d) ◁ S389f

fun embedBool b = NUM (if b then 1 else 0)
fun comparison f = binaryOp (embedBool o f)
fun intcompare f =

comparison (fn (NUM n1, NUM n2) => f (n1, n2)
| _ => raise BugInTypeChecking "comparing non-numbers")

val comptype = FUNTY ([INTTY, INTTY], BOOLTY)

S390d. 〈primitive functions for Typed Impcore :: S390a〉+≡ (S382d) ◁ S390b
("<", intcompare op <, comptype) ::
(">", intcompare op >, comptype) ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§P.6. Evaluation

S391

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arithOp S389e
arithtype S389f
binaryOp S389d
BOOLTY 340c
BugInTypeChecking

S237b
FUNTY 340c
INTTY 340c
NUM 340f
printUTF8 S239b
unaryOp S389d
UNITTY 340c
unitVal S388d

CHAPTER CONTENTS
Q.1 MASTER INTERPRETER

FRAGMENTS S393

Q.1.1 Infinite stream of type
variables S393

Q.2 PRINTING TYPES AND
VALUES S394

Q.3 PARSING S395
Q.4 EVALUATION S397
Q.5 PRIMITIVES OF TYPED

µSCHEME S399
Q.6 PREDEFINED FUNC-

TIONS S400
Q.7 UNIT TESTING S401

QSupporting code for the Typed µScheme interpreter

Q.1 MASTER INTERPRETER FRAGMENTS

Unit tests are as for Typed Impcore, except we can check the type of any expression,
not just a function.
S393a. 〈definition of unit_test for explicitly typed languages S393a〉≡ (S393b)

datatype unit_test = CHECK_EXPECT of exp * exp
| CHECK_ASSERT of exp
| CHECK_ERROR of exp
| CHECK_TYPE of exp * tyex
| CHECK_TYPE_ERROR of def

These pieces are pulled together as follows. The definition of xdef is, as usual,
shared, and less usually, the definition of valueString is shared withµScheme and
nano-ML.
S393b. 〈abstract syntax and values for Typed µScheme S393b〉≡ (S394b)

〈definitions of exp and value for Typed µScheme 370a〉
〈definition of def for Typed µScheme 370c〉
〈definition of unit_test for explicitly typed languages S393a〉
〈definition of xdef (shared) S365b〉
〈definition of valueString for µScheme, Typed µScheme, and nano-ML 314〉
〈definition of expString for Typed µScheme S402b〉
〈definitions of defString and defName for Typed µScheme S403〉

Q.1.1 Infinite stream of type variables

Stream infiniteTyvars is built from stream naturals, which contains the natural
numbers; naturals is defined in chunk S252a in Appendix I.
S393c.

naturals : int stream
infiniteTyvars : name stream

〈infinite supply of type variables S393c〉≡ (379a)

val infiniteTyvars =
streamMap (fn n => "'b-" ^ intString n) naturals

Processing definitions in two phases

S393d.

processDef : def * basis * interactivity -> basis
〈definitions of basis and processDef for Typed µScheme S393d〉≡ (S397e)

〈definition of basis for Typed µScheme 391d〉
fun processDef (d, (Delta, Gamma, rho), interactivity) =
let val (Gamma, tystring) = typdef (d, Delta, Gamma)

val (rho, valstring) = evaldef (d, rho)
val _ = if prints interactivity then

println (valstring ^ " : " ^ tystring)
else
()

in (Delta, Gamma, rho)

S393
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for Typed µSchemeQ

S394

end

Building the initial basis and interpreter

S394a. 〈implementations of Typed µScheme primitives and definition of initialBasis S394a〉≡ (S394b)
〈shared utility functions for building primitives in languages with type checking S389d〉
〈utility functions and types for making Typed µScheme primitives S400a〉
〈definition of primBasis for Typed µScheme 391e〉
val initialBasis =
let val fundefs = 〈predefined Typed µScheme functions, as strings (from chunk S400e)〉

val xdefs = stringsxdefs ("predefined functions", fundefs)
in readEvalPrintWith predefinedFunctionError (xdefs, primBasis, noninteractive)
end

The primitives appear in Section Q.5 on page S399. They resemble the primitives
in Chapter 5, except that each primitive comes with a type as well as a value.

Pulling the pieces together

The overall structure of the Typed µScheme interpreter is similar to the structure
of the Typed Impcore interpreter, with the addition of kinds and kind checking.
S394b. 〈tuscheme.sml S394b〉≡

〈exceptions used in languages with type checking S237b〉
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈kinds for typed languages 364a〉
〈types for Typed µScheme S394c〉
〈sets of free type variables in Typed µScheme 381a〉
〈shared utility functions on sets of type variables generated automatically〉
〈kind checking for Typed µScheme 387b〉

〈abstract syntax and values for Typed µScheme S393b〉
〈utility functions on µScheme, Typed µScheme, and nano-ML values 315a〉

〈capture-avoiding substitution for Typed µScheme 384a〉
〈type equivalence for Typed µScheme 379a〉
〈type checking for Typed µScheme generated automatically〉

〈lexical analysis and parsing for Typed µScheme, providing filexdefs and stringsxdefs S395a〉

〈evaluation, testing, and the read-eval-print loop for Typed µScheme S397e〉

〈implementations of Typed µScheme primitives and definition of initialBasis S394a〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

Q.2 PRINTING TYPES AND VALUES

This code prints types. It might be desirable to print them using a more ML-like
syntax.
S394c. 〈types for Typed µScheme S394c〉≡ (S394b)

fun typeString (TYCON c) = c
| typeString (TYVAR a) = a
| typeString (FUNTY (args, result)) =

"(" ^ spaceSep (map typeString args) ^ " -> " ^ typeString result ^ ")"
| typeString (CONAPP (tau, [])) = "(" ^ typeString tau ^ ")"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§Q.3. Parsing

S395

| typeString (CONAPP (tau, tys)) =
"(" ^ typeString tau ^ " " ^ spaceSep (map typeString tys) ^ ")"

| typeString (FORALL (tyvars, tau)) =
"(forall [" ^ spaceSep tyvars ^ "] " ^ typeString tau ^ ")"

Q.3 PARSING

S395a. 〈lexical analysis and parsing for Typed µScheme, providing filexdefs and stringsxdefs S395a〉≡ (S394b)
〈lexical analysis for µScheme and related languages S373c〉
〈parsers for single µScheme tokens S374d〉
〈parsers for Typed µScheme tokens S395b〉
〈parsers and parser builders for formal parameters and bindings S375a〉
〈parsers and parser builders for Scheme-like syntax S375d〉
〈parser builders for typed languages S395e〉
〈parsers and xdef streams for Typed µScheme S395c〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

S395b. 〈parsers for Typed µScheme tokens S395b〉≡ (S395a) S395d ▷

val arrow = (fn (NAME "->") => SOME () | _ => NONE) <$>? pretoken
val name = sat (fn n => n <> "->") name (* an arrow is not a name *)

S395c. 〈parsers and xdef streams for Typed µScheme S395c〉≡ (S395a) S396a ▷
fun keyword words =
let fun isKeyword s = List.exists (fn s' => s = s') words
in sat isKeyword name
end

val expKeyword = keyword ["if", "while", "set", "begin", "lambda",
"type-lambda", "let", "let*", "@"]

val tyKeyword = keyword ["forall", "function", "->"]

val tlformals = nodups ("formal type parameter", "type-lambda") <$>! @@ (many name)

fun nodupsty what (loc, xts) = nodups what (loc, map fst xts) >>=+ (fn _ => xts)
(* error on duplicate names *)

fun letDups LETSTAR (_, bindings) = OK bindings
| letDups LET bindings = nodupsty ("bound variable", "let") bindings

When parsing a type, we reject anything that looks like an expression.
S395d.

tyvar : string parser
〈parsers for Typed µScheme tokens S395b〉+≡ (S395a) ◁ S395b

val tyvar =
quote *> (curry op ^ "'" <$> name <?> "type variable (got quote mark)")

S395e.

distinctTyvars : name list parser
〈parser builders for typed languages S395e〉≡ (S395a S386c)

val distinctTyvars =
nodups ("quantified type variable", "forall") <$>! @@ (many tyvar)

fun arrowsOf conapp funty =
let fun arrows [] [] = ERROR "empty type ()"

| arrows (tycon::tyargs) [] = OK (conapp (tycon, tyargs))
| arrows args [rhs] =

(case rhs of [result] => OK (funty (args, result))
| [] => ERROR "no result type after function arrow"
| _ => ERROR "multiple result types after function arrow")

| arrows args (_::_::_) = ERROR "multiple arrows in function type"
in fn xs => errorLabel "syntax error: " o arrows xs
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<$>! S268a
<$>? S266c
<?> S273c
>>=+ S244b
CONAPP 366a
curry S263d
ERROR S243b
errorLabel S245a
FORALL 366a
fst S263d
FUNTY 366a
LET 370a
LETSTAR 370a
many S267b
NAME S373c
name S374d
nodups S277c
noninteractive

S368c
OK S243b
predefined-

FunctionError
S238e

pretoken S374d
primBasis 391e
quote S374d
readEvalPrintWith

S369c
sat S266a
spaceSep S239a
stringsxdefsS254c
TYCON 366a
TYVAR 366a
tyvar,
in molecule S517c
in nano-ML S413b
in µML S437d

Supporting code
for Typed µSchemeQ

S396

S396a.

ty : tyex parser
〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S395c S396b ▷

val arrows = arrowsOf CONAPP FUNTY
fun ty tokens =
let fun badExpKeyword (loc, bad) =

errorAt ("looking for type but found `" ^ bad ^ "'") loc
in TYCON <$> name

<|> TYVAR <$> tyvar
<|> bracketKeyword (kw "forall", "(forall [tyvars] type)",

curry FORALL <$> bracket ("('a ...)", distinctTyvars) <*> ty)
<|> badExpKeyword <$>! (left *> @@ expKeyword <* matchingRight)
<|> bracket ("type application or function type",

arrows <$> many ty <*>! many (arrow *> many ty))
<|> int <!> "expected type; found integer"
<|> booltok <!> "expected type; found Boolean literal"

end tokens

When parsing an expression, we reject anything that looks like a type.
S396b. 〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S396a S397a ▷

fun flipPair tau x = (x, tau)
val formal = bracket ("[x : ty]", pair <$> name <* kw ":" <*> ty)
val lformals = bracket ("([x : ty] ...)", many formal)
val tformals = bracket ("('a ...)", many tyvar)

fun lambda xs exp =
nodupsty ("formal parameter", "lambda") xs >>=+ (fn xs => LAMBDA (xs, exp))

fun tylambda a's exp =
nodups ("formal type parameter", "type-lambda") a's >>=+ (fn a's =>
TYLAMBDA (a's, exp))

fun cb key usage parser = bracketKeyword (eqx key name, usage, parser)

fun exp tokens = (
VAR <$> name

<|> LITERAL <$> NUM <$> int
<|> LITERAL <$> BOOLV <$> booltok
<|> quote *> (LITERAL <$> sexp)
<|> quote *> badRight "quote mark ' followed by right bracket"
<|> cb "quote" "(quote sx)" (LITERAL <$> sexp)
<|> cb "if" "(if e1 e2 e3)" (curry3 IFX <$> exp <*> exp <*> exp)
<|> cb "while" "(while e1 e2)" (curry WHILEX <$> exp <*> exp)
<|> cb "set" "(set x e)" (curry SET <$> name <*> exp)
<|> cb "begin" "" (BEGIN <$> many exp)
<|> cb "lambda" "(lambda (formals) body)" (lambda <$> @@ lformals <*>! exp)
<|> cb "type-lambda" "(type-lambda (tyvars) body)"

(tylambda <$> @@ tformals <*>! exp)
<|> cb "let" "(let (bindings) body)" (letx LET <$> @@ bindings <*>! exp)
<|> cb "letrec" "(letrec (bindings) body)" (curry LETRECX <$> tybindings <*> exp)
<|> cb "let*" "(let* (bindings) body)" (letx LETSTAR <$> @@ bindings <*>! exp)
<|> cb "@" "(@ exp types)" (curry TYAPPLY <$> exp <*> many1 ty)
<|> badTyKeyword <$>! left *> @@ tyKeyword <* matchingRight
<|> leftCurly <!> "curly brackets are not supported"
<|> left *> right <!> "empty application"
<|> bracket ("function application", curry APPLY <$> exp <*> many exp)
) tokens

and letx kind bs exp = letDups kind bs >>=+ (fn bs => LETX (kind, bs, exp))
and tybindings ts = bindingsOf "([x : ty] e)" formal exp ts
and bindings ts = bindingsOf "(x e)" name exp ts

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§Q.4. Evaluation

S397

and badTyKeyword (loc, bad) =
errorAt ("looking for expression but found `" ^ bad ^ "'") loc

The true-definition special forms.
S397a. 〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S396b S397b ▷

fun define tau f formals body =
nodupsty ("formal parameter", "definition of function " ^ f) formals >>=+ (fn xts =>
DEFINE (f, tau, (xts, body)))

fun valrec (x, tau) e = VALREC (x, tau, e)

val def =
cb "define" "(define type f (args) body)"

(define <$> ty <*> name <*> @@ lformals <*>! exp)
<|> cb "val" "(val x e)" (curry VAL <$> name <*> exp)
<|> cb "val-rec" "(val-rec [x : type] e)" (valrec <$> formal <*> exp)

Function unit_test parses a unit test.
S397b.

unit_test : unit_test parser
〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S397a S397c ▷

val unit_test =
cb "check-expect" "(check-expect e1 e2)" (curry CHECK_EXPECT <$> exp <*> exp)

<|> cb "check-assert" "(check-assert e)" (CHECK_ASSERT <$> exp)
<|> cb "check-error" "(check-error e)" (CHECK_ERROR <$> exp)
<|> cb "check-type" "(check-type e tau)" (curry CHECK_TYPE <$> exp <*> ty)
<|> cb "check-type-error" "(check-type-error e)"

(CHECK_TYPE_ERROR <$> (def <|> EXP <$> exp))

And xdef parses extended definitions.
S397c.

xdef : xdef parser
〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S397b S397d ▷

val xdef =
DEF <$> def

<|> cb "use" "(use filename)" (USE <$> name)
<|> TEST <$> unit_test
<|> badRight "unexpected right bracket"
<|> DEF <$> EXP <$> exp
<?> "definition"

S397d. 〈parsers and xdef streams for Typed µScheme S395c〉+≡ (S395a) ◁ S397c
val xdefstream = interactiveParsedStream (schemeToken, xdef)

Q.4 EVALUATION

S397e. 〈evaluation, testing, and the read-eval-print loop for Typed µScheme S397e〉≡ (S394b)
〈definition of namedValueString for functional bridge languages S399c〉
〈definitions of eval and evaldef for Typed µScheme S398a〉
〈definitions of basis and processDef for Typed µScheme S393d〉
〈shared definition of withHandlers S371a〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for Typed µScheme S401e〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉

The implementation of the evaluator is almost identical to the implementation
in Chapter 5. There are only two significant differences: we have to deal with the
mismatch in representations between the abstract syntax LAMBDA and the value
CLOSURE, and we have to write cases for the TYAPPLY and TYLAMBDA expressions.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<*> S263a
<*>! S268a
<?> S273c
<|> S264a
>>=+ S244b
APPLY 370a
arrow S395b
arrowsOf S395e
badRight S274
BEGIN 370a
bindingsOf S375a
booltok S374d
BOOLV 370b
bracket S276b
bracketKeyword

S276b
CHECK_ASSERTS393a
CHECK_ERROR S393a
CHECK_EXPECTS393a
CHECK_TYPE S393a
CHECK_TYPE_ERROR

S393a
CONAPP 366a
curry S263d
curry3 S263d
DEF S365b
DEFINE 370c
distinctTyvars

S395e
eqx S266b
errorAt S256a
EXP 370c
expKeyword S395c
FORALL 366a
FUNTY 366a
IFX 370a
int S374d
interactiveParsed-

Stream
S280b

kw S375c
LAMBDA 370a
left S274
leftCurly S274
LET 370a
letDups S395c
LETRECX 370a
LETSTAR 370a
LETX 370a
LITERAL 370a
many S267b
many1 S267c
matchingRight

S276a
name S395b
nodups S277c
nodupsty S395c
NUM 370b
pair S263d
quote S374d
right S274
schemeToken S374a
SET 370a
sexp S375d
TEST S365b
TYAPPLY 370a
TYCON 366a
tyKeyword S395c
TYLAMBDA 370a
TYVAR 366a
tyvar S395d
USE S365b
VAL 370c
VALREC 370c
VAR 370a
WHILEX 370a

Supporting code
for Typed µSchemeQ

S398

Another difference is that many potential run-time errors should be impossible be-
cause the relevant code would be rejected by the type checker. If one of those errors
occurs anyway, we raise the exception BugInTypeChecking, not RuntimeError.
S398a.

eval : exp * value ref env -> value
ev : exp -> value

〈definitions of eval and evaldef for Typed µScheme S398a〉≡ (S397e) S399b ▷

fun eval (e, rho) =
let fun ev (LITERAL n) = n

〈alternatives for ev for TYAPPLY and TYLAMBDA 389c〉
〈more alternatives for ev for Typed µScheme S398b〉

in ev e
end

Code for variables is just as in Chapter 5.
S398b. 〈more alternatives for ev for Typed µScheme S398b〉≡ (S398a) S398c ▷

| ev (VAR v) = !(find (v, rho))
| ev (SET (n, e)) =

let val v = ev e
in find (n, rho) := v;

v
end

Code for control flow is just as in Chapter 5.
S398c. 〈more alternatives for ev for Typed µScheme S398b〉+≡ (S398a) ◁ S398b S398d ▷

| ev (IFX (e1, e2, e3)) = ev (if projectBool (ev e1) then e2 else e3)
| ev (WHILEX (guard, body)) =

if projectBool (ev guard) then
(ev body; ev (WHILEX (guard, body)))

else
unitVal

| ev (BEGIN es) =
let fun b (e::es, lastval) = b (es, ev e)

| b ([], lastval) = lastval
in b (es, unitVal)
end

Code for a lambda removes the types from the abstract syntax.
S398d. 〈more alternatives for ev for Typed µScheme S398b〉+≡ (S398a) ◁ S398c S398e ▷

| ev (LAMBDA (args, body)) = CLOSURE ((map (fn (x, ty) => x) args, body), rho)

Code for application is almost as in Chapter 5, except if the program tries to apply
a non-function, we raise BugInTypeChecking, not RuntimeError, because the type
checker should reject any program that could apply a non-function.
S398e. 〈more alternatives for ev for Typed µScheme S398b〉+≡ (S398a) ◁ S398d S398f ▷

| ev (APPLY (f, args)) =
(case ev f

of PRIMITIVE prim => prim (map ev args)
| CLOSURE clo => 〈apply closure clo to args 317b〉
| v => raise BugInTypeChecking "applied non-function"

)

Code for the LETX family is as in Chapter 5.
S398f. 〈more alternatives for ev for Typed µScheme S398b〉+≡ (S398a) ◁ S398e S399a ▷

| ev (LETX (LET, bs, body)) =
let val (names, values) = ListPair.unzip bs
in eval (body, bindList (names, map (ref o ev) values, rho))
end

| ev (LETX (LETSTAR, bs, body)) =
let fun step ((n, e), rho) = bind (n, ref (eval (e, rho)), rho)
in eval (body, foldl step rho bs)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§Q.5
Primitives of Typed

µScheme

S399

S399a. 〈more alternatives for ev for Typed µScheme S398b〉+≡ (S398a) ◁ S398f
| ev (LETRECX (bs, body)) =

let val (tynames, values) = ListPair.unzip bs
val names = map fst tynames
val _ = errorIfDups ("bound name", names, "letrec")
val rho' = bindList (names, map (fn _ => ref (unspecified())) values, rho)
val updates = map (fn ((x, _), e) => (x, eval (e, rho'))) bs

in List.app (fn (x, v) => find (x, rho') := v) updates;
eval (body, rho')

end

Evaluating a definition can produce a new environment. The function evaldef
also returns a string which, if nonempty, should be printed to show the value of the
item. Type soundness requires a change in the evaluation rule for VAL; as described
in Exercise 46 in Chapter 2, VAL must always create a new binding.
S399b.

evaldef : def * value ref env -> value ref env * string
〈definitions of eval and evaldef for Typed µScheme S398a〉+≡ (S397e) ◁ S398a

fun evaldef (VAL (x, e), rho) =
let val v = eval (e, rho)

val rho = bind (x, ref v, rho)
in (rho, namedValueString x v)
end

| evaldef (VALREC (x, tau, e), rho) =
let val this = ref NIL

val rho' = bind (x, this, rho)
val v = eval (e, rho')
val _ = this := v

in (rho', namedValueString x v)
end

| evaldef (EXP e, rho) = (* differs from VAL ("it", e) only in its response *)
let val v = eval (e, rho)

val rho = bind ("it", ref v, rho)
in (rho, valueString v)
end

| evaldef (DEFINE (f, tau, lambda), rho) =
evaldef (VALREC (f, tau, LAMBDA lambda), rho)

In the VALREC case, the interpreter evaluates e while name is still bound to NIL—
that is, before the assignment to find (name, rho). Therefore, as described on
page 371, evaluating e must not evaluate name—because the mutable cell for name
does not yet contain its correct value.

The string returned by evaldef is the value, unless the value is a named proce-
dure, in which case it is the name.
S399c.

namedValueString : name -> value -> string
〈definition of namedValueString for functional bridge languages S399c〉≡ (S397e)

fun namedValueString x v =
case v of CLOSURE _ => x

| PRIMITIVE _ => x
| _ => valueString v

Q.5 PRIMITIVES OF TYPED µSCHEME

Comparisons take two arguments. Most comparisons (but not equality) apply only
to integers.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY 370a
applyChecking-

Overflow
S242b

BEGIN 370a
bind 312b
bindList 312c
BugInTypeChecking

S237b
CLOSURE,
in molecule S499d
in nano-ML 415b
in Typed µScheme

370b
in µML 498d
DEFINE 370c
errorIfDups S366e
EXP 370c
find 311b
fst S263d
id S263d
IFX 370a
LAMBDA 370a
LET 370a
LETRECX 370a
LETSTAR 370a
LETX 370a
LITERAL 370a
NIL 370b
PRIMITIVE,
in molecule S499d
in nano-ML 415b
in Typed µScheme

370b
in µML 498d
projectBool 315b
SET 370a
unitVal 390b
unspecified S379
VAL 370c
VALREC 370c
valueString,

in molecule S507a
in Typed µScheme

314
in µML S448b
VAR 370a
WHILEX 370a

Supporting code
for Typed µSchemeQ

S400

S400a.

comparison : (value * value -> bool) -> (value list -> value)
intcompare : (int * int -> bool) -> (value list -> value)
comptype : tyex

〈utility functions and types for making Typed µScheme primitives S400a〉≡ (S394a)

fun comparison f = binaryOp (BOOLV o f)
fun intcompare f =

comparison (fn (NUM n1, NUM n2) => f (n1, n2)
| _ => raise BugInTypeChecking "comparing non-numbers")

val comptype = FUNTY ([inttype, inttype], booltype)

S400b. 〈primitive functions for Typed µScheme :: S400b〉≡ (391e) S400c ▷
("<", intcompare op <, comptype) ::
(">", intcompare op >, comptype) ::
("=", comparison equalatoms,

FORALL (["'a"], FUNTY ([tvA, tvA], booltype))) ::

Two of the print primitives also have polymorphic types.
S400c. 〈primitive functions for Typed µScheme :: S400b〉+≡ (391e) ◁ S400b

("println", unaryOp (fn x => (print (valueString x^"\n"); unitVal)),
FORALL (["'a"], FUNTY ([tvA], unittype))) ::

("print", unaryOp (fn x => (print (valueString x); unitVal)),
FORALL (["'a"], FUNTY ([tvA], unittype))) ::

("printu", unaryOp (fn NUM n => (printUTF8 n; unitVal)
| v => raise BugInTypeChecking "printu of non-number"),

FUNTY ([inttype], unittype)) ::

In plain Typed µScheme, all the primitives are functions, so this chunk is
empty. But you might add to it in the Exercises.
S400d. 〈primitives that aren’t functions, for Typed µScheme :: S400d〉≡ (391e)

Q.6 PREDEFINED FUNCTIONS

Because programming in Typed µScheme is an awful lot of trouble, Typed µScheme
has fewer predefined functions thanµScheme. Some of these functions are defined
in Chapter 6. The rest are here.

Becauses lists in Typed µScheme are homogeneous, the funny list functions
built from car and cdr are much less useful than in µScheme.
S400e. 〈predefined Typed µScheme functions S400e〉≡ S400f ▷

(val caar
(type-lambda ('a)

(lambda ([xs : (list (list 'a))])
((@ car 'a) ((@ car (list 'a)) xs)))))

(val cadr
(type-lambda ('a)

(lambda ([xs : (list (list 'a))])
((@ car (list 'a)) ((@ cdr (list 'a)) xs)))))

The Boolean functions are almost exactly as in Typed Impcore.
S400f. 〈predefined Typed µScheme functions S400e〉+≡ ◁ S400e S401a ▷

(define bool and ([b : bool] [c : bool]) (if b c b))
(define bool or ([b : bool] [c : bool]) (if b b c))
(define bool not ([b : bool]) (if b #f #t))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§Q.7. Unit testing

S401

Here is list append.
S401a. 〈predefined Typed µScheme functions S400e〉+≡ ◁ S400f S401b ▷

(val append
(type-lambda ('a)

(letrec [([append-mono : ((list 'a) (list 'a) -> (list 'a))]
(lambda ([xs : (list 'a)] [ys : (list 'a)])
(if ((@ null? 'a) xs)
ys
((@ cons 'a) ((@ car 'a) xs) (append-mono ((@ cdr 'a) xs) ys)))))]

append-mono)))

In Typed µScheme, an association list must be represented as a list of pairs.
The only sensible way to write a lookup function for an association list is to use
continuation-passing style. These problems are given as exercises.

I provide just some of the list functions found in µScheme. Both exists? and
all? are left as exercises. Function foldr is also given as an exercise.

Integer comparisons are as in Typed Impcore, but to define != we need a type
abstraction. This is progress! In Typed Impcore, a polymorphic != canʼt be defined
as as function.
S401b. 〈predefined Typed µScheme functions S400e〉+≡ ◁ S401a S401c ▷

(define bool <= ([x : int] [y : int]) (not (> x y)))
(define bool >= ([x : int] [y : int]) (not (< x y)))
(val != (type-lambda ('a) (lambda ([x : 'a] [y : 'a]) (not ((@ = 'a) x y)))))

Integer functions are almost as in Typed Impcore. The only difference is that
in Typed µScheme, equality is a primitive, polymorphic function, and it must be
instantiated before use.
S401c. 〈predefined Typed µScheme functions S400e〉+≡ ◁ S401b

(define int max ([m : int] [n : int]) (if (> m n) m n))
(define int min ([m : int] [n : int]) (if (< m n) m n))
(define int mod ([m : int] [n : int]) (- m (* n (/ m n))))
(define int gcd ([m : int] [n : int]) (if ((@ = int) n 0) m (gcd n (mod m n))))
(define int lcm ([m : int] [n : int]) (* m (/ n (gcd m n))))

Q.7 UNIT TESTING

S401d. 〈utility functions on µScheme, Typed µScheme, and nano-ML values [[tuscheme]] S401d〉≡
fun testEqual (ARRAY a1, ARRAY a2) =

Array.length a1 = Array.length a1 andalso
Array.foldli (fn (i, v, equal) => equal andalso testEqual (v, Array.sub (a2, i))) true a1

| testEqual (PAIR (car1, cdr1), PAIR (car2, cdr2)) =
testEqual (car1, car2) andalso testEqual (cdr1, cdr2)

| testEqual (v1, v2) = equalatoms (v1, v2)

S401e. 〈definition of testIsGood for Typed µScheme S401e〉≡ (S397e)
fun testIsGood (test, (Delta, Gamma, rho)) =
let fun ty e = typeof (e, Delta, Gamma)

handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")
〈shared check{Expect,Assert,Error,Type{Checks, which call ty S402a〉
fun checks (CHECK_EXPECT (e1, e2)) = checkExpectChecks (e1, e2)
| checks (CHECK_ASSERT e) = checkAssertChecks e
| checks (CHECK_ERROR e) = checkErrorChecks e
| checks (CHECK_TYPE (e, tau)) = checkTypeChecks (e, tau)
| checks (CHECK_TYPE_ERROR e) = true

fun outcome e = withHandlers (fn () => OK (eval (e, rho))) () (ERROR o stripAtLoc)
〈asSyntacticValue for µScheme, Typed Impcore, Typed µScheme, and nano-ML S378b〉

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY 370b
binaryOp S389d
booltype 390a
BOOLV 370b
BugInTypeChecking

S237b
CHECK_ASSERTS393a
CHECK_ERROR S393a
CHECK_EXPECTS393a
CHECK_TYPE S393a
CHECK_TYPE_ERROR

S393a
checkAssertChecks

S385a
checkAssertPasses

S246a
checkErrorChecks

S385a
checkErrorPasses

S246b
checkExpectChecks

S384d
checkExpectPasses

S246c
checkTypeChecks

S402a
checkTypeError-

Passes
S384c

checkTypePasses
S384b

equalatoms S365d
ERROR S243b
eval S398a
FORALL 366a
FUNTY 366a
inttype 390a
NotFound 311b
NUM 370b
OK S243b
PAIR 370b
printUTF8 S239b
snd S263d
stripAtLoc S255g
tvA 390a
typdef 375
TypeError S237b
typeof 375
unaryOp S389d
unittype 390a
unitVal 390b
valueString 314
withHandlersS371a

Supporting code
for Typed µSchemeQ

S402

〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉
fun deftystring d =
snd (typdef (d, Delta, Gamma))
handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")

〈shared checkTypePasses and checkTypeErrorPasses, which call ty S384b〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_TYPE (c, tau)) = checkTypePasses (c, tau)
| passes (CHECK_TYPE_ERROR d) = checkTypeErrorPasses d

in checks test andalso passes test
end

Testing forms check-expect, check-error, and check-type should contain
only expressions that typecheck. But the whole point of check-type-error is that
its expression doesn’t typecheck. Thus, we donʼt typecheck it with the others—
instead, like check-type, whether it has a type determines if it passes.

S402a. 〈shared check{Expect,Assert,Error,Type{Checks, which call ty S402a〉≡ (S401e S383c)
fun checkTypeChecks (e, tau) =
let val tau' = ty e
in true
end
handle TypeError msg =>

failtest ["In (check-type ", expString e, " " ^ typeString tau, "), ", msg]

S402b. 〈definition of expString for Typed µScheme S402b〉≡ (S393b)
fun expString e =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun exps es = map expString es
fun formal (x, tau) = bracketSpace [typeString tau, x]
fun withBindings (keyword, bs, e) =
bracket (spaceSep [keyword, bindings bs, expString e])

and bindings bs = bracket (spaceSep (map binding bs))
and binding (x, e) = bracket (x ^ " " ^ expString e)

fun tybinding ((x, ty), e) = bracketSpace [formal (x, ty), expString e]
and tybindings bs = bracket (spaceSep (map tybinding bs))
val letkind = fn LET => "let" | LETSTAR => "let*"

in case e
of LITERAL v => valueString v
| VAR name => name
| SET (x, e) => bracketSpace ["set", x, expString e]
| IFX (e1, e2, e3) => bracketSpace ("if" :: exps [e1, e2, e3])
| WHILEX (cond, body) =>

bracketSpace ["while", expString cond, expString body]
| BEGIN es => bracketSpace ("begin" :: exps es)
| APPLY (e, es) => bracketSpace (exps (e::es))
| LETX (lk, bs, e) => bracketSpace [letkind lk, bindings bs, expString e]
| LETRECX (bs, e) => bracketSpace ["letrec", tybindings bs, expString e]
| LAMBDA (xs, e) =>

bracketSpace ["lambda", bracketSpace (map formal xs), expString e]
| TYLAMBDA (alphas, e) =>

bracketSpace ["type-lambda", bracketSpace alphas, expString e]
| TYAPPLY (e, taus) =>

bracketSpace ("@" :: expString e :: map typeString taus)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§Q.7. Unit testing

S403

S403. 〈definitions of defString and defName for Typed µScheme S403〉≡ (S393b)
fun defString d =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun formal (x, t) = "[" ^ x ^ " : " ^ typeString t ^ "]"

in case d
of EXP e => expString e
| VAL (x, e) => bracketSpace ["val", x, expString e]
| VALREC (x, tau, e) =>

bracketSpace ["val-rec", formal (x, tau), expString e]
| DEFINE (f, rtau, (formals, body)) =>

bracketSpace ["define", typeString rtau, f,
bracketSpace (map formal formals), expString body]

end
fun defName (VAL (x, _)) = x
| defName (VALREC (x, _, _)) = x
| defName (DEFINE (x, _, _)) = x
| defName (EXP _) = raise InternalError "asked for name defined by expression"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY 370a
BEGIN 370a
DEFINE 370c
EXP 370c
expString S532d
failtest S246d
IFX 370a
InternalError

S366f
LAMBDA 370a
LET 370a
LETRECX 370a
LETSTAR 370a
LETX 370a
LITERAL 370a
SET 370a
spaceSep S239a
ty,
in molecule S526e
in Typed µScheme

S401e
TYAPPLY 370a
TYLAMBDA 370a
TypeError S237b
typeString,

in molecule S531c
in Typed µScheme

S394c
VAL 370c
VALREC 370c
valueString 314
VAR 370a
WHILEX 370a

CHAPTER CONTENTS
R.1 SMALL PIECES OF THE

INTERPRETER S405
R.1.1 Evaluation S406
R.1.2 A complete infrastruc-

ture for Hindley-Milner
types S408

R.1.3 Primitives S408
R.1.4 Predefined functions S409
R.1.5 Processing definitions:

elaboration and evalua-
tion S410

R.1.6 The read-eval-print loop S410
R.1.7 Building the initial basis S411
R.1.8 Pulling the pieces to-

gether S411

R.2 PRINTING TYPES AND
CONSTRAINTS AND SUB-
STITUTIONS S411

R.3 PARSING S412
R.4 UNIT TESTING S414

R.4.1 Checking types against
type schemes S415

R.4.2 Rendering expressions
as strings S417

R.5 PREDEFINED FUNC-
TIONS S417

R.6 CASES AND CODE FOR
CHAPTER 8 S419

RSupporting code for nano-ML

R.1 SMALL PIECES OF THE INTERPRETER

S405a. 〈if e is not a LAMBDA, raise TypeError S405a〉≡ (450b)
case e of LAMBDA _ => ()

| _ => raise TypeError ("in val-rec, right-hand side " ^ expString e ^
" is not a lambda")

Abstract syntax and values

Unit tests resemble the unit tests for Typed µScheme, but as explained in Sec-
tion 7.4.6, the typing tests are subtly different. These unit tests are shared with
other languages that use Hindley-Milner types.
S405b. 〈definition of unit_test for languages with Hindley-Milner types S405b〉≡ (S405c)

datatype unit_test = CHECK_EXPECT of exp * exp
| CHECK_ASSERT of exp
| CHECK_ERROR of exp
| CHECK_TYPE of exp * type_scheme
| CHECK_PTYPE of exp * type_scheme
| CHECK_TYPE_ERROR of def

Here are all the pieces related to abstract syntax and values. As usual, xdef and
valueString are shared with other languages. Function expString is defined in
Appendix R.
S405c. 〈abstract syntax and values for nano-ML S405c〉≡ (S411c)

〈definitions of exp and value for nano-ML 414〉
〈definition of def for nano-ML 415a〉
〈definition of unit_test for languages with Hindley-Milner types S405b〉
〈definition of xdef (shared) S365b〉
〈definition of valueString for µScheme, Typed µScheme, and nano-ML 314〉
〈definition of expString for nano-ML and µML S417a〉
〈definitions of defString and defName for nano-ML and µML S417c〉

S405d.

constraintString : con -> string
untriviate : con -> con

〈utility functions on type constraints S405d〉≡ (S405e)

〈definitions of constraintString and untriviate S412a〉

S405e.

typeof : exp * type_env -> ty * con
typdef : def * type_env -> type_env * string

〈type inference for nano-ML and µML S405e〉≡ (S411c)
〈representation of type constraints 446e〉
〈utility functions on type constraints S405d〉
〈constraint solving 447d〉
〈exhaustiveness analysis for µML S419f〉
〈definitions of typeof and typdef for nano-ML and µML 448c〉

S405
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for nano-MLR

S406

R.1.1 Evaluation

The gross structure of the evaluator for nano-ML is the same as the gross structure
of the evaluator for µScheme. What s̓ needed are the usual definitions of eval,
evaldef, basis, and processDef. Language-specific testing code appears in Ap-
pendix R, and everything else is shared.
S406a. 〈evaluation, testing, and the read-eval-print loop for nano-ML S406a〉≡ (S411c)

〈definition of namedValueString for functional bridge languages S399c〉
〈definitions of eval and evaldef for nano-ML and µML S406b〉
〈definitions of basis and processDef for nano-ML S410b〉
〈shared definition of withHandlers S371a〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for nano-ML S414c〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉

Evaluation of expressions

Because the abstract syntax of nano-ML is a subset of µScheme, the evaluator
is almost a subset of the µScheme evaluator. One difference is that because
nano-ML doesnʼt have mutation, environments map names to values, instead of
mapping them to mutable cells. Another is that type inference should eliminate
most potential errors. If one of those errors occurs anyway, we raise the exception
BugInTypeInference.
S406b.

eval : exp * value env -> value
〈definitions of eval and evaldef for nano-ML and µML S406b〉≡ (S406a) S407d ▷

fun eval (e, rho) =
let fun ev (LITERAL v) = v

| ev (VAR x) = find (x, rho)
| ev (IFX (e1, e2, e3)) = ev (if projectBool (ev e1) then e2 else e3)
| ev (LAMBDA l) = CLOSURE (l, fn _ => rho)
| ev (BEGIN es) =

let fun b (e::es, lastval) = b (es, ev e)
| b ([], lastval) = lastval

in b (es, embedBool false)
end

| ev (APPLY (f, args)) =
(case ev f

of PRIMITIVE prim => prim (map ev args)
| CLOSURE clo => 〈apply closure clo to args S406c〉
| _ => raise BugInTypeInference "Applied non-function"
)

〈more alternatives for ev for nano-ML and µML S407a〉
in ev e
end

To apply a closure, we bind formal parameters directly to the values of actual
parameters, not to mutable cells.
S406c. 〈apply closure clo to args S406c〉≡ (S406b)

let val ((formals, body), mkRho) = clo
val actuals = map ev args

in eval (body, bindList (formals, actuals, mkRho ()))
handle BindListLength =>

raise BugInTypeInference "Wrong number of arguments to closure"
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.1
Small pieces of the

interpreter

S407

LET evaluates all right-hand sides in ρ, then extends ρ to evaluate the body.
S407a. 〈more alternatives for ev for nano-ML and µML S407a〉≡ (S406b) S407b ▷

| ev (LETX (LET, bs, body)) =
let val (names, values) = ListPair.unzip bs
in eval (body, bindList (names, map ev values, rho))
end

LETSTAR evaluates pairs in sequence, adding a binding to ρ after each evalua-
tion.
S407b. 〈more alternatives for ev for nano-ML and µML S407a〉+≡ (S406b) ◁ S407a S407c ▷

| ev (LETX (LETSTAR, bs, body)) =
let fun step ((x, e), rho) = bind (x, eval (e, rho), rho)
in eval (body, foldl step rho bs)
end

LETREC is the most interesting case. Function makeRho' builds an environment
in which each right-hand side stands for a closure. Each closure s̓ captured environ-
ment is the one built by makeRho'. The recursion is OK because the environment is
built lazily, so makeRho' always terminates. The right-hand sides must be lambda
abstractions.
S407c. 〈more alternatives for ev for nano-ML and µML S407a〉+≡ (S406b) ◁ S407b

| ev (LETX (LETREC, bs, body)) =
let fun makeRho' () =

let fun step ((x, e), rho) =
(case e

of LAMBDA l => bind (x, CLOSURE (l, makeRho'), rho)
| _ => raise BugInTypeInference "non-lambda in letrec")

in foldl step rho bs
end

in eval (body, makeRho'())
end

Evaluating definitions

Evaluating a definition can produce a new environment. Function evaldef also
returns a string that gives the name or value being defined.
S407d.

evaldef : def * value env -> value env * string
〈definitions of eval and evaldef for nano-ML and µML S406b〉+≡ (S406a) ◁ S406b S408a ▷

fun evaldef (VAL (x, e), rho) =
let val v = eval (e, rho)

val rho = bind (x, v, rho)
in (rho, namedValueString x v)
end

| evaldef (VALREC (f, LAMBDA lambda), rho) =
let fun makeRho' () = bind (f, CLOSURE (lambda, makeRho'), rho)

val v = CLOSURE (lambda, makeRho')
in (makeRho'(), f)
end

| evaldef (VALREC _, rho) =
raise BugInTypeInference "expression in val-rec is not lambda"

| evaldef (EXP e, rho) =
let val v = eval (e, rho)

val rho = bind ("it", v, rho)
in (rho, valueString v)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY,
in nano-ML 414
in µML S421c
applyChecking-

Overflow
S242b

BEGIN,
in nano-ML 414
in µML S421c
bind 312b
bindList 312c
BindListLength

312c
BugInTypeInference

S237c
CLOSURE,
in nano-ML 415b
in µML 498d
embedBool,
in nano-ML 315b
in µML S433e
EXP,
in nano-ML 415a
in µML S421d
find 311b
id S263d
IFX,
in nano-ML 414
in µML S421c
LAMBDA,
in nano-ML 414
in µML S421c
LET,
in nano-ML 414
in µML S421c
LETREC,
in nano-ML 414
in µML S421c
LETSTAR,
in nano-ML 414
in µML S421c
LETX,

in nano-ML 414
in µML S421c
LITERAL,
in nano-ML 414
in µML S421c
namedValueString

S399c
PRIMITIVE,
in nano-ML 415b
in µML 498d
projectBool,

in nano-ML 315b
in µML S433e
VAL,
in nano-ML 415a
in µML S421d
VALREC,
in nano-ML 415a
in µML S421d
valueString,

in nano-ML 314
in µML S448b
VAR,
in nano-ML 414
in µML S421c

Supporting code
for nano-MLR

S408

The implementation of VALREC works only for LAMBDA expressions because these
are the only expressions for which we can compute the value without having the
environment.

As in the type system, DEFINE is syntactic sugar for a combination of VALREC
and LAMBDA.
S408a. 〈definitions of eval and evaldef for nano-ML and µML S406b〉+≡ (S406a) ◁ S407d

| evaldef (DEFINE (f, lambda), rho) =
evaldef (VALREC (f, LAMBDA lambda), rho)

〈clause for evaldef for datatype definition (µML only) S408b〉
µML, which is the subject of Chapter 8, is like nano-ML but with one additional

definition form, for defining an algebraic data type. Nano-ML lacks that form, so
the corresponding clause in evaldef is empty.
S408b. 〈clause for evaldef for datatype definition (µML only) S408b〉≡ (S408a)

(* code goes here in Chapter 11 *)

R.1.2 A complete infrastructure for Hindley-Milner types

The sections above make a foundation on which we can implement constraint solv-
ing and type inference. The pieces are pulled together here.
S408c. 〈Hindley-Milner types with named type constructors S408c〉≡ (S411c)

〈definitions of tycon, eqTycon, and tyconString for named type constructors 419a〉
〈representation of Hindley-Milner types 418〉
〈sets of free type variables in Hindley-Milner types 442〉
val funtycon = "function"
〈functions that create or compare Hindley-Milner types with named type constructors 422c〉
〈definition of typeString for Hindley-Milner types S411d〉
〈shared utility functions on Hindley-Milner types S412b〉
〈specialized environments for type schemes 446a〉

R.1.3 Primitives

Arithmetic primitives expect and return integers. Each primitive operation must
be associated with a type scheme in the initial environment. It is easier, however,
to associate a type with each primitive and to generalize them all at one go when we
create the initial environment.
S408d.

unaryOp : (value -> value) -> (value list -> value)
binaryOp : (value * value -> value) -> (value list -> value)
arithOp : (int * int -> int) -> (value list -> value)
arithtype : ty

〈shared utility functions for building primitives in languages with type inference S408d〉≡ (S411b)

fun binaryOp f = (fn [a, b] => f (a, b) | _ => raise BugInTypeInference "arity 2")
fun unaryOp f = (fn [a] => f a | _ => raise BugInTypeInference "arity 1")
fun arithOp f =

binaryOp (fn (NUM n1, NUM n2) => NUM (f (n1, n2))
| _ => raise BugInTypeInference "arithmetic on non-numbers")

val arithtype = funtype ([inttype, inttype], inttype)

Here are some arithmetic primitives:
S408e. 〈primitives for nano-ML and µML :: S408e〉≡ (S411b) S409b ▷

("+", arithOp op +, arithtype) ::
("-", arithOp op -, arithtype) ::
("*", arithOp op *, arithtype) ::
("/", arithOp op div, arithtype) ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.1
Small pieces of the

interpreter

S409

Nano-ML has two kinds of predicates: null? takes one argument, and compar-
isons take two. Some comparisons apply only to integers. The supporting functions
reuse embedBool.
S409a.

comparison : (value * value -> bool) -> (value list -> value)
intcompare : (int * int -> bool) -> (value list -> value)
comptype : ty -> ty

〈utility functions for building nano-ML primitives S409a〉≡ (S411b)

fun comparison f = binaryOp (embedBool o f)
fun intcompare f =

comparison (fn (NUM n1, NUM n2) => f (n1, n2)
| _ => raise BugInTypeInference "comparing non-numbers")

fun comptype x = funtype ([x, x], booltype)

The predicates are similar to µScheme predicates. As in µScheme, values of any
type can be compared for equality. Equality has type α × α → bool, which gets
generalized to type scheme ∀α.α×α→ bool. In full ML, values of function types
may not be compared for equality.
S409b. 〈primitives for nano-ML and µML :: S408e〉+≡ (S411b) ◁ S408e S409d ▷

("<", intcompare op <, comptype inttype) ::
(">", intcompare op >, comptype inttype) ::
("=", comparison primitiveEquality, comptype alpha) ::

S409c. 〈utility functions on µScheme, Typed µScheme, and nano-ML values S409c〉≡ (S411c S373a S394b)
fun primitiveEquality (v, v') =
let fun noFun () = raise RuntimeError "compared functions for equality"
in case (v, v')

of (NIL, NIL) => true
| (NUM n1, NUM n2) => (n1 = n2)
| (SYM v1, SYM v2) => (v1 = v2)
| (BOOLV b1, BOOLV b2) => (b1 = b2)
| (PAIR (v, vs), PAIR (v', vs')) =>

primitiveEquality (v, v') andalso primitiveEquality (vs, vs')
| (PAIR _, NIL) => false
| (NIL, PAIR _) => false
| (CLOSURE _, _) => noFun ()
| (PRIMITIVE _, _) => noFun ()
| (_, CLOSURE _) => noFun ()
| (_, PRIMITIVE _) => noFun ()
| _ => raise BugInTypeInference

("compared incompatible values " ^ valueString v ^ " and " ^
valueString v' ^ " for equality")

end

S409d. 〈primitives for nano-ML and µML :: S408e〉+≡ (S411b) ◁ S409b
("println", unaryOp (fn v => (print (valueString v ^ "\n"); v)),

funtype ([alpha], unittype)) ::
("print", unaryOp (fn v => (print (valueString v); v)),

funtype ([alpha], unittype)) ::
("printu", unaryOp (fn NUM n => (printUTF8 n; NUM n)

| _ => raise BugInTypeInference "printu of non-number"),
funtype ([inttype], unittype)) ::

R.1.4 Predefined functions

S409e. 〈predefined nano-ML functions S409e〉≡ S410a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

alpha,
in nano-ML 422c
in µML S432a
booltype,

in nano-ML 422c
in µML S432a
BOOLV 415b
BugInTypeInference

S237c
CLOSURE 415b
DEFINE,
in nano-ML 415a
in µML S421d
embedBool,
in nano-ML 315b
in µML S433e
evaldef S407d
funtype,
in nano-ML 422c
in µML S423d
inttype,
in nano-ML 422c
in µML S423c
LAMBDA,
in nano-ML 414
in µML S421c
NIL 415b
NUM,
in nano-ML 415b
in µML 498d
PAIR 415b
PRIMITIVE 415b
primitiveEquality

S432c
printUTF8 S239b
RuntimeErrorS366c
SYM 415b
unittype,

in nano-ML 422c
in µML S432a
VALREC,
in nano-ML 415a
in µML S421d
valueString,

in nano-ML 314
in µML S448b

Supporting code
for nano-MLR

S410

(define list1 (x) (cons x '()))
(define bind (x y alist)
(if (null? alist)
(list1 (pair x y))
(if (= x (fst (car alist)))
(cons (pair x y) (cdr alist))
(cons (car alist) (bind x y (cdr alist))))))

We need a test to see if a variable is bound. When a variable is unbound, we canʼt
return the empty list, because the empty list is not always of the right type. Looking
up an unbound variable must therefore be a checked run-time error.
S410a. 〈predefined nano-ML functions S409e〉+≡ ◁ S409e S417d ▷

(define bound? (x alist)
(if (null? alist)
#f
(if (= x (fst (car alist)))
#t
(bound? x (cdr alist)))))

(define find (x alist)
(if (null? alist)
(error 'not-found)
(if (= x (fst (car alist)))
(snd (car alist))
(find x (cdr alist)))))

R.1.5 Processing definitions: elaboration and evaluation

As in Typed Impcore and Typed µScheme, we process a definition by first elabo-
rating it (which includes inferring its type), then evaluating it. The elaborator and
evaluator produce strings that respectively represent type and value. If the value
string is nonempty, we print both strings. If definition d is not well typed, calling
typdef raises the TypeError exception, and we never call evaldef.
S410b.

processDef : def * basis * interactivity -> basis
〈definitions of basis and processDef for nano-ML S410b〉≡ (S406a)

type basis = type_env * value env
fun processDef (d, (Gamma, rho), interactivity) =
let val (Gamma, tystring) = typdef (d, Gamma)

val (rho, valstring) = evaldef (d, rho)
val _ = if prints interactivity then

println (valstring ^ " : " ^ tystring)
else
()

in (Gamma, rho)
end

As in Typed µScheme, processDef preserves the phase distinction: type inference
is independent of rho and evaldef.

R.1.6 The read-eval-print loop

The read-eval-print loop is almost identical to the read-eval-print loop for Typed µScheme;
the only difference is that instead of a handler for BugInTypeChecking, we have a
handler for BugInTypeInference.
S410c. 〈other handlers that catch non-fatal exceptions and pass messages to caught S410c〉≡

| TypeError msg => caught ("type error <at loc>: " ^ msg)
| BugInTypeInference msg => caught ("bug in type inference: " ^ msg)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.2
Printing types and
constraints and
substitutions

S411

S411a. 〈more handlers for atLoc S411a〉≡
| e as TypeError _ => raise Located (loc, e)
| e as BugInTypeInference _ => raise Located (loc, e)

R.1.7 Building the initial basis

Given primitives and user code, we calculate type and value environments simul-
taneously.
S411b.

initialBasis : type_env * value env
〈implementations of nano-ML primitives and definition of initialBasis S411b〉≡ (S411c)

〈shared utility functions for building primitives in languages with type inference S408d〉
〈utility functions for building nano-ML primitives S409a〉
val initialBasis =
let fun addPrim ((name, prim, tau), (Gamma, rho)) =

(bindtyscheme (name, generalize (tau, freetyvarsGamma Gamma), Gamma)
, bind (name, PRIMITIVE prim, rho)
)

val primBasis = foldl addPrim (emptyTypeEnv, emptyEnv)
(〈primitives for nano-ML and µML :: S408e〉
〈primitives for nano-ML :: 451a〉
[])

val fundefs = 〈predefined nano-ML functions, as strings (from ⟨predefined nano-ML functions S409e⟩)〉
val xdefs = stringsxdefs ("predefined functions", fundefs)

in readEvalPrintWith predefinedFunctionError (xdefs, primBasis, noninteractive)
end

R.1.8 Pulling the pieces together

The overall structure of the nano-ML interpreter resembles the structure of the
Typed µScheme interpreter, but instead of type checking, we have type inference.
S411c. 〈ml.sml S411c〉≡

〈exceptions used in languages with type inference S237c〉
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈Hindley-Milner types with named type constructors S408c〉

〈abstract syntax and values for nano-ML S405c〉
〈utility functions on µScheme, Typed µScheme, and nano-ML values S409c〉

〈type inference for nano-ML and µML S405e〉

〈lexical analysis and parsing for nano-ML, providing filexdefs and stringsxdefs S412c〉

〈evaluation, testing, and the read-eval-print loop for nano-ML S406a〉

〈implementations of nano-ML primitives and definition of initialBasis S411b〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

R.2 PRINTING TYPES AND CONSTRAINTS AND SUBSTITUTIONS

Function types are printed infix, and other constructor applications are printed
prefix.
S411d. 〈definition of typeString for Hindley-Milner types S411d〉≡ (S408c)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

asFuntype,
in nano-ML 422c
in µML S423d
bind 312b
bindtyscheme446c
BugInTypeInference

S237c
caught S371a
CONAPP 418
emptyEnv 311a
emptyTypeEnv446b
type env 310b
evaldef S407d
freetyvarsGamma

446d
fst S263d
generalize 445a
loc S255d
Located S255b
noninteractive

S368c
predefined-

FunctionError
S238e

PRIMITIVE 415b
println S238a
prints S368c
readEvalPrintWith

S369c
spaceSep S239a
stringsxdefsS254c
TYCON 418
tyconString,

in nano-ML 419a
in µML S422c
typdef 449f
type type_env

446a
TypeError S237c
TYVAR 418
type value 415b

Supporting code
for nano-MLR

S412

fun typeString tau =
case asFuntype tau
of SOME (args, result) =>

"(" ^ spaceSep (map typeString args) ^ " -> " ^ typeString result ^ ")"
| NONE =>

case tau
of TYCON c => tyconString c
| TYVAR a => a
| CONAPP (tau, []) => "(" ^ typeString tau ^ ")"
| CONAPP (tau, taus) =>

"(" ^ typeString tau ^ " " ^ spaceSep (map typeString taus) ^ ")"

A constraint can be printed in full, but it s̓ easier to read if its first passed to
untriviate, which removes as many TRIVIAL sub-constraints as possible.
S412a. 〈definitions of constraintString and untriviate S412a〉≡ (S405d)

fun constraintString (c /\ c') = constraintString c ^ " /\\ " ^ constraintString c'
| constraintString (t ~ t') = typeString t ^ " ~ " ^ typeString t'
| constraintString TRIVIAL = "TRIVIAL"

fun untriviate (c /\ c') = (case (untriviate c, untriviate c')
of (TRIVIAL, c) => c
| (c, TRIVIAL) => c
| (c, c') => c /\ c')

| untriviate atomic = atomic

When we print a true polytype, we make the forall explicit, and we show all
the quantified variables.1

S412b.

typeString : ty -> string
typeSchemeString : type_scheme -> string

〈shared utility functions on Hindley-Milner types S412b〉≡ (S408c)

fun typeSchemeString (FORALL ([], tau)) =
typeString tau

| typeSchemeString (FORALL (a's, tau)) =
"(forall [" ^ spaceSep a's ^ "] " ^ typeString tau ^ ")"

R.3 PARSING

S412c. 〈lexical analysis and parsing for nano-ML, providing filexdefs and stringsxdefs S412c〉≡ (S411c)
〈lexical analysis for µScheme and related languages S373c〉
〈parsers for single µScheme tokens S374d〉
〈parsers for nano-ML tokens S413b〉
〈parsers and parser builders for formal parameters and bindings S375a〉
〈parsers and parser builders for Scheme-like syntax S375d〉
〈parser builders for typed languages S395e〉
〈parsers for Hindley-Milner types with named type constructors S413c〉
〈parsers and xdef streams for nano-ML S412d〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

S412d.

exp : exp parser
exptable : exp parser -> exp parser

〈parsers and xdef streams for nano-ML S412d〉≡ (S412c) S413d ▷

fun exptable exp =
let val bindings = bindingsOf "(x e)" name exp

val dbs = distinctBsIn bindings
fun letx kind bs exp = LETX (kind, bs, exp)
val formals = formalsOf "(x1 x2 ...)" name "lambda"

1It is not strictly necessary to show the quantified variables, because in any top-level type, all type
variables are quantified by the∀. For this reason, Standard ML leaves out quantifiers and type variables.
But when youʼre learning about parametric polymorphism, it s̓ better to make the foralls explicit.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.3. Parsing

S413

in usageParsers
[("(if e1 e2 e3)", curry3 IFX <$> exp <*> exp <*> exp)
, ("(begin e1 ...)", BEGIN <$> many exp)
, ("(lambda (names) body)", curry LAMBDA <$> formals <*> exp)
, ("(let (bindings) body)", curry3 LETX LET <$> dbs "let" <*> exp)
, ("(letrec (bindings) body)", curry3 LETX LETREC <$> dbs "letrec" <*> exp)
, ("(let* (bindings) body)", curry3 LETX LETSTAR <$> bindings <*> exp)
〈rows added to nano-ML’s exptable in exercises S413a〉
]

end

val exp = fullSchemeExpOf (atomicSchemeExpOf name) exptable

S413a. 〈rows added to nano-ML’s exptable in exercises S413a〉≡ (S412d)
(* add syntactic extensions here, each preceded by a comma *)

When parsing a type, we reject anything that looks like an expression.
S413b. 〈parsers for nano-ML tokens S413b〉≡ (S412c)

val arrow = eqx "->" name
val name = sat (fn n => n <> "->") name (* an arrow is not a name *)
val tyvar = quote *> (curry op ^ "'" <$> name <?> "type variable (got quote mark)")

S413c.

tyvar : string parser
ty : ty parser

〈parsers for Hindley-Milner types with named type constructors S413c〉≡ (S412c)

val arrows = arrowsOf CONAPP funtype

fun ty tokens = (
TYCON <$> sat (curry op <> "->") any_name

<|> TYVAR <$> tyvar
<|> usageParsers [("(forall (tyvars) type)", bracket ("('a ...)", many tyvar) *> ty)]

<!> "nested 'forall' type is not a Hindley-Milner type"
<|> bracket ("constructor application",

arrows <$> many ty <*>! many (arrow *> many ty))
) tokens

val tyscheme =
usageParsers [("(forall (tyvars) type)",

curry FORALL <$> bracket ("['a ...]", distinctTyvars) <*> ty)]
<|> curry FORALL [] <$> ty
<?> "type"

S413d.

xdef : xdef parser
〈parsers and xdef streams for nano-ML S412d〉+≡ (S412c) ◁ S412d S414b ▷

val deftable = usageParsers
[("(define f (args) body)",

let val formals = formalsOf "(x1 x2 ...)" name "define"
in curry DEFINE <$> name <*> (pair <$> formals <*> exp)
end)

, ("(val x e)", curry VAL <$> name <*> exp)
, ("(val-rec x e)", curry VALREC <$> name <*> exp)
]

val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)
, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
, ("(check-type e tau)", curry CHECK_TYPE <$> exp <*> tyscheme)
, ("(check-principal-type e tau)", curry CHECK_PTYPE <$> exp <*> tyscheme)
, ("(check-type-error e)", CHECK_TYPE_ERROR <$> (deftable <|>

EXP <$> exp))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<*> S263a
<*>! S268a
<?> S273c
<|> S264a
any_name S374d
arrowsOf S395e
atomicSchemeExpOf

S376a
badRight S274
BEGIN 414
bindingsOf S375a
bracket S276b
CHECK_ASSERTS405b
CHECK_ERROR S405b
CHECK_EXPECTS405b
CHECK_PTYPE S405b
CHECK_TYPE S405b
CHECK_TYPE_ERROR

S405b
CONAPP 418
curry S263d
curry3 S263d
DEF S365b
DEFINE 415a
distinctBsInS375a
distinctTyvars

S395e
eqx S266b
EXP 415a
FORALL 418
formalsOf S375a
fullSchemeExpOf

S376d
funtype 422c
IFX 414
LAMBDA 414
LET 414
LETREC 414
LETSTAR 414
LETX 414
many S267b
name S374d
pair S263d
quote S374d
sat S266a
spaceSep S239a
TEST S365b
TRIVIAL 446e
TYCON 418
typeString S411d
TYVAR 418
usageParsersS375c
USE S365b
VAL 415a
VALREC 415a

Supporting code
for nano-MLR

S414

]

val xdeftable = usageParsers
[("(use filename)", USE <$> name)
〈rows added to nano-ML’s xdeftable in exercises S414a〉
]

val xdef = TEST <$> testtable
<|> DEF <$> deftable
<|> xdeftable
<|> badRight "unexpected right bracket"
<|> DEF <$> EXP <$> exp
<?> "definition"

S414a. 〈rows added to nano-ML’s xdeftable in exercises S414a〉≡ (S413d)
(* add syntactic extensions here, each preceded by a comma *)

S414b. 〈parsers and xdef streams for nano-ML S412d〉+≡ (S412c) ◁ S413d
val xdefstream = interactiveParsedStream (schemeToken, xdef)

R.4 UNIT TESTING

S414c. 〈definition of testIsGood for nano-ML S414c〉≡ (S406a)
〈definition of skolemTypes for languages with named type constructors S415d〉
〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉
fun testIsGood (test, (Gamma, rho)) =
let fun ty e = typeof (e, Gamma)

handle NotFound x =>
raise TypeError ("name " ^ x ^ " is not defined")

fun deftystring d =
snd (typdef (d, Gamma))
handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")

〈definitions of check{Expect,Assert,Error{Checks that use type inference S415a〉
〈definitions of check{Expect,Assert,Error{Checks that use type inference S415a〉
〈definition of checkTypeChecks using type inference S415c〉
fun checks (CHECK_EXPECT (e1, e2)) = checkExpectChecks (e1, e2)
| checks (CHECK_ASSERT e) = checkAssertChecks e
| checks (CHECK_ERROR e) = checkErrorChecks e
| checks (CHECK_TYPE (e, tau)) = checkTypeChecks "check-type" (e, tau)
| checks (CHECK_PTYPE (e, tau)) = checkTypeChecks "check-principal-type"

(e, tau)
| checks (CHECK_TYPE_ERROR e) = true

fun outcome e = withHandlers (fn () => OK (eval (e, rho))) () (ERROR o stripAtLoc)
〈asSyntacticValue for µScheme, Typed Impcore, Typed µScheme, and nano-ML S378b〉
〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉
〈definitions of check*Type*Passes using type inference S416c〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_TYPE (c, tau)) = checkTypePasses (c, tau)
| passes (CHECK_PTYPE (c, tau)) = checkPrincipalTypePasses (c, tau)
| passes (CHECK_TYPE_ERROR c) = checkTypeErrorPasses c

in checks test andalso passes test
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.4. Unit testing

S415

S415a. 〈definitions of check{Expect,Assert,Error{Checks that use type inference S415a〉≡ (S414c) S415b ▷

fun checkExpectChecks (e1, e2) =
let val (tau1, c1) = ty e1

val (tau2, c2) = ty e2
val c = tau1 ~ tau2
val theta = solve (c1 /\ c2 /\ c)

in true
end handle TypeError msg =>

failtest ["In (check-expect ", expString e1, " ", expString e2, "), ", msg]

S415b. 〈definitions of check{Expect,Assert,Error{Checks that use type inference S415a〉+≡ (S414c) ◁ S415a
fun checkExpChecksIn what e =
let val (tau, c) = ty e

val theta = solve c
in true
end handle TypeError msg =>

failtest ["In (", what, " ", expString e, "), ", msg]
val checkAssertChecks = checkExpChecksIn "check-assert"
val checkErrorChecks = checkExpChecksIn "check-error"

S415c. 〈definition of checkTypeChecks using type inference S415c〉≡ (S414c)
fun checkTypeChecks form (e, sigma) =
let val (tau, c) = ty e

val theta = solve c
in true
end handle TypeError msg =>

failtest ["In (", form, " ", expString e, " " ^ typeSchemeString sigma, "), ",
msg]

R.4.1 Checking types against type schemes

The instance property is not so easy to check directly—searching for permutations
is tedious—but the idea is simple: no matter what types are used to instantiate σi,
σg can be instantiated to the same type. To implement this idea, I create a supply
of skolem types that cannot possibly be part of any type in any nano-ML program.
S415d.

skolemTypes : ty stream
〈definition of skolemTypes for languages with named type constructors S415d〉≡ (S414c)

val skolemTypes = streamMap (fn n => TYCON ("skolem type " ^ intString n)) naturals

I use skolem types to create an “arbitrary” instance of σi. If that instance can be
made equal to a fresh instance of σg, then σg is as general as σi.

S415e.

asGeneralAs : type_scheme * type_scheme -> bool
〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉≡ (S414c) S415f ▷

fun asGeneralAs (sigma_g, sigma_i as FORALL (a's, tau)) =
let val theta = bindList (a's, streamTake (length a's, skolemTypes), emptyEnv)

val skolemized = tysubst theta tau
val tau_g = freshInstance sigma_g

in (solve (tau_g ~ skolemized); true) handle _ => false
end

Two type schemes are equivalent if each is as general as the other. (Notice that
equivalent type schemes have the same instances.)
S415f. 〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉+≡ (S414c) ◁ S415e S416a ▷

fun eqTypeScheme (sigma1, sigma2) =
asGeneralAs (sigma1, sigma2) andalso asGeneralAs (sigma2, sigma1)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bindList 312c
CHECK_ASSERTS405b
CHECK_ERROR S405b
CHECK_EXPECTS405b
CHECK_PTYPE S405b
CHECK_TYPE S405b
CHECK_TYPE_ERROR

S405b
checkAssertPasses

S246a
checkErrorPasses

S246b
checkExpectPasses

S246c
checkPrincipal-

TypePasses
S416d

checkTypeError-
Passes

S416e
checkTypePasses

S416c
emptyEnv 311a
ERROR S243b
eval S406b
expString S417a
failtest S246d
FORALL 418
freshInstance

445b
interactiveParsed-

Stream
S280b

intString S238f
naturals S252a
NotFound 311b
OK S243b
schemeToken S374a
skolemTypes S450b
snd S263d
solve 448a
streamMap S252d
streamTake S254a
stripAtLoc S255g
ty S449e
TYCON 418
typdef 449f
TypeError S237c
typeof 448c
typeSchemeString

S412b
tysubst 421a
withHandlersS371a
xdef S413d

Supporting code
for nano-MLR

S416

With asGeneralAs and eqTypeScheme in hand, we can implement the unit tests.
The check-type checks to see if the type of e is as general as the type being claimed
for e.
S416a. 〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉+≡ (S414c) ◁ S415f S416b ▷

fun typeSchemeIsAscribable (e, sigma_e, sigma) =
if asGeneralAs (sigma_e, sigma) then
true

else
failtest ["check-type failed: expected ", expString e, " to have type ",

typeSchemeString sigma, ", but it has type ", typeSchemeString sigma_e]

And check-principal-type checks for equivalence.
S416b. 〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉+≡ (S414c) ◁ S416a

fun typeSchemeIsEquivalent (e, sigma_e, sigma) =
if typeSchemeIsAscribable (e, sigma_e, sigma) then
if asGeneralAs (sigma, sigma_e) then
true

else
failtest ["check-principal-type failed: expected ", expString e,

" to have principal type ", typeSchemeString sigma,
", but it has the more general type ", typeSchemeString sigma_e]

else
false (* error message already issued *)

The implementations compute sigma_e.
S416c. 〈definitions of check*Type*Passes using type inference S416c〉≡ (S414c) S416d ▷

fun checkTypePasses (e, sigma) =
let val (tau, c) = ty e

val theta = solve c
val sigma_e = generalize (tysubst theta tau, freetyvarsGamma Gamma)

in typeSchemeIsAscribable (e, sigma_e, sigma)
end handle TypeError msg =>

failtest ["In (check-type ", expString e, " ", typeSchemeString sigma, "), ", msg]

S416d. 〈definitions of check*Type*Passes using type inference S416c〉+≡ (S414c) ◁ S416c S416e ▷
fun checkPrincipalTypePasses (e, sigma) =
let val (tau, c) = ty e

val theta = solve c
val sigma_e = generalize (tysubst theta tau, freetyvarsGamma Gamma)

in typeSchemeIsEquivalent (e, sigma_e, sigma)
end handle TypeError msg =>

failtest ["In (check-principal-type ", expString e, " ",
typeSchemeString sigma, "), ", msg]

The check-type-error tests expects a type error while computing sigma_e.
S416e. 〈definitions of check*Type*Passes using type inference S416c〉+≡ (S414c) ◁ S416d

fun checkTypeErrorPasses (EXP e) =
(let val (tau, c) = ty e

val theta = solve c
val sigma' = generalize (tysubst theta tau, freetyvarsGamma Gamma)

in failtest ["check-type-error failed: expected ", expString e,
" not to have a type, but it has type ", typeSchemeString sigma']

end handle TypeError msg => true
| Located (_, TypeError _) => true)

| checkTypeErrorPasses d =
(let val t = deftystring d
in failtest ["check-type-error failed: expected ", defString d,

" to cause a type error, but it successfully defined ",
defName d, " : ", t

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.5
Predefined
functions

S417

]
end handle TypeError msg => true

| Located (_, TypeError _) => true)

R.4.2 Rendering expressions as strings

S417a. 〈definition of expString for nano-ML and µML S417a〉≡ (S405c)
fun expString e =
let fun bracket s = "(" ^ s ^ ")"

fun sqbracket s = "[" ^ s ^ "]"
val bracketSpace = bracket o spaceSep
fun exps es = map expString es
fun withBindings (keyword, bs, e) =
bracket (spaceSep [keyword, bindings bs, expString e])

and bindings bs = bracket (spaceSep (map binding bs))
and binding (x, e) = sqbracket (x ^ " " ^ expString e)
val letkind = fn LET => "let" | LETSTAR => "let*" | LETREC => "letrec"

in case e
of LITERAL v => valueString v
| VAR name => name
| IFX (e1, e2, e3) => bracketSpace ("if" :: exps [e1, e2, e3])
| BEGIN es => bracketSpace ("begin" :: exps es)
| APPLY (e, es) => bracketSpace (exps (e::es))
| LETX (lk, bs, e) => bracketSpace [letkind lk, bindings bs, expString e]
| LAMBDA (xs, body) => bracketSpace ["lambda",

bracketSpace xs, expString body]
〈extra cases of expString for µML S417b〉

end

S417b. 〈extra cases of expString for µML S417b〉≡ (S417a)
(* this space is filled in by the uML appendix *)

S417c. 〈definitions of defString and defName for nano-ML and µML S417c〉≡ (S405c)
fun defString d =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun formal (x, t) = "[" ^ x ^ " : " ^ typeString t ^ "]"

in case d
of EXP e => expString e
| VAL (x, e) => bracketSpace ["val", x, expString e]
| VALREC (x, e) => bracketSpace ["val-rec", x, expString e]
| DEFINE (f, (formals, body)) =>

bracketSpace ["define", f, bracketSpace formals, expString body]
〈cases for defString for forms found only in µML generated automatically〉

end
fun defName (VAL (x, _)) = x
| defName (VALREC (x, _)) = x
| defName (DEFINE (x, _)) = x
| defName (EXP _) = raise InternalError "asked for name defined by expression"
〈clauses for defName for forms found only in µML generated automatically〉

R.5 PREDEFINED FUNCTIONS

These predefined functions are identical to what we find in µScheme.
S417d. 〈predefined nano-ML functions S409e〉+≡ ◁ S410a S418a ▷

(define caar (xs) (car (car xs)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY,
in nano-ML 414
in µML S421c
asGeneralAs S415e
BEGIN,
in nano-ML 414
in µML S421c
DEFINE,
in nano-ML 415a
in µML S421d
deftystring,

in nano-ML S414c
in µML S449e
EXP,
in nano-ML 415a
in µML S421d
failtest S246d
freetyvarsGamma

446d
Gamma,
in nano-ML S414c
in µML S449e
generalize 445a
IFX,
in nano-ML 414
in µML S421c
InternalError

S366f
LAMBDA,
in nano-ML 414
in µML S421c
LET,
in nano-ML 414
in µML S421c
LETREC,
in nano-ML 414
in µML S421c
LETSTAR,
in nano-ML 414
in µML S421c
LETX,

in nano-ML 414
in µML S421c
LITERAL,
in nano-ML 414
in µML S421c
Located S255b
solve 448a
spaceSep S239a
ty,
in nano-ML S414c
in µML S449e
TypeError S237c
typeSchemeString

S412b
typeString S411d
tysubst 421a
VAL,
in nano-ML 415a
in µML S421d
VALREC,
in nano-ML 415a
in µML S421d
valueString,

in nano-ML 314
in µML S448b
VAR,
in nano-ML 414
in µML S421c

Supporting code
for nano-MLR

S418

(define cadr (xs) (car (cdr xs)))
(define cdar (xs) (cdr (car xs)))
(define and (b c) (if b c b))
(define or (b c) (if b b c))
(define not (b) (if b #f #t))

S418a. 〈predefined nano-ML functions S409e〉+≡ ◁ S417d S418b ▷

(define append (xs ys)
(if (null? xs)

ys
(cons (car xs) (append (cdr xs) ys))))

(define revapp (xs ys)
(if (null? xs)

ys
(revapp (cdr xs) (cons (car xs) ys))))

(define reverse (xs) (revapp xs '()))

S418b. 〈predefined nano-ML functions S409e〉+≡ ◁ S418a S418c ▷
(define o (f g) (lambda (x) (f (g x))))
(define curry (f) (lambda (x) (lambda (y) (f x y))))
(define uncurry (f) (lambda (x y) ((f x) y)))

S418c. 〈predefined nano-ML functions S409e〉+≡ ◁ S418b S418d ▷

(define filter (p? xs)
(if (null? xs)
'()
(if (p? (car xs))
(cons (car xs) (filter p? (cdr xs)))
(filter p? (cdr xs)))))

S418d. 〈predefined nano-ML functions S409e〉+≡ ◁ S418c S418e ▷
(define map (f xs)
(if (null? xs)
'()
(cons (f (car xs)) (map f (cdr xs)))))

S418e. 〈predefined nano-ML functions S409e〉+≡ ◁ S418d S418f ▷
(define exists? (p? xs)
(if (null? xs)
#f
(if (p? (car xs))
#t
(exists? p? (cdr xs)))))

(define all? (p? xs)
(if (null? xs)
#t
(if (p? (car xs))
(all? p? (cdr xs))
#f)))

S418f. 〈predefined nano-ML functions S409e〉+≡ ◁ S418e S419a ▷
(define foldr (op zero xs)
(if (null? xs)
zero
(op (car xs) (foldr op zero (cdr xs)))))

(define foldl (op zero xs)
(if (null? xs)
zero
(foldl op (op (car xs) zero) (cdr xs))))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§R.6
Cases and code for

Chapter 8

S419

S419a. 〈predefined nano-ML functions S409e〉+≡ ◁ S418f S419b ▷

(define <= (x y) (not (> x y)))
(define >= (x y) (not (< x y)))
(define != (x y) (not (= x y)))

S419b. 〈predefined nano-ML functions S409e〉+≡ ◁ S419a S419c ▷
(define max (x y) (if (> x y) x y))
(define min (x y) (if (< x y) x y))
(define negated (n) (- 0 n))
(define mod (m n) (- m (* n (/ m n))))
(define gcd (m n) (if (= n 0) m (gcd n (mod m n))))
(define lcm (m n) (* m (/ n (gcd m n))))

S419c. 〈predefined nano-ML functions S409e〉+≡ ◁ S419b S419d ▷

(define min* (xs) (foldr min (car xs) (cdr xs)))
(define max* (xs) (foldr max (car xs) (cdr xs)))
(define gcd* (xs) (foldr gcd (car xs) (cdr xs)))
(define lcm* (xs) (foldr lcm (car xs) (cdr xs)))

S419d. 〈predefined nano-ML functions S409e〉+≡ ◁ S419c
(define list1 (x) (cons x '()))
(define list2 (x y) (cons x (list1 y)))
(define list3 (x y z) (cons x (list2 y z)))
(define list4 (x y z a) (cons x (list3 y z a)))
(define list5 (x y z a b) (cons x (list4 y z a b)))
(define list6 (x y z a b c) (cons x (list5 y z a b c)))
(define list7 (x y z a b c d) (cons x (list6 y z a b c d)))
(define list8 (x y z a b c d e) (cons x (list7 y z a b c d e)))

R.6 CASES AND CODE FOR CHAPTER 8

µML (Chapter 8) is built on nano-ML, with additional cases for pattern matching
and algebraic data types. The following code chunks are placeholders for code that
is added in Chapter 8.
S419e. 〈extra case for typdef used only in µML S419e〉≡ (449f)

(* filled in when implementing uML *)

S419f. 〈exhaustiveness analysis for µML S419f〉≡ (S405e)
(* filled in when implementing uML *)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CHAPTER CONTENTS
S.1 DETAILS S421

S.1.1 Interpreter: syntax S421
S.1.2 Support for type equiva-

lence and generativity S422
S.1.3 Primitive type construc-

tors in µML S423
S.1.4 Validation of construc-

tor types in data defini-
tions S423

S.1.5 Translation and kind
checking of type syntax S425

S.1.6 Operational semantics
and evaluation S428

S.1.7 The rest of the inter-
preter S429

S.2 EXISTENTIAL TYPES S434
S.3 PARSING S437

S.3.1 Parsing types and kinds S437
S.3.2 Identifying µML tokens S437
S.3.3 Parsing patterns S438
S.3.4 Parsing expressions S438
S.3.5 Parsing definitions S440
S.3.6 Support for syntactic

sugar S441

S.4 S-EXPRESSION READER S442

S.5 MORE PREDEFINED
FUNCTIONS S443

S.6 USEFUL µML FUNC-
TIONS S445

S.6.1 Printing stuff usingµML S445
S.6.2 Drawing simple figures

in PostScript S446

S.7 DRAWING RED-BLACK
TREES WITH DOT S447

S.8 PRINTING VALUES, PAT-
TERNS, TYPES, AND
KINDS S448

S.9 UNIT TESTING S449
S.10 SUPPORT FOR DATATYPE

DEFINITIONS S450
S.10.1 Cases for elaboration

and evaluation of defi-
nitions S450

S.10.2 Validation for datatype
definitions S451

S.11 SYNTACTIC SUGAR FOR
implicit-data S452

S.12 ERROR CASES FOR ELAB-
ORATION OF TYPE SYN-
TAX S452

SSupporting code for µML

S.1 DETAILS

Predefined tuple types

S421a. 〈predefined µML types S421a〉≡ S421b ▷

(data (* * * => *) triple
[TRIPLE : (forall ['a 'b 'c] ('a 'b 'c -> (triple 'a 'b 'c)))])

When defining larger tuples, the notation of the explicit form is a bit much. I shift
to the implicit form.
S421b. 〈predefined µML types S421a〉+≡ ◁ S421a S442g ▷

(implicit-data ('a1 'a2 'a3 'a4) 4-tuple
[T4 of 'a1 'a2 'a3 'a4])

(implicit-data ('a1 'a2 'a3 'a4 'a5) 5-tuple
[T5 of 'a1 'a2 'a3 'a4 'a5])

(implicit-data ('a1 'a2 'a3 'a4 'a5 'a6) 6-tuple
[T6 of 'a1 'a2 'a3 'a4 'a5 'a6])

(implicit-data ('a1 'a2 'a3 'a4 'a5 'a6 'a7) 7-tuple
[T7 of 'a1 'a2 'a3 'a4 'a5 'a6 'a7])

(implicit-data ('a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8) 8-tuple
[T8 of 'a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8])

(implicit-data ('a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8 'a9) 9-tuple
[T9 of 'a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8 'a9])

(implicit-data ('a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8 'a9 'a10) 10-tuple
[T10 of 'a1 'a2 'a3 'a4 'a5 'a6 'a7 'a8 'a9 'a10])

S.1.1 Interpreter: syntax

S421c. 〈forms of exp carried over from nano-ML S421c〉≡ (498a)
LITERAL of value

| VAR of name
| IFX of exp * exp * exp (* could be syntactic sugar for CASE *)
| BEGIN of exp list
| APPLY of exp * exp list
| LETX of let_kind * (name * exp) list * exp
| LAMBDA of name list * exp

and let_kind = LET | LETREC | LETSTAR

S421d. 〈forms of def carried over from nano-ML S421d〉≡ (498b)
VAL of name * exp

| VALREC of name * exp
| EXP of exp
| DEFINE of name * (name list * exp)

S421
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µMLS

S422

Unit tests are like nano-ML s̓ unit tests, except that the type in a check-type or
a check-principal-type is syntax that has to be translated into a type_scheme.
S422a. 〈definition of unit_test for languages with Hindley-Milner types and generated type constructors S422a〉≡ (S422b)

datatype unit_test = CHECK_EXPECT of exp * exp
| CHECK_ASSERT of exp
| CHECK_ERROR of exp
| CHECK_TYPE of exp * tyex
| CHECK_PTYPE of exp * tyex
| CHECK_TYPE_ERROR of def

The representations defined above are combined with representations from
other chapters as follows:
S422b. 〈abstract syntax and values for µML S422b〉≡ (S433f)

〈kinds for typed languages S425a〉
〈definition of tyex for µML S425c〉
〈definition of pat, for patterns 498c〉
〈definitions of exp and value for µML 498a〉
〈definition of def for µML 498b〉
〈definition of implicit_data_def for µML S452a〉
〈definition of unit_test for languages with Hindley-Milner types and generated type constructors S422a〉
〈definition of xdef (shared) S365b〉
〈definition of valueString for µML S448b〉
〈definition of patString for µML and µHaskell generated automatically〉
〈definition of expString for nano-ML and µML S417a〉
〈definitions of defString and defName for nano-ML and µML S417c〉
〈definition of tyexString for µML S449c〉

S.1.2 Support for type equivalence and generativity

S422c. 〈tycon, freshTycon, eqTycon, and tyconString for generated type constructors S422c〉≡ (S434a) S422d ▷

fun tyconString { identity = _, printName = T } = T

To choose the printName of a type constructor, I could just use the name in the
type constructor s̓ definition. But if a constructor is redefined, you donʼt want an
error message like “cannot make node equal to node” or “expected struct point
but argument is of type struct point.”1 We can do better. I define a function
freshPrintName which, when given the name of a type constructor, returns a
printName that is distinct from prior printNames. For example, the first time I de-
fine node, it prints as node. But the second time I define node, it prints as node@{2},
and so on.
S422d.

freshPrintName : string -> string
〈tycon, freshTycon, eqTycon, and tyconString for generated type constructors S422c〉+≡ (S434a) ◁ S422c S423a ▷

local
val timesDefined : int env ref = ref emptyEnv

(* how many times each tycon is defined *)
in
fun freshPrintName t =
let val n = find (t, !timesDefined) handle NotFound _ => 0

val _ = timesDefined := bind (t, n + 1, !timesDefined)
in if n = 0 then t (* first definition *)

else t ^ "@{" ^ Int.toString (n+1) ^ "}"
end

end
1The second message is from gcc.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S423

Every type constructor is created by calling function freshTycon, which gives it
a fresh printName and a unique identity. Ordinary type constructors have even-
numbered identities; odd-numbered identities are reserved for special type con-
structors described in Section C.1.
S423a.

freshTycon : name -> tycon
〈tycon, freshTycon, eqTycon, and tyconString for generated type constructors S422c〉+≡ (S434a) ◁ S422d

local
val nextIdentity = ref 0
fun freshIdentity () = !nextIdentity before nextIdentity := !nextIdentity + 2

in
fun freshTycon t = { identity = freshIdentity(), printName = freshPrintName t }

end

S.1.3 Primitive type constructors in µML

In µML, Booleans, lists, pairs, and other algebraic data types are predefined using
data definitions. Only four type constructors are defined primitively:

• Integers and symbols, which give types to literal integers and symbols

• Function and argument type constructors, which give types to functions

S423b. 〈type constructors built into µML and µHaskell S423b〉≡ (S434a)
val funtycon = freshTycon "function"
val argstycon = freshTycon "arguments"

The first two type constructors are used to make the int and sym types.
S423c. 〈types built into µML and µHaskell S423c〉≡ (S434a)

val inttype = TYCON inttycon
val symtype = TYCON symtycon

The second two are used to make function types, which we can construct and
deconstruct.
S423d.

funtype : ty list * ty -> ty
asFuntype : ty -> (ty list * ty) option

〈code to construct and deconstruct function types for µML S423d〉≡ (S434a)

fun funtype (args, result) =
CONAPP (TYCON funtycon, [CONAPP (TYCON argstycon, args), result])

fun asFuntype (CONAPP (TYCON mu, [CONAPP (_, args), result])) =
if eqTycon (mu, funtycon) then
SOME (args, result)

else
NONE

| asFuntype _ = NONE

S.1.4 Validation of constructor types in data definitions

To implement these rules in a way that doesnʼt make my head hurt, I define an
algebraic data type that shows the four possible shapes of σ, so I can pattern match
on them. The shapes are τ1 × · · · × τn → τ , τ , ∀α1, . . . , αk.τ1 × · · · × τn → τ ,
and ∀α1, . . . , αk.τ .
S423e.

type scheme_shape
〈shared utility functions on Hindley-Milner types S423e〉≡ (S434a S408c) S424a ▷

datatype scheme_shape
= MONO_FUN of ty list * ty (* (tau1 ... tauN -> tau) *)
| MONO_VAL of ty (* tau *)
| POLY_FUN of tyvar list * ty list * ty (* (forall (a ...) (tau ... -> tau)) *)
| POLY_VAL of tyvar list * ty (* (forall (a ...) tau) *)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bind 312b
CONAPP 418
type def 498b
emptyEnv 311a
type env 310b
eqTycon 497c
type exp 498a
find 311b
inttycon 497d
NotFound 311b
symtycon 497d
type ty 418
TYCON 418
type tyex S425c
type tyvar 418

Supporting code
for µMLS

S424

A shape is identified by first looking for a function arrow, then checking to see if
the list of α s̓ is empty.
S424a.

schemeShape : type_scheme -> scheme_shape
〈shared utility functions on Hindley-Milner types S423e〉+≡ (S434a S408c) ◁ S423e

fun schemeShape (FORALL (alphas, tau)) =
case asFuntype tau
of NONE => if null alphas then MONO_VAL tau

else POLY_VAL (alphas, tau)
| SOME (args, result) =>

if null alphas then MONO_FUN (args, result)
else POLY_FUN (alphas, args, result)

The type-compatibility judgment can fail in unusually many ways. So my imple-
mentation has lots of code for detecting bad outcomes and issuing error messages,
and it defines several auxiliary functions:

• Function appliesMu says if a type is an application of type constructor µ.

• Function validateTypeArguments ensures that the arguments in a construc-
tor application are distinct type variables; it is defined only on constructor
applications.

• Function validateLengths checks that the number of type variables in a ∀
is the same as the number of type parameters specified by µ s̓ kind.

S424b.

appliesMu : ty -> bool
validateTypeArguments : ty -> unit
validateLengths : tyvar list * kind list -> unit

〈definition of validate, for the types of the value constructors of T S424b〉≡ (501b)

fun validate (K, sigma as FORALL (alphas, _), mu, kind) =
let 〈definitions of appliesMu and validateTypeArguments S451a〉

val desiredType = case kind of TYPE => "type " ^ tyconString mu
| ARROW _ => "a type made with " ^ tyconString mu

fun validateLengths (alphas, argkinds) =
if length alphas <> length argkinds then
〈for K, complain that alphas is inconsistent with kind S451c〉

else
()

in 〈validation by case analysis on schemeShape shape and kind S424c〉
end

The case analysis includes one case per rule. In addition, there is a catchall
case that matches when the shape of the type scheme doesnʼt match the kind of µ.
S424c. 〈validation by case analysis on schemeShape shape and kind S424c〉≡ (S424b)

case (schemeShape sigma, kind)
of (MONO_VAL tau, TYPE) =>

if eqType (tau, TYCON mu) then
()

else
〈type of K should be desiredType but is sigma S451d〉

| (MONO_FUN (_, result), TYPE) =>
if eqType (result, TYCON mu) then
()

else
〈result type of K should be desiredType but is result S451e〉

| (POLY_VAL (alphas, tau), ARROW (argkinds, _)) =>
if appliesMu tau then

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S425

(validateLengths (alphas, argkinds)
; validateTypeArguments tau
)

else
〈type of K should be desiredType but is sigma S451d〉

| (POLY_FUN (alphas, _, result), ARROW (argkinds, _)) =>
if appliesMu result then
(validateLengths (alphas, argkinds)
; validateTypeArguments result
)

else
〈result type of K should be desiredType but is result S451e〉

| _ =>
〈for K, complain that alphas is inconsistent with kind S451c〉

When implicit-data is translated into data, as long as all the t s̓ elaborate
to σ s̓, each σ satisfies the compatibility judgment σ ≼ µ :: κ.

S.1.5 Translation and kind checking of type syntax

µML uses the same kind system as Typed µScheme.
S425a. 〈kinds for typed languages S425a〉≡ (S422b S394b) S425b ▷

datatype kind = TYPE (* kind of all types *)
| ARROW of kind list * kind (* kind of many constructors *)

S425b. 〈kinds for typed languages S425a〉+≡ (S422b S394b) ◁ S425a S449d ▷

fun eqKind (TYPE, TYPE) = true
| eqKind (ARROW (args, result), ARROW (args', result')) =

eqKinds (args, args') andalso eqKind (result, result')
| eqKind (_, _) = false

and eqKinds (ks, ks') = ListPair.allEq eqKind (ks, ks')

MISPLACED: We begin our tour of syntax with type expressions: a type ex-
pression in µML is just like a type expression in Typed µScheme (page 366). But
in Typed µScheme, the name of a type (or type constructor) identifies it completely,
and in µML, a type name, has to be translated into a type constructor. The transla-
tion transforms syntax t (ML type tyex) into a type scheme σ (type_scheme). It is
described in Section 8.7.2 on page 502.

S425c. 〈definition of tyex for µML S425c〉≡ (S422b)
datatype tyex = TYNAME of name (* names type or type constructor *)

| CONAPPX of tyex * tyex list (* type-level application *)
| FUNTYX of tyex list * tyex
| FORALLX of name list * tyex
| TYVARX of name (* type variable *)

In Typed µScheme, the syntax is the type; there s̓ no separate representation.
But if you study the representations of tyex and ty on pages 418 and 498, you might
guess what has to be done to convert tyex to ty:

• Convert function-type syntax to an application of funty

• Convert each type name to a tycon

The rest of the conversion is structural; we just have to check that kinds are right.
To make the name-to-tycon conversion easy, and to keep track of kinds, I use a single
environment∆. The environment∆maps each name both to the type that it stands
for and to the kind of that type. The name of a type constructor maps to TYCON µ
(along with the kind of µ), and the name of a type variable maps to TYVAR α (along
with the kind of α). The full mapping of tyex to ty is done by function txType.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

appliesMu S451a
args 364b
args' 364b
ARROW 364a
asFuntype S423d
eqKind 364b
eqKinds 364b
eqType 422b
FORALL 418
type kind 364a
ks' 364b
MONO_FUN S423e
MONO_VAL S423e
type name 310a
POLY_FUN S423e
POLY_VAL S423e
result 364b
result' 364b
TYCON 418
tyconString S422c
TYPE 364a
validateType-

Arguments
S451b

Supporting code
for µMLS

S426

Syntax Concept Semantics

t Type τ
α Type variable α
T Type name or constructor µ
(t1 · · · tn -> t) Function type τ1 × · · · × τn → τ
(t t1 · · · tn) Constructor application (τ1, . . . , τn) τ

t Type scheme σ
(forall (α1 · · · αn) t) Quantified type ∀α1, . . . , αn.τ

Table S.1: Notational correspondence between type syntax and types

The type theory that specifies txType is a conservative extension of theory of
kind checking from Typed µScheme (functionkindofon page 387). Typed µScheme
uses the kinding judgment ∆ ` τ :: κ, which says that in environment ∆, type τ

has kind κ. µML extends that judgment to ∆ ` t ; τ :: κ , which says that in
environment ∆, type syntax t translates to type τ , which has kind κ. If I erase
the types from environment ∆ and I erase the syntax t from the judgment
∆ ` t ; τ :: κ, I wind up with Typed µScheme s̓ kind system. (Prove it for yourself
in Exercise 31.)

Each clause of txType implements the translation rule that corresponds to
its syntax. Translation rules (Figure 8.6) extend Typed µScheme s̓ kinding rules.
To start, a type name or type variable is looked up in the environment ∆.
S426a.

txType : tyex * (ty * kind) env -> ty * kind
〈translation of µML type syntax into types S426a〉≡ (S433f) S426b ▷

fun txType (TYNAME t, Delta) =
(find (t, Delta)
handle NotFound _ => raise TypeError ("unknown type name " ^ t))

| txType (TYVARX a, Delta) =
(find (a, Delta)
handle NotFound _ => raise TypeError ("type variable " ^ a ^ " is not in scope"))

Constructor application must be well-kinded.

S426b. 〈translation of µML type syntax into types S426a〉+≡ (S433f) ◁ S426a S426c ▷
| txType (CONAPPX (tx, txs), Delta) =

let val (tau, kind) = txType (tx, Delta)
val (taus, kinds) = ListPair.unzip (map (fn tx => txType (tx, Delta)) txs)

in case kind
of ARROW (argks, resultk) =>

if eqKinds (kinds, argks) then
(CONAPP (tau, taus), resultk)

else
〈applied type constructor tx has the wrong kind S453a〉

| TYPE =>
〈type tau is not expecting any arguments S453b〉

end

A function type may be formed only when the argument and result types have
kind TYPE.

S426c. 〈translation of µML type syntax into types S426a〉+≡ (S433f) ◁ S426b S427a ▷
| txType (FUNTYX (txs, tx), Delta) =

let val tks = map (fn tx => txType (tx, Delta)) txs
val tk = txType (tx, Delta)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S427

Syntax Concept Semantics

tyex Type ty
TYVARX α Type variable TYVAR α
TYNAME T Type name or constructor TYCON µ
FUNTYEX ([t1, . . . , tn], t) Function type funty ([τ1, . . . , τn], τ)
CONAPPX (τ1, . . . , τn) Constructor application CONAPP (τ, [τ1, . . . , τn])

tyex Type scheme type_scheme
FORALLX ([α1, . . . , αn], t) Quantified type FORALL ([α1, . . . , αn], τ)

Table S.2: Representational correspondence between type syntax and types

fun notAType (ty, kind) = not (eqKind (kind, TYPE))
fun thetype (ty, kind) = ty

in if notAType tk then
raise TypeError ("in result position, " ^ typeString (thetype tk) ^

" is not a type")
else
case List.find notAType tks
of SOME tk =>

raise TypeError ("in argument position, " ^
typeString (thetype tk) ^ " is not a type")

| NONE => (funtype (map thetype tks, thetype tk), TYPE)
end

A forall quantifier is impermissible in a type—this restriction is what makes
the type system a Hindley-Milner type system.
S427a. 〈translation of µML type syntax into types S426a〉+≡ (S433f) ◁ S426c S427b ▷

| txType (FORALLX _, _) =
raise TypeError ("'forall' is permissible only at top level")

The elaboration judgment for a type scheme is ∆ ` t ; σ :: ∗ . (Because
the kind of a type scheme is always ∗, there is no need to write the kind in the
judgment.)

In a type scheme, forall is permitted. Each type variable is given kind ∗.

α1, . . . , αn are all distinct
∆{α1 7→ (α1, ∗), . . . , αn 7→ (αn, ∗)} ` t ; τ :: ∗
∆ ` (forall (α1 · · · αn) t) ; ∀α1, . . . , αn.τ :: ∗

(SCHEMEKINDALL)

The distinctness of α1, . . . , αn is guaranteed by the parser, so no check is required
here.
S427b.

txTyScheme : tyex * (ty * kind) env -> type_scheme
〈translation of µML type syntax into types S426a〉+≡ (S433f) ◁ S427a S428a ▷

fun txTyScheme (FORALLX (alphas, tx), Delta) =
let val Delta' = extend (Delta, map (fn a => (a, (TYVAR a, TYPE))) alphas)

val (tau, kind) = txType (tx, Delta')
in if eqKind (kind, TYPE) then

FORALL (alphas, tau)
else
raise TypeError ("in " ^ typeSchemeString (FORALL (alphas, tau)) ^

", type " ^ typeString tau ^ " has kind " ^ kindString kind)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARROW,
in µML S425a
in µML 364a
CONAPP 418
CONAPPX S425c
eqKind,
in µML 364b
in µML S425b
eqKinds,
in µML S425b
in µML 364b
extend S428e
find 311b
FORALL 418
FORALLX S425c
funtype S423d
FUNTYX S425c
kindString S449d
NotFound 311b
TYNAME S425c
TYPE,

in µML 364a
in µML S425a
TypeError S237c
typeSchemeString

S412b
typeString S411d
TYVAR 418
TYVARX S425c

Supporting code
for µMLS

S428

If there s̓ no forall in the syntax, a type is also a type scheme (with an empty ∀).

∆ ` t ; τ :: ∗
∆ ` t ; ∀.τ :: ∗

(SCHEMEKINDMONOTYPE)

S428a. 〈translation of µML type syntax into types S426a〉+≡ (S433f) ◁ S427b
| txTyScheme (tx, Delta) =

case txType (tx, Delta)
of (tau, TYPE) => FORALL ([], tau)
| (tau, kind) =>

raise TypeError ("expected a type, but got type constructor " ^
typeString tau ^ " of kind " ^ kindString kind)

S.1.6 Operational semantics and evaluation

For syntactic forms other than the case and data forms, µML shares both opera-
tional semantics and code with nano-ML. What s̓ new are the rules for case expres-
sions, pattern matching, and the data definition.

The components of the evaluator and read-eval-print loop are organized as fol-
lows:
S428b. 〈evaluation, testing, and the read-eval-print loop for µML S428b〉≡ (S433f)

〈definition of namedValueString for functional bridge languages S399c〉
〈definitions of match and Doesn'tMatch 506b〉
〈definitions of eval and evaldef for nano-ML and µML S406b〉
〈definition of processDef for µML S430a〉
〈shared definition of withHandlers S371a〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for µML S449e〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉
µML also has special syntax for a value-constructor expression, but it isnʼt in-

teresting: like a value variable, a value constructor is evaluated by looking it up in
the environment:
S428c. 〈more alternatives for ev for nano-ML and µML S428c〉≡ (S406b)

| ev (VCONX vcon) = find (vcon, rho)

S428d. 〈utility functions on µML syntax S428d〉≡ (S433f)
fun isfuntype (FORALLX (_, tau)) = isfuntype tau
| isfuntype (FUNTYX _) = true
| isfuntype _ = false

Extension is an operation we also see in LET forms, but this is the first interpreter
in which I write it as a function.
S428e.

extend : 'a env * 'a env -> 'a env
〈support for names and environments S428e〉≡ (S237a) S428f ▷

fun extend (rho, bindings) =
foldr (fn ((x, a), rho) => bind (x, a, rho)) rho bindings

Function disjointUnion combines environments and checks for duplicate
names. If it finds a duplicate name, it raises DisjointUnionFailed. This excep-
tion can be raised only during type inference, not during evaluation.
S428f.

disjointUnion : 'a env list -> 'a env
〈support for names and environments S428e〉+≡ (S237a) ◁ S428e

exception DisjointUnionFailed of name
fun disjointUnion envs =
let val env = List.concat envs
in case duplicatename (map fst env)

of NONE => env
| SOME x => raise DisjointUnionFailed x

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S429

S429a. 〈function literal, to infer the type of a literal constant [[adt]] S429a〉≡
〈definition of function pvconType S429c〉
〈definition of function pattype 510〉
〈definition of function choicetype 509b〉

Function extendTypeEnv takes a type_env on the left but a type_scheme env on
the right.
S429b.

extendTypeEnv : type_env * type_scheme env -> type_env
〈specialized environments for type schemes S429b〉≡ (S434a S408c)

fun extendTypeEnv (Gamma, bindings) =
let fun add ((x, sigma), Gamma) = bindtyscheme (x, sigma, Gamma)
in foldl add Gamma bindings
end

We get the type of a value constructor in the same way as we get the type of a
variable: instantiate its type scheme with fresh type variables.
S429c. 〈definition of function pvconType S429c〉≡ (S429a)

fun pvconType (K, Gamma) =
freshInstance (findtyscheme (K, Gamma))
handle NotFound x => raise TypeError ("no value constructor named " ^ x)

S429d. 〈more alternatives for ty S429d〉≡ (449a)
| ty (VCONX vcon) =

let val tau =
freshInstance (findtyscheme (vcon, Gamma))
handle NotFound _ => raise TypeError ("no value constructor named " ^ vcon)

in (tau, TRIVIAL)
end

S.1.7 The rest of the interpreter

What s̓ left is code to process definitions and create the initial basis. I instantiate
the general framework introduced in Chapter 5: I say what a basis is and how we
process a definition. I also implement the primitives and the predefined types.

A basis for µML

A basis is a quadruple 〈Γ,∆,M, ρ〉. But M is represented implicitly, by the con-
tents of the mutable reference cell nextIdentity, so the representation of a basis
contains only the components Γ, ∆, and ρ.
S429e. 〈definition of basis for µML S429e〉≡ (S433f)

type basis = type_env * (ty * kind) env * value env

Processing definitions

As in other interpreters for statically typed languages, processDef first elabo-
rates a definition, then evaluates it. A data definition is handled by function
processDataDef below. All other definitions are handled by the versions of typdef
and evaldef defined for nano-ML in Chapter 7. In the formal type system, we del-
egate to typdef using this rule:

〈d,Γ〉 → 〈Γ′〉
〈d,Γ,∆,M〉 → 〈Γ′,∆,M〉

(REUSEDEFINITION)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bind 312b
bindtyscheme446c
duplicatename

S366d
type env 310b
find 311b
findtyscheme446b
FORALL 418
FORALLX S425c
freshInstance

445b
fst S263d
FUNTYX S425c
Gamma 448c
type kind,
in µML 364a
in µML S425a
kindString S449d
type name 310a
NotFound 311b
rho S406b
TRIVIAL 446e
txType S426a
type ty 418
TYPE,

in µML 364a
in µML S425a

type type_env
446a

TypeError S237c
typeString S411d
type value 498d
VCONX 498a

Supporting code
for µMLS

S430

S430a.

processDef : def * basis * interactivity -> basis
〈definition of processDef for µML S430a〉≡ (S428b)

fun processDef (DATA dd, basis, interactivity) =
processDataDef (dd, basis, interactivity)

| processDef (d, (Gamma, Delta, rho), interactivity) =
let val (Gamma', tystring) = typdef (d, Gamma)

val (rho', valstring) = evaldef (d, rho)
val _ =
if prints interactivity then
println (valstring ^ " : " ^ tystring)

else
()

in (Gamma', Delta, rho')
end

To process a data definition, use typDataDef and evalDataDef.
S430b.

processDataDef : data_def * basis * interactivity -> basis
〈typing and evaluation of data definitions S430b〉≡ (S433f)

fun processDataDef (dd, (Gamma, Delta, rho), interactivity) =
let val (Gamma', Delta', tystrings) = typeDataDef (dd, Gamma, Delta)

val (rho', vcons) = evalDataDef (dd, rho)
val _ = if prints interactivity then

〈print the new type and each of its value constructors S430c〉
else
()

in (Gamma', Delta', rho')
end

The name of the new type constructor is printed with its kind, and the name of
each value constructor is printed with its type.
S430c. 〈print the new type and each of its value constructors S430c〉≡ (S430b)

let val (T, _, _) = dd
val (mu, _) = find (T, Delta')
val (kind, vcon_types) =
case tystrings of s :: ss => (s, ss)

| [] => let exception NoKindString in raise NoKindString end
in (println (typeString mu ^ " :: " ^ kind)

; ListPair.appEq (fn (K, tau) => println (K ^ " : " ^ tau)) (vcons, vcon_types)
)

end

Building the initial basis: predefined types, primitives, predefined functions

Other interpreters build an initial basis by starting with an empty basis, adding
primitives, and adding predefined functions. But the initial basis for the µML in-
terpreter has to be built in five stages, not three:

1. Start with an empty basis

2. Add the primitive type constructors int and sym, producing primTyconBasis

3. Add the predefined types, producing predefinedTypeBasis

(At this point, it is possible to implement type inference, which uses the pre-
defined types list and bool to infer the types of list literals and Boolean
literals.)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S431

4. Add the primitives, some of whose types refer to predefined types, producing
primFunBasis

5. Add the predefined functions, some of whose bodies refer to primitives, pro-
ducing initialBasis

After step 3, the predefined types list and bool need to be exposed to the type-
inference engine, and all the predefined types need to be exposed to the imple-
mentations of the primitives. The basis holding the predefined types is called
predefinedTypeBasis, and the code for the first two steps is implemented here.
First, the primitive type constructors:
S431a.

emptyBasis : basis
〈definitions of emptyBasis, predefinedTypeBasis, booltype, listtype, and unittype S431a〉≡ (S433f) S431b ▷

val emptyBasis = (emptyTypeEnv, emptyEnv, emptyEnv)
fun addTycon ((t, tycon, kind), (Gamma, Delta, rho)) =
(Gamma, bind (t, (TYCON tycon, kind), Delta), rho)

val primTyconBasis : basis =
foldl addTycon emptyBasis (〈primitive type constructors for µML :: S432b〉 nil)

Next, the predefined types. Internal function process accepts only data defi-
nitions, which can be elaborated without type inference. We add primitive values
and user code.
S431b.

predefinedTypeBasis : basis
〈definitions of emptyBasis, predefinedTypeBasis, booltype, listtype, and unittype S431a〉+≡ (S433f) ◁ S431a S432a ▷

val predefinedTypeBasis =
let val predefinedTypes = 〈predefined µML types, as strings (from ⟨predefined µML types 474d⟩)〉

val xdefs = stringsxdefs ("built-in types", predefinedTypes)
fun process (DEF (DATA dd), b) = processDataDef (dd, b, noninteractive)
| process _ = raise InternalError "predefined definition is not DATA"

in streamFold process primTyconBasis xdefs
end

The predefinedTypeBasis is used to define booltype, which is used in type
inference, which is used in typdef, which is used in processDef. So when
predefinedTypeBasis is defined, processDef is not yet available. I therefore de-
fine internal function process, which processes only data definitions. Luckily,
typDataDef does not require type inference.

The next step is to add the primitive functions.
S431c. 〈implementations of µML primitives and definition of initialBasis S431c〉≡ (S433f) S431d ▷

〈shared utility functions for building primitives in languages with type inference S408d〉
〈utility functions for building nano-ML primitives S409a〉
val primFunBasis =
let fun addPrim ((name, prim, tau), (Gamma, Delta, rho)) =

(bindtyscheme (name, generalize (tau, freetyvarsGamma Gamma), Gamma)
, Delta
, bind (name, PRIMITIVE prim, rho)
)

in foldl addPrim predefinedTypeBasis (〈primitives for nano-ML and µML :: S443b〉 nil)
end

And the final step is to add the predefined functions. Here we have access to all
of type inference and evaluation, in the form of function readEvalPrintWith.
S431d. 〈implementations of µML primitives and definition of initialBasis S431c〉+≡ (S433f) ◁ S431c

val initialBasis =
let val predefinedFuns =

〈predefined µML functions, as strings (from ⟨predefined µML functions 470⟩)〉
val xdefs = stringsxdefs ("predefined functions", predefinedFuns)

in readEvalPrintWith predefinedFunctionError (xdefs, primFunBasis, noninteractive)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type basis S429e
bind 312b
bindtyscheme446c
DATA 498b
DEF S365b
emptyEnv 311a
emptyTypeEnv446b
evalDataDef 502
evaldef S407d
find 311b
freetyvarsGamma

446d
fst S263d
generalize 445a
InternalError

S366f
noninteractive

S368c
predefined-

FunctionError
S238e

PRIMITIVE 498d
println S238a
prints S368c
readEvalPrintWith

S369c
streamFold S253b
stringsxdefsS254c
TYCON 418
typdef 449f
typeDataDef 501b
typeString S411d

Supporting code
for µMLS

S432

Internal access to predefined types

Types bool, list, unit, and so on are used not only in the basis, but also inside
the interpreter: they are used to infer types, to define primitive functions, or both.
I extract them from predefinedTypeBasis. I also define types alpha and beta,
which are used to write the types of polymorphic primitives.
S432a. 〈definitions of emptyBasis, predefinedTypeBasis, booltype, listtype, and unittype S431a〉+≡ (S433f) ◁ S431b

local
val (_, Delta, _) = predefinedTypeBasis
fun predefined t = fst (find (t, Delta))
val listtycon = predefined "list"

in
val booltype = predefined "bool"
fun listtype tau = CONAPP (listtycon, [tau])
val unittype = predefined "unit"
val sxtype = predefined "sx"
val alpha = TYVAR "'a"
val beta = TYVAR "'b"

end

Specifications of primitive types and functions

Like Typed µScheme,µML has both primitive types and primitive values. Primitive
types int and sym are bound into the kinding environment ∆. Other built-in types
are either defined in user code, like list and bool, or they donʼt have names, like
the function type.
S432b. 〈primitive type constructors for µML :: S432b〉≡ (S431a)

("int", inttycon, TYPE) ::
("sym", symtycon, TYPE) ::

µML s̓ primitive values are also nano-ML primitive values, and they are defined
in chunk 〈primitives for nano-ML and µML :: S443b〉. The code defined there is
reused, but because µML uses CONVAL instead of BOOLV, PAIR, and NIL, we need
new versions of some of the ML functions on which the primitives are built.

The first new function we need is the one that defines primitive equality.
InµML, polymorphic equality uses the same rules as in full ML; in particular, iden-
tical value constructors applied to equal values are considered equal.
S432c. 〈utility functions on µML values S432c〉≡ S433c ▷

fun primitiveEquality (v, v') =
let fun noFun () = raise RuntimeError "compared functions for equality"
in case (v, v')

of (NUM n1, NUM n2) => (n1 = n2)
| (SYM v1, SYM v2) => (v1 = v2)
| (CONVAL (vcon, vs), CONVAL (vcon', vs')) =>

vcon = vcon' andalso ListPair.allEq primitiveEquality (vs, vs')
| (CLOSURE _, _) => noFun ()
| (PRIMITIVE _, _) => noFun ()
| (_, CLOSURE _) => noFun ()
| (_, PRIMITIVE _) => noFun ()
| _ => raise BugInTypeInference

("compared incompatible values " ^ valueString v ^ " and " ^
valueString v' ^ " for equality")

end
val testEqual = primitiveEquality

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.1. Details

S433

S433a. 〈utility functions on µML values [[mcl]] S433a〉≡ S433b ▷

fun primitiveEquality (v, v') =
let fun noFun () = raise RuntimeError "compared functions for equality"
in case (v, v')

of (NUM n1, NUM n2) => (n1 = n2)
| (SYM v1, SYM v2) => (v1 = v2)
| (CONVAL (vcon, vs), CONVAL (vcon', vs')) =>

vcon = vcon' andalso ListPair.allEq primitiveEquality (map ! vs, map ! vs')
| (CLOSURE _, _) => noFun ()
| (PRIMITIVE _, _) => noFun ()
| (_, CLOSURE _) => noFun ()
| (_, PRIMITIVE _) => noFun ()
| _ => raise BugInTypeInference

("compared incompatible values " ^ valueString v ^ " and " ^
valueString v' ^ " for equality")

end
val testEqual = primitiveEquality

In µML, as in OCaml, comparing functions for equality causes a run-time error.
Standard ML has a more elaborate type system which rejects such comparisons
during type checking.

The parser for literal S-expressions uses embedList to convert a list of S-
expressions into an S-expression. The nano-ML version (chunk 315c) uses Stan-
dard ML value constructors PAIR and NIL, but the µML version uses µML value
constructors cons and '().
S433b.

embedList : value list -> value
〈utility functions on µML values [[mcl]] S433a〉+≡ ◁ S433a S433d ▷

fun embedList [] = CONVAL (PNAME "'()", [])
| embedList (v::vs) = CONVAL (PNAME "cons", [ref v, ref (embedList vs)])

S433c. 〈utility functions on µML values S432c〉+≡ ◁ S432c S433e ▷
fun embedList [] = CONVAL ("'()", [])
| embedList (v::vs) = CONVAL ("cons", [v, embedList vs])

The operations that convert between nano-ML Booleans and Standard ML
Booleans use nano-ML s̓ BOOLV. Again, theµML versions useµML s̓ value construc-
tors.
S433d.

projectBool : value -> bool
embedBool : bool -> value

〈utility functions on µML values [[mcl]] S433a〉+≡ ◁ S433b
fun embedBool b = CONVAL (PNAME (if b then "#t" else "#f"), [])
fun projectBool (CONVAL (PNAME "#t", [])) = true
| projectBool _ = false

S433e. 〈utility functions on µML values S432c〉+≡ ◁ S433c
fun embedBool b = CONVAL (if b then "#t" else "#f", [])
fun projectBool (CONVAL ("#t", [])) = true
| projectBool _ = false

Pulling the pieces together

The full interpreter shares lots of components with nano-ML.
S433f. 〈uml.sml S433f〉≡

〈exceptions used in languages with type inference S237c〉
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈Hindley-Milner types with generated type constructors S434a〉

〈abstract syntax and values for µML S422b〉
〈utility functions on µML syntax S428d〉

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

BugInTypeInference
S237c

BugInTypeInference
S500b

CLOSURE,
in molecule S499d
in µML 498d
CONAPP 418
CONVAL,
in molecule S499d
in µML 498d
find 311b
fst S263d
inttycon 497d
NUM,
in molecule S499d
in µML 498d
PNAME S455
predefinedType-

Basis
S431b

PRIMITIVE,
in molecule S499d
in µML 498d
RuntimeErrorS366c
SYM,
in molecule S499d
in µML 498d
symtycon 497d
TYPE,

in µML 364a
in µML S425a
TYVAR 418
valueString,

in molecule S507a
in µML S448b

Supporting code
for µMLS

S434

〈utility functions on µML values generated automatically〉

〈lexical analysis and parsing for µML, providing filexdefs and stringsxdefs S437a〉

〈definition of basis for µML S429e〉
〈translation of µML type syntax into types S426a〉
〈typing and evaluation of data definitions S430b〉
〈definitions of emptyBasis, predefinedTypeBasis, booltype, listtype, and unittype S431a〉
〈type inference for nano-ML and µML S405e〉

〈evaluation, testing, and the read-eval-print loop for µML S428b〉

〈implementations of µML primitives and definition of initialBasis S431c〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

Most of the type components are shared with either nano-ML or µHaskell.
S434a. 〈Hindley-Milner types with generated type constructors S434a〉≡ (S433f)

〈tycon, freshTycon, eqTycon, and tyconString for generated type constructors S422c〉
〈representation of Hindley-Milner types 418〉
〈sets of free type variables in Hindley-Milner types 442〉
〈type constructors built into µML and µHaskell S423b〉
〈types built into µML and µHaskell S423c〉
〈code to construct and deconstruct function types for µML S423d〉
〈definition of typeString for Hindley-Milner types S411d〉
〈shared utility functions on Hindley-Milner types S423e〉
〈specialized environments for type schemes S429b〉
〈extensions that support existential types S434b〉

S.2 EXISTENTIAL TYPES

Before going on with the type theory, here is what we have so far, made concrete
in code. First, function asX . Only a function type can be converted to existential.
We find the result type by stripping off the function arrow. We then look at the result
type s̓ parameters; those are theα1, . . . , αn. And whatever original parameters are
left over are the β1, . . . , βm.

S434b.

type x_type_scheme
asExistential : type_scheme -> x_type_scheme option

〈extensions that support existential types S434b〉≡ (S434a) S435a ▷

datatype x_type_scheme
= FORALL_EXISTS of tyvar list * tyvar list * ty list * ty

fun asExistential (FORALL (alphas_and_betas, tau)) =
let fun asTyvar (TYVAR a) = a

| asTyvar _ = let exception GADT in raise GADT end
fun typeParameters (CONAPP (mu, alphas)) = map asTyvar alphas
| typeParameters _ = []

in case asFuntype tau
of SOME (args, result) =>

let val alphas = typeParameters result
val betas = diff (alphas_and_betas, alphas)

in SOME (FORALL_EXISTS (alphas, betas, args, result))
end

| NONE => NONE
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.2
Existential types

S435

In order to skolemize an existential type, we have to have fresh skolem types.
A skolem type is represented as a type constructor, but unlike a normal type con-
structor, it has an odd number as its identity. (If I were starting from scratch,
I would prefer to add SKOLEM_TYPE to the representation of ty, but because I have
lots of constraint-solving and type-inference code leftover from nano-ML, I prefer
a representation that permits me to reuse that code.)
S435a. 〈extensions that support existential types S434b〉+≡ (S434a) ◁ S434b S436d ▷

fun freshSkolem _ =
let val { identity = id, printName = T } = freshTycon "skolem type"
in TYCON { identity = id + 1, printName = "skolem type " ^ intString (id div 2) }
end

fun isSkolem { identity = n, printName = _ } = (n mod 2 = 1)

Finally, function pvconType implements the judgment Γ `p K : τ

S435b. 〈definition of function pvconType [[existentials]] S435b〉≡
fun pvconType (K, Gamma) =
let val sigma = findtyscheme (K, Gamma)

val sigma' =
case asExistential sigma
of NONE => sigma
| SOME (FORALL_EXISTS (alphas, betas, args, result)) =>

let val skolems = map freshSkolem betas
val theta = tysubst (bindList (betas, skolems, emptyEnv))

in FORALL (alphas, theta (funtype (args, result)))
end

in freshInstance sigma'
end handle NotFound x => raise TypeError ("no value constructor named " ^ x)

C,Γ,Γ′ ` p : τ C ′,Γ + Γ′ ` e : τ ′

θ(C ∧ C ′) ≡ T

fs(θΓ′) ∩ fs(θΓ) = ∅ fs(θΓ′) ∩ fs(θ(τ → τ ′)) = ∅
C ∧ C ′,Γ ` [p e] : τ → τ ′

(EXISTENTIALCHOICE)

The rule is implemented using these representations:

p e Γ Γ′ τ → τ ′ C ∧ C ′

p e Gamma Gamma' ty con

To find the free skolem types of θΓ′, I look at all the types bound in θΓ′. But to find
the free skolem types of θΓ, I need to look only at what θ substitutes for the free
type variables of Γ.
S435c. 〈check p, e, Gamma', Gamma, ty, and con for escaping skolem types [[existentials]] S435c〉≡

let val theta = solve con (* if exn is raised here, we're doomed anyway *)
val patSkolems = typeSchemesFreeSkolems (map snd (typeEnvSubst theta Gamma'))
val envSkolems = typesFreeSkolems (map (varsubst theta) (freetyvarsGamma Gamma))
val tySkolems = typeFreeSkolems (tysubst theta ty)
〈definitions of skolem functions fail and badType S436c〉

in case (inter (patSkolems, tySkolems), inter (patSkolems, envSkolems))
of (mu :: _, _) => 〈fail with skolem escaping into type S436a〉
| ([], mu :: _) => 〈fail with skolem escaping into environment S436b〉
| ([], []) => ()

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

asFuntype S423d
bindList 312c
con 509b
CONAPP 418
diff S240b
emptyEnv 311a
findtyscheme446b
FORALL 418
freetyvarsGamma

446d
freshInstance

445b
freshTycon S423a
funtype S423d
Gamma 509b
Gamma' 509b
inter S240b
intString S238f
NotFound 311b
snd S263d
solve 448a
type ty 418
ty 509b
TYCON 418
typeEnvSubstS436f
TypeError S237c
typeFreeSkolems

S436e
typeSchemesFree-

Skolems
S436e

typesFreeSkolems
S436e

tysubst 421a
TYVAR 418
type tyvar 418
varsubst 420

Supporting code
for µMLS

S436

If τ → τ ′ has an escaping skolem type, I check τ ′ first, then τ .
S436a. 〈fail with skolem escaping into type S436a〉≡ (S435c)

(case asFuntype (tysubst theta ty)
of SOME ([tau], tau') =>

if not (null (inter (patSkolems, typeFreeSkolems tau'))) then
fail ["right-hand side has ", badType tau']

else
fail ["scrutinee is constrained to have ", badType tau]

| _ => let exception ChoiceTypeNotFun in raise ChoiceTypeNotFun end)

If the problem is in the environment, I donʼt provide much help.
S436b. 〈fail with skolem escaping into environment S436b〉≡ (S435c)

fail ["skolem type " ^ tyconString mu ^ " constrains a variable in the environment"]

All the failure modes identify the problematic pattern match and raiseTypeError.
S436c. 〈definitions of skolem functions fail and badType S436c〉≡ (S435c)

fun fail ss =
raise TypeError (concat (["in choice [", patString p, " ", expString e, "], "] @ ss))

fun badType tau =
concat ["type ", typeString tau, ", which ",

case tau of TYCON _ => "is" | _ => "includes", " an escaping skolem type"]

I find free skolem types by examining every type constructor. I want only to
add a skolem type to an existing set, not to allocate multiple sets, so I begin with a
function that can be passed to foldl.
S436d.

addFreeSkolems : ty * tycon set -> tycon set
〈extensions that support existential types S434b〉+≡ (S434a) ◁ S435a S436e ▷

fun addFreeSkolems (TYCON mu, mus) =
if isSkolem mu then insert (mu, mus) else mus

| addFreeSkolems (TYVAR _, mus) =
mus

| addFreeSkolems (CONAPP (tau, taus), mus) =
foldl addFreeSkolems (addFreeSkolems (tau, mus)) taus

Using addFreeSkolems, I can find free skolem types in a type, in a set of types, or
in a list of type schemes.
S436e.

typeFreeSkolems : ty -> tycon set
typesFreeSkolems : ty set -> tycon set
typeSchemesFreeSkolems : type_scheme list -> tycon set

〈extensions that support existential types S434b〉+≡ (S434a) ◁ S436d S436f ▷

fun typeFreeSkolems tau = addFreeSkolems (tau, emptyset)
fun typesFreeSkolems taus = foldl addFreeSkolems emptyset taus
fun typeSchemesFreeSkolems sigmas =

typesFreeSkolems (map (fn FORALL (_, tau) => tau) sigmas)

My substitution into Γ′ is just good enough for patterns—I know that every type
scheme in Γ′ is a monotype.
S436f.

typeEnvSubst : subst -> type_scheme env -> type_scheme env
〈extensions that support existential types S434b〉+≡ (S434a) ◁ S436e

fun typeEnvSubst theta Gamma' =
let fun subst (FORALL ([], tau)) = FORALL ([], tysubst theta tau)

| subst _ = let exception PolytypeInPattern in raise PolytypeInPattern end
in map (fn (x, sigma) => (x, subst sigma)) Gamma'
end

Finally, vanillaµML, which doesnʼt support existential types for value construc-
tors, implements the escaping-skolem check by doing nothing.
S436g. 〈check p, e, Gamma', Gamma, ty, and con for escaping skolem types S436g〉≡ (509b)

()

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.3. Parsing

S437

S.3 PARSING

S437a. 〈lexical analysis and parsing for µML, providing filexdefs and stringsxdefs S437a〉≡ (S433f)
〈lexical analysis for µScheme and related languages S373c〉
〈parsers for single µScheme tokens S374d〉
〈parsers for µML tokens S437d〉
〈parsers for µML value constructors and value variables S437e〉
〈parsers and parser builders for formal parameters and bindings S375a〉
〈parsers and parser builders for Scheme-like syntax S375d〉
〈parser builders for typed languages S395e〉
〈parsers for Hindley-Milner types with generated type constructors S437b〉
〈parsers and xdef streams for µML S438b〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

S.3.1 Parsing types and kinds

Parsers for types and kinds are as in Typed µScheme, except the type parser pro-
duces a tyex, not a ty.
S437b.

tyvar : string parser
tyex : tyex parser

〈parsers for Hindley-Milner types with generated type constructors S437b〉≡ (S437a) S437c ▷
fun tyex tokens = (

TYNAME <$> tyname
<|> TYVARX <$> tyvar
<|> usageParsers

[("(forall (tyvars) type)",
curry FORALLX <$> bracket ("('a ...)", distinctTyvars) <*> tyex)]

<|> bracket("(ty ty ... -> ty)",
arrowsOf CONAPPX FUNTYX <$> many tyex <*>! many (arrow *> many tyex))

) tokens

S437c.

kind : kind parser
〈parsers for Hindley-Milner types with generated type constructors S437b〉+≡ (S437a) ◁ S437b

fun kind tokens = (
TYPE <$ eqx "*" vvar
<|> bracket ("arrow kind", curry ARROW <$> many kind <* eqx "=>" vvar <*> kind)

) tokens

val kind = kind <?> "kind"

S.3.2 Identifying µML tokens

From the implementation of µScheme in Appendix O, µML inherits the token
parsers name, booltok, quote, and int. Type variables are easily recognized. µML
has many different kinds of names, and I want to be precise about which sort of
name I mean where. So I rename name to any_name, and I disable name by rebind-
ing it to a useless value.
S437d. 〈parsers for µML tokens S437d〉≡ (S437a)

val tyvar = quote *> (curry op ^ "'" <$> name <?> "type variable (got quote mark)")
val any_name = name
val name = () (* don't use me as a parser *)

A token that presents as a name is one of the following: an arrow, a value con-
structor, a value variable, or a type name. First the predicates:
S437e. 〈parsers for µML value constructors and value variables S437e〉≡ (S437a) S438a ▷

fun isVcon x =
let val lastPart = List.last (String.fields (curry op = #".") x)

val firstAfterdot = String.sub (lastPart, 0) handle Subscript => #" "
in x = "cons" orelse x = "'()" orelse

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<*> S263a
<*>! S268a
<?> S273c
<|> S264a
ARROW,
in µML 364a
in µML S425a
arrow S438a
arrowsOf S395e
asFuntype S423d
bracket S276b
CONAPP 418
CONAPPX S425c
curry S263d
distinctTyvars

S395e
emptyset S240b
eqx S266b
expString S417a
FORALL 418
FORALLX S425c
FUNTYX S425c
insert S240b
inter S240b
isSkolem S435a
many S267b
mu S435c
name S374d
patSkolems S435c
patString S449a
quote S374d
theta S435c
ty 509b
TYCON 418
tyconString S422c
TYNAME S425c
tyname S438a
TYPE,

in µML S425a
in µML 364a
TypeError S237c
typeString S411d
tysubst 421a
TYVAR 418
TYVARX S425c
usageParsersS375c
vvar S438a

Supporting code
for µMLS

S438

Char.isUpper firstAfterdot orelse firstAfterdot = #"#" orelse
String.isPrefix "make-" x

end
fun isVvar x = x <> "->" andalso not (isVcon x)

And now the parsers. A value constructor may be not only a suitable name but also
a Boolean literal or the empty list.
S438a. 〈parsers for µML value constructors and value variables S437e〉+≡ (S437a) ◁ S437e

val arrow = sat (fn n => n = "->") any_name
val vvar = sat isVvar any_name
val tyname = vvar
val vcon =
let fun isEmptyList (left, right) = notCurly left andalso snd left = snd right

val boolcon = (fn p => if p then "#t" else "#f") <$> booltok
in boolcon <|> sat isVcon any_name <|>

"'()" <$ quote <* sat isEmptyList (pair <$> left <*> right)
end

S.3.3 Parsing patterns

The distinction between value variable and value constructor is most important in
patterns.
S438b.

pattern : pat parser
〈parsers and xdef streams for µML S438b〉≡ (S437a) S438c ▷

fun pattern tokens = (
WILDCARD <$ eqx "_" vvar

<|> PVAR <$> vvar
<|> curry CONPAT <$> vcon <*> pure []
<|> bracket ("(C x1 x2 ...) in pattern"

, curry CONPAT <$> vcon <*> many pattern
)

) tokens

S.3.4 Parsing expressions

Parsing is more elaborate then usual because I provide for two flavors of each
binding construct found in nano-ML: the standard flavor, which binds variables,
and the “patterns everywhere” flavor, which binds patterns. (The case expression,
of course, binds only patterns.) I begin with parsers for formal parameters, which
are used to parse both expressions and definitions. The vvarFormalsIn parsers
takes a string giving the context, because the parser may detect duplicate names.
The patFormals parser doesnʼt take the context, because when patterns are used,
duplicate names are detected during type checking.
S438c.

vvarFormalsIn : string -> name list parser
patFormals : pat list parser

〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S438b S438d ▷

val vvarFormalsIn = formalsOf "(x1 x2 ...)" vvar
val patFormals = bracket ("(p1 p2 ...)", many pattern)

To parse an expression, I provide two sets of parsers, but I provide only the
“expression builders” that work with names. Expression builders that work with
patterns are left as exercises.
S438d. 〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S438c S439b ▷

〈utility functions that help implement µML’s syntactic sugar S441f〉
fun exptable exp =
let (* parsers used in both flavors *)

val choice = bracket ("[pattern exp]", pair <$> pattern <*> exp)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.3. Parsing

S439

val letrecBs = distinctBsIn (bindingsOf "(x e)" vvar exp) "letrec"

(* parsers for bindings to names *)
val letBs = distinctBsIn (bindingsOf "(x e)" vvar exp) "let"
val letstarBs = bindingsOf "(x e)" vvar exp
val formals = vvarFormalsIn "lambda"

(* parsers for bindings to patterns *)
val patBs = bindingsOf "(p e)" pattern exp
val patLetrecBs = map (fn (x, e) => (PVAR x, e)) <$> letrecBs
val patLetBs =
let fun patVars (WILDCARD) = []

| patVars (PVAR x) = [x]
| patVars (CONPAT (_, ps)) = List.concat (map patVars ps)

fun check (loc, bs) =
let val xs = List.concat (map (patVars o fst) bs)
in nodups ("bound name", "let") (loc, xs) >>=+ (fn _ => bs)
end

in check <$>! @@ patBs
end

val patFormals = patFormals (* defined above *)

(* expression builders that expect to bind names *)
fun letx letkind bs e = LETX (letkind, bs, e)
fun lambda xs e = LAMBDA (xs, e)
fun lambdastar clauses = ERROR "lambda* is left as an exercise"

〈µML expression builders that expect to bind patterns S442d〉
in 〈parsers for expressions that begin with keywords S439a〉
end

The parsers that might change are formals, letBs, and letstarBs. The
expression-builders that might change are lambda, lambdastar, and letx.
S439a. 〈parsers for expressions that begin with keywords S439a〉≡ (S438d)

usageParsers
[("(if e1 e2 e3)", curry3 IFX <$> exp <*> exp <*> exp)
, ("(begin e1 ...)", BEGIN <$> many exp)
, ("(lambda (names) body)", lambda <$> formals <*> exp)
, ("(lambda* (pats) exp ...)",

lambdastar <$>!
many1 (bracket ("[(pat ...) e]",

pair <$> (bracket ("(pat ...)", many pattern)) <*> exp)))
, ("(let (bindings) body)", letx LET <$> letBs <*> exp)
, ("(letrec (bindings) body)", letx LETREC <$> letrecBs <*> exp)
, ("(let* (bindings) body)", letx LETSTAR <$> letstarBs <*> exp)
, ("(case exp [pattern exp] ...)", curry CASE <$> exp <*> many choice)

, ("(while e1 e2)", exp *> exp <!> "uML does not include 'while' expressions")
, ("(set x e)", vvar *> exp <!> "uML does not include 'set' expressions")
〈rows added to µML’s exptable in exercises S443c〉
]

With the keyword expressions defined by exptable, here are the atomic expres-
sions and the full expressions.
S439b.

atomicExp : exp parser
exp : exp parser

〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S438d S440a ▷
val atomicExp = VAR <$> vvar

<|> VCONX <$> vcon
<|> (LITERAL o NUM) <$> int

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<*> S263a
<|> S264a
>>=+ S244b
any_name,

in molecule S519a
in µML S437d
APPLY S421c
BEGIN S421c
bindingsOf S375a
booltok,
in molecule S517c
in µML S374d
bracket S276b
CASE 498a
CONPAT 498c
curry S263d
curry3 S263d
distinctBsInS375a
eqx S266b
ERROR S243b
formalsOf S375a
fst S263d
IFX S421c
int S374d
isVcon S437e
isVvar S437e
LAMBDA S421c
left S274
leftCurly S274
LET S421c
LETREC S421c
LETSTAR S421c
LETX S421c
LITERAL S421c
many S267b
many1 S267c
nodups S277c
notCurly S274
NUM 498d
pair S263d
pure S261b
PVAR 498c
quote,
in molecule S519a
in µML S374d
right S274
sat S266a
sexp S375d
snd S263d
usageParsersS375c
VAR S421c
VCONX 498a
WILDCARD 498c

Supporting code
for µMLS

S440

fun exp tokens = (
atomicExp

<|> quote *> (LITERAL <$> sexp)
<|> exptable exp
<|> leftCurly <!> "curly brackets are not supported"
<|> left *> right <!> "empty application"
<|> bracket ("function application", curry APPLY <$> exp <*> many exp)
) tokens

S.3.5 Parsing definitions

I begin with the implicit-data definition, which is parsed here and then trans-
formed to a data definition by function makeExplicit.
S440a.

implicitData : def parser
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S439b S440b ▷

〈definition of makeExplicit, to translate implicit-data to data S452b〉
val tyvarlist = bracket ("('a ...)", many1 tyvar)
val optionalTyvars = (fn alphas => getOpt (alphas, [])) <$> optional tyvarlist
val implicitData =
let fun vc c taus = IMPLICIT_VCON (c, taus)

val vconDef = vc <$> vcon <*> pure []
<|> bracket ("(vcon of ty ...)",

vc <$> vcon <* eqx "of" vvar <*> many1 tyex)
in usageParsers

[("(implicit-data [('a ...)] t vcon ... (vcon of ty ...) ...)"
, (DATA o makeExplicit) <$>
(curry3 IMPLICIT_DATA <$> optionalTyvars <*> tyname <*> many vconDef)

)]
end

Here is the parser for the true definitions.
S440b.

def : def parser
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S440a S441a ▷

val def =
let (* parser for binding to names *)

val formals = vvarFormalsIn "define"

(* parsers for clausal definitions, a.k.a. define* *)
val lhs = bracket ("(f p1 p2 ...)", pair <$> vvar <*> many pattern)
val clause =
bracket ("[(f p1 p2 ...) e]",

(fn (f, ps) => fn e => (f, (ps, e))) <$> lhs <*> exp)

(* definition builders used in all parsers *)
val Kty = typedFormalOf vcon (kw ":") tyex
fun data kind name vcons = DATA (name, kind, vcons)

(* definition builders that expect to bind names *)
fun define f xs body = DEFINE (f, (xs, body))
fun definestar _ = ERROR "define* is left as an exercise"

〈µML definition builders that expect to bind patterns generated automatically〉
in usageParsers

[("(define f (args) body)", define <$> vvar <*> formals <*> exp)
, ("(define* (f pats) e ...)", definestar <$>! many1 clause)
, ("(val x e)", curry VAL <$> vvar <*> exp)
, ("(val-rec x e)", curry VALREC <$> vvar <*> exp)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.3. Parsing

S441

, ("(data kind t [vcon : type] ...)", data <$> kind <*> tyname <*> many Kty)
]

end

The parser for unit tests.
S441a.

testtable : unit_test parser
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S440b S441b ▷

val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)
, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
, ("(check-type e tau)", curry CHECK_TYPE <$> exp <*> tyex)
, ("(check-principal-type e tau)", curry CHECK_PTYPE <$> exp <*> tyex)
, ("(check-type-error e)", CHECK_TYPE_ERROR <$> (def <|> implicitData

<|> EXP <$> exp))
]

The parser for other extended definitions.
S441b.

xdeftable : xdef parser
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S441a S441d ▷

val xdeftable = usageParsers
[("(use filename)", USE <$> any_name)
〈rows added to µML’s xdeftable in exercises S443d〉
]

S441c. 〈rows added to µML’s xdeftable in exercises [[assert-types]] S441c〉≡

S441d.

xdef : xdef parser
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S441b S443a ▷

val xdef = TEST <$> testtable
<|> xdeftable
<|> DEF <$> (def <|> implicitData)
<|> badRight "unexpected right bracket"
<|> DEF <$> EXP <$> exp
<?> "definition"

val xdefstream = interactiveParsedStream (schemeToken, xdef)

S.3.6 Support for syntactic sugar

Some syntactic transformations need to find a variable that is not free in a given
expression. If you have done Exercise 10 on page 332 in Chapter 5, youʼre close to
having the right test. Use that code to complete function freeIn here.
S441e.

freeIn : exp -> name -> bool
〈utility functions that help implement µML’s syntactic sugar [[prototype]] S441e〉≡

fun freeIn exp y =
let fun has_y (CASE (e, choices)) = has_y e orelse (List.exists choice_has_y) choices

| has_y _ = raise LeftAsExercise "free variable of an expression"
and choice_has_y (p, e) = not (pat_has_y p) andalso has_y e
and pat_has_y (PVAR x) = x = y
| pat_has_y (CONPAT (_, ps)) = List.exists pat_has_y ps
| pat_has_y WILDCARD = false

in has_y exp
end

Once freeIn is implemented, here are a variety of helper functions. Function
freshVar returns a variable that is not free in a given expression. The supply of
variables is infinite, so the exception should never be raised.
S441f.

varsupply : name stream
freshVar : exp -> name

〈utility functions that help implement µML’s syntactic sugar S441f〉≡ (S438d) S442a ▷
val varsupply =
streamMap (fn n => "x" ^ intString n) naturals

fun freshVar e =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<$>! S268a
<*> S263a
<?> S273c
<|> S264a
any_name S437d
ASSERT_PTYPES453c
badRight S274
bracket S276b
CASE 498a
CHECK_ASSERTS422a
CHECK_ERROR S422a
CHECK_EXPECTS422a
CHECK_PTYPE S422a
CHECK_TYPE S422a
CHECK_TYPE_ERROR

S422a
CONPAT 498c
curry S263d
curry3 S263d
DATA 498b
DEF S365b
DEFINE S421d
eqx S266b
ERROR S243b
EXP S421d
exp S439b
IMPLICIT_DATA

S452a
IMPLICIT_VCON

S452a
interactiveParsed-

Stream
S280b

intString S238f
kind S437c
kw S375c
LeftAsExercise

S237a
makeExplicitS452b
many S267b
many1 S267c
naturals S252a
optional S267d
pair S263d
pattern S438b
pure S261b
PVAR 498c
schemeToken S374a
streamFilterS253a
streamGet S250b
streamMap S252d
TEST S365b
tyex S437b
tyname S438a
typedFormalOf

S387a
tyvar S437d
usageParsersS375c
USE S365b
VAL S421d
VALREC S421d
vcon S438a
vvar S438a
vvarFormalsIn

S438c
WILDCARD 498c

Supporting code
for µMLS

S442

case streamGet (streamFilter (not o freeIn e) varsupply)
of SOME (x, _) => x
| NONE => let exception EmptyVarSupply in raise EmptyVarSupply end

FunctionfreshVars returns as many fresh variables as there are elements inxs.
S442a.

freshVars : exp -> 'a list -> name list
〈utility functions that help implement µML’s syntactic sugar S441f〉+≡ (S438d) ◁ S441f S442b ▷

fun freshVars e xs =
streamTake (length xs, streamFilter (not o freeIn e) varsupply)

To support pattern matching in lambda, lambda*, and define*, we turn a se-
quence of names into a single tuple expression, and we turn a sequence of pat-
terns into a single tuple pattern. Function tupleVcon gives the name of the value
constructor for a tuple of the same size as the given list.
S442b.

tupleexp : name list -> exp
tuplepat : pat list -> pat
tupleVcon : 'a list -> vcon

〈utility functions that help implement µML’s syntactic sugar S441f〉+≡ (S438d) ◁ S442a S442c ▷
fun tupleVcon xs = case length xs

of 2 => "PAIR"
| 3 => "TRIPLE"
| n => "T" ^ intString n

fun tupleexp [x] = VAR x
| tupleexp xs = APPLY (VCONX (tupleVcon xs), map VAR xs)

fun tuplepat [x] = x
| tuplepat xs = CONPAT (tupleVcon xs, xs)

Function freePatVars finds the free variables in a pattern.
S442c.

freePatVars : pat -> name set
〈utility functions that help implement µML’s syntactic sugar S441f〉+≡ (S438d) ◁ S442b

fun freePatVars (PVAR x) = insert (x, emptyset)
| freePatVars (WILDCARD) = emptyset
| freePatVars (CONPAT (_, ps)) = foldl union emptyset (map freePatVars ps)

The rest of the code is for you to write.
S442d. 〈µML expression builders that expect to bind patterns S442d〉≡ (S438d)

(* you can redefine letx, lambda, and lambdastar here *)

S442e. 〈µML definition builders that expect to bind patterns [[prototype]] S442e〉≡
(* you can redefine 'define' and 'definestar' here *)

S442f. 〈rows added to µML’s xdeftable in exercises [[prototype]] S442f〉≡
(* you can add a row for 'val' here *)

S.4 S-EXPRESSION READER

This experimental feature of µML reads S-expressions from a file. It is on hold
while I decide if every language in the book should get a little library for reading
data from files.

An S-expression is a Boolean, symbol, number, or list of S-expressions.
S442g. 〈predefined µML types S421a〉+≡ ◁ S421b

(data * sx
[Sx.B : (bool -> sx)]
[Sx.S : (sym -> sx)]
[Sx.N : (int -> sx)]
[Sx.L : ((list sx) -> sx)])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.5
More predefined

functions

S443

We read S-expressions using a little parser.
S443a.

sxstream : string * line stream * prompts -> value stream
〈parsers and xdef streams for µML S438b〉+≡ (S437a) ◁ S441d

local
fun sxb b = CONVAL ("Sx.B", [embedBool b])
fun sxs s = CONVAL ("Sx.S", [SYM s])
fun sxn n = CONVAL ("Sx.N", [NUM n])
fun sxlist sxs = CONVAL("Sx.L", [embedList sxs])

fun sexp tokens = (
sxb <$> booltok

<|> sxs <$> (notDot <$>! @@ any_name)
<|> sxn <$> int
<|> leftCurly <!> "curly brackets may not be used in S-expressions"
<|> (fn v => sxlist [sxs "quote", v]) <$> (quote *> sexp)
<|> sxlist <$> bracket ("list of S-expressions", many sexp)
) tokens

val sexp = sexp <?> "S-expression"
in
val sxstream = interactiveParsedStream (schemeToken, sexp)

end

The read primitive uses the parser to produce a list of S-expressions stored in
a file.
S443b. 〈primitives for nano-ML and µML :: S443b〉≡ (S431c S411b)

("read", unaryOp (fn (SYM s) =>
let val fd = TextIO.openIn s

handle _ => raise RuntimeError ("Cannot read file " ^ s)
val sxs = sxstream (s, filelines fd, noPrompts)

in embedList (listOfStream sxs)
before TextIO.closeIn fd

end
| _ => raise BugInTypeInference "read got non-symbol")

, funtype ([symtype], listtype sxtype)) ::

S443c. 〈rows added to µML’s exptable in exercises S443c〉≡ (S439a)
(* you add this bit *)

S443d. 〈rows added to µML’s xdeftable in exercises S443d〉≡ (S441b)
(* you add this bit *)

S.5 MORE PREDEFINED FUNCTIONS

Some functions are exactly as in µScheme or nano-ML.
S443e. 〈predefined µML functions S443e〉≡ S443f ▷

(define and (b c) (if b c b))
(define or (b c) (if b b c))
(define not (b) (if b #f #t))

S443f. 〈predefined µML functions S443e〉+≡ ◁ S443e S443g ▷
(define o (f g) (lambda (x) (f (g x))))
(define curry (f) (lambda (x) (lambda (y) (f x y))))
(define uncurry (f) (lambda (x y) ((f x) y)))

S443g. 〈predefined µML functions S443e〉+≡ ◁ S443f S444a ▷
(define caar (xs) (car (car xs)))
(define cadr (xs) (car (cdr xs)))
(define cdar (xs) (cdr (car xs)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<?> S273c
<|> S264a
any_name S437d
APPLY S421c
booltok S374d
bracket S276b
BugInTypeInference

S237c
CONPAT 498c
CONVAL 498d
embedBool S433e
embedList S433c
emptyset S240b
filelines S251c
freeIn S441e
funtype S423d
insert S240b
int S374d
interactiveParsed-

Stream
S280b

intString S238f
leftCurly S274
listOfStreamS250d
listtype S432a
many S267b
noPrompts S280a
notDot S375d
NUM 498d
PVAR 498c
quote S374d
RuntimeErrorS366c
schemeToken S374a
streamFilterS253a
streamTake S254a
sxtype S432a
SYM 498d
symtype S423c
unaryOp S408d
union S240b
VAR S421c
varsupply S441f
VCONX 498a
WILDCARD 498c

Supporting code
for µMLS

S444

List functions are simpler with pattern matching. Compare this code with Sec-
tion R.5 on page S417.
S444a. 〈predefined µML functions S443e〉+≡ ◁ S443g S444b ▷

(define filter (p? xs)
(case xs

('() '())
((cons y ys) (if (p? y) (cons y (filter p? ys))

(filter p? ys)))))

S444b. 〈predefined µML functions S443e〉+≡ ◁ S444a S444c ▷
(define map (f xs)
(case xs

('() '())
((cons y ys) (cons (f y) (map f ys)))))

S444c. 〈predefined µML functions S443e〉+≡ ◁ S444b S444d ▷

(define app (f xs)
(case xs

('() UNIT)
((cons y ys) (begin (f y) (app f ys)))))

S444d. 〈predefined µML functions S443e〉+≡ ◁ S444c S444e ▷
(define reverse (xs) (revapp xs '()))

S444e. 〈predefined µML functions S443e〉+≡ ◁ S444d S444f ▷
(define exists? (p? xs)
(case xs

('() #f)
((cons y ys) (if (p? y) #t (exists? p? ys)))))

(define all? (p? xs)
(case xs

('() #t)
((cons y ys) (if (p? y) (all? p? ys) #f))))

S444f. 〈predefined µML functions S443e〉+≡ ◁ S444e S444g ▷
(define foldr (op zero xs)
(case xs

('() zero)
((cons y ys) (op y (foldr op zero ys)))))

(define foldl (op zero xs)
(case xs

('() zero)
((cons y ys) (foldl op (op y zero) ys))))

S444g. 〈predefined µML functions S443e〉+≡ ◁ S444f S444h ▷

(define <= (x y) (not (> x y)))
(define >= (x y) (not (< x y)))
(define != (x y) (not (= x y)))

S444h. 〈predefined µML functions S443e〉+≡ ◁ S444g S444i ▷
(define max (m n) (if (> m n) m n))
(define min (m n) (if (< m n) m n))
(define negated (n) (- 0 n))
(define mod (m n) (- m (* n (/ m n))))
(define gcd (m n) (if (= n 0) m (gcd n (mod m n))))
(define lcm (m n) (* m (/ n (gcd m n))))

S444i. 〈predefined µML functions S443e〉+≡ ◁ S444h S445a ▷
(define min* (xs) (foldr min (car xs) (cdr xs)))
(define max* (xs) (foldr max (car xs) (cdr xs)))
(define gcd* (xs) (foldr gcd (car xs) (cdr xs)))
(define lcm* (xs) (foldr lcm (car xs) (cdr xs)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.6
Useful µML
functions

S445

S445a. 〈predefined µML functions S443e〉+≡ ◁ S444i S445b ▷

(define list1 (x) (cons x '()))
(define list2 (x y) (cons x (list1 y)))
(define list3 (x y z) (cons x (list2 y z)))
(define list4 (x y z a) (cons x (list3 y z a)))
(define list5 (x y z a b) (cons x (list4 y z a b)))
(define list6 (x y z a b c) (cons x (list5 y z a b c)))
(define list7 (x y z a b c d) (cons x (list6 y z a b c d)))
(define list8 (x y z a b c d e) (cons x (list7 y z a b c d e)))

S445b. 〈predefined µML functions S443e〉+≡ ◁ S445a
(define takewhile (p? xs)
(case xs

('() '())
((cons y ys)

(if (p? y)
(cons y (takewhile p? ys))
'()))))

(define dropwhile (p? xs)
(case xs

('() '())
((cons y ys)

(if (p? y)
(dropwhile p? ys)
xs))))

S.6 USEFUL µML FUNCTIONS

Many of the examples in Chapter 8 produce data that is sophisticated enough to
warrant help manipulating it. Below are a higher-order printing library and a li-
brary for drawing graphs with dot, the Graphviz tool.

S.6.1 Printing stuff using µML

Because µML doesnʼt have strings, printing complicated things is a pain. But wait!
We can code strings as functions. A value of type printable encodes a thing that
can be printed. Here are a bunch of functions for making and combining printable
things. Time pressure prevents me from documenting them.
S445c. 〈printers.uml S445c〉≡ S446a ▷

(record printable ([print : (-> unit)]))
(check-type print>> [printable -> unit])
(check-type println>> [printable -> unit])

(check-type >>val [forall ('a) ('a -> printable)])
(check-type >>vals [forall ('a) ((list 'a) -> printable)])
(check-type >>wrap [int int -> (printable -> printable)])
(check-type >>char [int -> printable])
(check-type ^ [printable printable -> printable])
(check-type >>concat [(list printable) -> printable])
(check-type >>space-sep [(list printable) -> printable])
(check-type >>comma-sep [(list printable) -> printable])
(check-type >>newline printable)
(check-type >>space printable)
(check-type >>parens [printable -> printable])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µMLS

S446

Here are the implementations.
S446a. 〈printers.uml S445c〉+≡ ◁ S445c

(define print>> (p) ((printable-print p)))
(define println>> (p) (begin (print>> p) (printu 10) UNIT))
(define >>char (u) (make-printable (lambda () (printu u))))
(define >>val (v) (make-printable (lambda () (print v))))
(define >>concat (ps) (make-printable (lambda () (app print>> ps))))
(define ^ (p1 p2) (make-printable (lambda () (begin (print>> p1) (print>> p2)))))
(define >>sep (sep)
(letrec
((p (lambda (xs)

(case xs
((cons y '()) (print>> y))
((cons y ys) (begin (print>> y) (print>> sep) (p ys)))
('() UNIT)))))

(lambda (xs) (make-printable (lambda () (p xs))))))
(val >>space (>>char 32))
(val >>newline (>>char 10))
(val >>comma (>>char 44))
(val >>space-sep (>>sep >>space))
(define ^space (p1 p2) (^ p1 (^ >>space p2)))
(val >>vals (lambda (xs) (>>space-sep (map >>val xs))))
(val >>comma-sep (>>sep (^ >>comma >>space)))
(define >>wrap (open close)
(lambda (p) (>>concat (list3 (>>char open) p (>>char close)))))

(val >>parens (>>wrap 40 41))

S.6.2 Drawing simple figures in PostScript

I draw circles, disks, and lines for use in PostScript figures.
S446b. 〈postscript.uml S446b〉≡ S446c ▷

(use printers.uml)
(check-type ps-draw-circle [int int int -> unit])
(define ps-draw-circle (x y radius)
(let* ([line (>>space-sep (list2 (>>vals (list5 x y radius 0 360))

(>>vals '(arc closepath stroke))))])
(println>> line)))

(define ps-draw-disk (x y radius)
(let* ([disk (>>space-sep (list2 (>>vals (list5 x y radius 0 360))

(>>vals '(arc closepath 0.0 setgray fill))))])
(println>> disk)))

S446c. 〈postscript.uml S446b〉+≡ ◁ S446b S446d ▷

(val ps-first-line '%!PS-Adobe-1.0)

S446d. 〈postscript.uml S446b〉+≡ ◁ S446c
(check-type ps-draw-polyline

[forall ('a) (sym ('a -> int) ('a -> int) (list 'a) -> unit)])
(define ps-draw-polyline (width x-of y-of pts)
(let* ([setwidth (>>vals (list2 width 'setlinewidth))]

[first (car pts)]
[rest (cdr pts)]
[point (lambda (p) (>>vals (list2 (x-of p) (y-of p))))]
[move (lambda (p) (^space (point p) (>>val 'moveto)))]
[draw (lambda (p) (^space (point p) (>>val 'lineto)))]
[finish (>>vals '(0.0 setgray stroke))]
[line (>>space-sep (list5 setwidth

(>>val 'newpath)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.7
Drawing red-black

trees with dot

S447

(move first)
(>>space-sep (map draw rest))
finish))])

(println>> line)))

S.7 DRAWING RED-BLACK TREES WITH DOT

This code is used to draw pictures of red-black trees.
S447a. 〈dot.uml S447a〉≡ S447b ▷

(define indent () (begin (printu 32) (printu 32)))
(define printsp (a) (begin (print a) (printu 32)))

S447b. 〈dot.uml S447a〉+≡ ◁ S447a S447c ▷
(check-type print-path [(list sym) -> unit])
(define print-path (p)
(case p

('() UNIT)
((cons x xs) (begin (print-path xs) (print x)))))

S447c. 〈dot.uml S447a〉+≡ ◁ S447b S447d ▷

(check-type print-node-name [(list sym) -> unit])
(define print-node-name (path)
(begin
(print 'N)
(print-path path)
(printu 32)))

S447d. 〈dot.uml S447a〉+≡ ◁ S447c S447e ▷
(check-type dot-empty [(list sym) -> (list sym)])
; print an empty node with the given path, return the path

(define dot-empty (path)
(begin
(indent)
(print-node-name path)
(println '[shape=circle,label="",style=filled,color=black,width=0.15,height=0.15])
path))

S447e. 〈dot.uml S447a〉+≡ ◁ S447d S447f ▷
(check-type dot-edge [(list sym) (list sym) -> unit])
(define dot-edge (p1 p2)
(begin
(indent)
(print-node-name p1)
(map print '(- >))
(printu 32)
(print-node-name p2)
(printu 10)))

S447f. 〈dot.uml S447a〉+≡ ◁ S447e S448a ▷
(check-type dot-node
(forall ['a] ((list sym) sym 'a (list sym) (list sym) -> (list sym))))

(define dot-node (path color a left right)
(begin
(indent)
(print-node-name path)
(printu 91) ; left bracket

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µMLS

S448

(if (= color 'red)
(print 'style=filled,fillcolor=red,)
(print 'color=black,))

(print 'label=")
(print a)
(print '")
(printu 93) ; right bracket
(printu 10) ; newline
(dot-edge path left)
(dot-edge path right)
path))

S448a. 〈dot.uml S447a〉+≡ ◁ S447f
(check-type dot-graph (forall ['a] (('a -> (list sym)) 'a -> unit)))

(define dot-graph (print-tree t)
(begin

(printsp 'digraph)
(printu 123) ; left brace
(printsp 'edge) (printu 91) (print 'style=solid) (printu 93) (printu 10)
(print-tree t)
(printu 125) ; right brace
(printu 10))) ; newline

S.8 PRINTING VALUES, PATTERNS, TYPES, AND KINDS

To print a list, we look only at the name of a value constructor (we donʼt have its
type). If a user s̓ µML program redefines the cons value constructor, chaos will
ensue.
S448b.

valueString : value -> string
〈definition of valueString for µML S448b〉≡ (S422b) S448c ▷

fun valueString (CONVAL ("cons", [v, vs])) = consString (v, vs)
| valueString (CONVAL ("'()", [])) = "()"
| valueString (CONVAL (c, [])) = c
| valueString (CONVAL (c, vs)) =

"(" ^ c ^ " " ^ spaceSep (map valueString vs) ^ ")"
| valueString (NUM n) = String.map (fn #"~" => #"-" | c => c) (Int.toString n)
| valueString (SYM v) = v
| valueString (CLOSURE _) = "<function>"
| valueString (PRIMITIVE _) = "<function>"

As in other interpreters, we have a special way of printing applications of cons.
S448c. 〈definition of valueString for µML S448b〉+≡ (S422b) ◁ S448b

and consString (v, vs) =
let fun tail (CONVAL ("cons", [v, vs])) = " " ^ valueString v ^ tail vs

| tail (CONVAL ("'()", [])) = ")"
| tail _ =

raise BugInTypeInference
"bad list constructor (or cons/'() redefined)"

in "(" ^ valueString v ^ tail vs
end

S448d. 〈extra cases of expString for µML S448d〉≡ (S417a)
| VCONX vcon => vcon
| CASE (e, matches) =>

let fun matchString (pat, e) = sqbracket (spaceSep [patString pat, expString e])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.9. Unit testing

S449

in bracketSpace ("case" :: expString e :: map matchString matches)
end

S449a. 〈definition of patString for µML and µHaskell S449a〉≡
fun patString WILDCARD = "_"
| patString (PVAR x) = x
| patString (CONPAT (vcon, [])) = vcon
| patString (CONPAT (vcon, pats)) = "(" ^ spaceSep (vcon :: map patString pats) ^ ")"

S449b. 〈definition of patString for µML and µHaskell[[mcl]] S449b〉≡
fun patString WILDCARD = "_"
| patString (PVAR x) = x
| patString (CONPAT (vcon, [])) = vconString vcon
| patString (CONPAT (vcon, pats)) = "(" ^ spaceSep (vconString vcon :: map patString pats) ^ ")"

S449c. 〈definition of tyexString for µML S449c〉≡ (S422b)
fun tyexString (TYNAME t) = t
| tyexString (CONAPPX (tx, txs)) =

"(" ^ tyexString tx ^ " " ^ spaceSep (map tyexString txs) ^ ")"
| tyexString (FORALLX (alphas, tx)) =

"(forall (" ^ spaceSep alphas ^ ") " ^ tyexString tx ^ ")"
| tyexString (TYVARX a) = a
| tyexString (FUNTYX (args, result)) =

"(" ^ spaceSep (map tyexString args) ^ " -> " ^ tyexString result ^ ")"

S449d. 〈kinds for typed languages S425a〉+≡ (S422b S394b) ◁ S425b
fun kindString TYPE = "*"
| kindString (ARROW (ks, k)) =

"(" ^ spaceSep (map kindString ks @ ["=>", kindString k]) ^ ")"

S.9 UNIT TESTING

Unit testing is as in nano-ML, except that types in the syntax have to be translated.
S449e. 〈definition of testIsGood for µML S449e〉≡ (S428b) S453d ▷

〈definition of skolemTypes for languages with generated type constructors S450b〉
〈shared definitions of typeSchemeIsAscribable and typeSchemeIsEquivalent S415e〉
fun testIsGood (test, (Gamma, Delta, rho)) =
let fun ty e = typeof (e, Gamma)

handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")
fun ddtystring dd =
case typeDataDef (dd, Gamma, Delta)
of (_, _, kind :: _) => kind
| _ => "???"

fun deftystring d =
(case d of DATA dd => ddtystring dd

| _ => snd (typdef (d, Gamma)))
handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")

〈definitions of check{Expect,Assert,Error{Checks that use type inference S415a〉
〈definition of checkTypeChecks using type inference S415c〉

fun withTranslatedSigma check form (e, sigmax) =
check (e, txTyScheme (sigmax, Delta))
handle TypeError msg =>
failtest ["In (", form, " ", expString e, " ", tyexString sigmax, "), ", msg]

val checkTxTypeChecks =
withTranslatedSigma (checkTypeChecks "check-type") "check-type"

val checkTxPtypeChecks =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARROW,
in µML S425a
in µML 364a
bracketSpaceS417a
BugInTypeInference

S237c
CASE 498a
CHECK_ASSERTS422a
CHECK_ERROR S422a
CHECK_EXPECTS422a
CHECK_PTYPE S422a
CHECK_TYPE S422a
CHECK_TYPE_ERROR

S422a
checkAssertChecks

S415b
checkAssertPasses

S246a
checkErrorChecks

S415b
checkErrorPasses

S246b
checkExpectChecks

S415a
checkExpectPasses

S246c
checkPrincipal-

TypePasses
S416d

checkTypeChecks
S415c

checkTypeError-
Passes

S416e
checkTypePasses

S416c
CLOSURE 498d
CONAPPX S425c
CONPAT,
in molecule S500b
in µML 498c
CONVAL 498d
DATA 498b
ERROR S243b
eval S406b
expString S417a
failtest S246d
FORALLX S425c
FUNTYX S425c
NotFound 311b
NUM 498d
OK S243b
PRIMITIVE 498d
PVAR,

in molecule S500b
in µML 498c
snd S263d
spaceSep S239a
sqbracket S417a
stripAtLoc S255g
SYM 498d
txTyScheme S427b
TYNAME S425c
typdef 449f
TYPE,

in µML S425a
in µML 364a
typeDataDef 501b
TypeError S237c
typeof 448c
TYVARX S425c
vconString S507a
VCONX 498a
WILDCARD,

in molecule S500b
in µML 498c
withHandlersS371a

Supporting code
for µMLS

S450

withTranslatedSigma (checkTypeChecks "check-principal-type")
"check-principal-type"

fun checks (CHECK_EXPECT (e1, e2)) = checkExpectChecks (e1, e2)
| checks (CHECK_ASSERT e) = checkAssertChecks e
| checks (CHECK_ERROR e) = checkErrorChecks e
| checks (CHECK_TYPE (e, sigmax)) = checkTxTypeChecks (e, sigmax)
| checks (CHECK_PTYPE (e, sigmax)) = checkTxPtypeChecks (e, sigmax)
| checks (CHECK_TYPE_ERROR e) = true

fun outcome e = withHandlers (fn () => OK (eval (e, rho))) () (ERROR o stripAtLoc)
〈asSyntacticValue for µML S450a〉
〈shared check{Expect,Assert,Error{Passes, which call outcome S246c〉
〈definitions of check*Type*Passes using type inference S416c〉

val checkTxTypePasses =
withTranslatedSigma checkTypePasses "check-type"

val checkTxPtypePasses =
withTranslatedSigma checkPrincipalTypePasses "check-principal-type"

fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_TYPE (c, sigmax)) = checkTxTypePasses (c, sigmax)
| passes (CHECK_PTYPE (c, sigmax)) = checkTxPtypePasses (c, sigmax)
| passes (CHECK_TYPE_ERROR d) = checkTypeErrorPasses d

in checks test andalso passes test
end

A syntactic value is either a literal or a value constructor applied to zero or more
syntactic values.
S450a.

asSyntacticValue : exp -> value option
〈asSyntacticValue for µML S450a〉≡ (S449e)

fun asSyntacticValue (LITERAL v) = SOME v
| asSyntacticValue (VCONX c) = SOME (CONVAL (c, []))
| asSyntacticValue (APPLY (e, es)) =

(case (asSyntacticValue e, optionList (map asSyntacticValue es))
of (SOME (CONVAL (c, [])), SOME vs) => SOME (CONVAL (c, vs))
| _ => NONE)

| asSyntacticValue _ = NONE

S450b. 〈definition of skolemTypes for languages with generated type constructors S450b〉≡ (S449e)
val skolemTypes =
streamOfEffects (fn () => SOME (TYCON (freshTycon "skolem type")))

S.10 SUPPORT FOR DATATYPE DEFINITIONS

S.10.1 Cases for elaboration and evaluation of definitions

In µML, the DATA definition is handled by function processDef (chunk S430a).
Functions typdef and evaldef are reused from nano-ML, with these extra cases
which should never be executed.
S450c. 〈extra case for typdef used only in µML S450c〉≡ (449f)

| DATA _ => raise InternalError "DATA reached typdef"

S450d. 〈clause for evaldef for datatype definition (µML only) S450d〉≡ (S408a)
| evaldef (DATA _, _) = raise InternalError "DATA reached evaldef"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.10
Support for
datatype
definitions

S451

S.10.2 Validation for datatype definitions

In the chapter, chunk S424b validates definitions of value constructors. Validation
uses several auxiliary functions that are defined here.

Function appliesMu checks if a type is made by applying type constructor mu.
S451a. 〈definitions of appliesMu and validateTypeArguments S451a〉≡ (S424b) S451b ▷

fun appliesMu (CONAPP (tau, _)) = eqType (tau, TYCON mu)
| appliesMu _ = false

Function validateTypeArguments checks to make sure that the arguments to a
constructor application are distinct type variables.
S451b. 〈definitions of appliesMu and validateTypeArguments S451a〉+≡ (S424b) ◁ S451a

fun validateTypeArguments (CONAPP (_, taus)) =
let fun asTyvar (TYVAR a) = a

| asTyvar tau =
raise TypeError ("in type of " ^ K ^ ", type parameter " ^

typeString tau ^ " passed to " ^ T ^
" is not a type variable")

in case duplicatename (map asTyvar taus)
of NONE => ()
| SOME a =>

raise TypeError ("in type of " ^ K ^ ", type parameters to " ^ T ^
" must be distinct, but " ^ a ^
" is passed to " ^ T ^ " more than once")

end
| validateTypeArguments (TYCON _) =

() (* happens only when uML is extended with existentials *)
| validateTypeArguments _ =

let exception ImpossibleTypeArguments in raise ImpossibleTypeArguments end

When validation fails, much of the code that issues error messages is here.
S451c. 〈for K, complain that alphas is inconsistent with kind S451c〉≡ (S424 S451f)

(case kind
of TYPE =>

raise TypeError ("datatype " ^ T ^ " takes no type parameters, so " ^
"value constructor " ^ K ^ " must not be polymorphic")

| ARROW (kinds, _) =>
raise TypeError ("datatype constructor " ^ T ^ " expects " ^

intString (length kinds) ^ " type parameter" ^
(case kinds of [_] => "" | _ => "s") ^
", but value constructor " ^ K ^
(if null alphas then " is not polymorphic"
else " expects " ^ Int.toString (length alphas) ^

" type parameter" ^
(case alphas of [_] => "" | _ => "s"))))

S451d. 〈type of K should be desiredType but is sigma S451d〉≡ (S424c S451f)
raise TypeError ("value constructor " ^ K ^ " should have " ^ desiredType ^

", but it has type " ^ typeSchemeString sigma)

S451e. 〈result type of K should be desiredType but is result S451e〉≡ (S424c S451f)
raise TypeError ("value constructor " ^ K ^ " should return " ^ desiredType ^

", but it returns type " ^ typeString result)

When we have value constructors with existential types, additional validation
is needed.
S451f. 〈validation by case analysis on schemeShape shape and kind [[existentials]] S451f〉≡

case (schemeShape sigma, kind)
of (MONO_VAL tau, TYPE) =>

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

alphas S424b
APPLY S421c
ARROW,
in µML S425a
in µML 364a
CONAPP 418
CONVAL 498d
DATA 498b
desiredType S424b
duplicatename

S366d
eqType 422b
freshTycon S423a
InternalError

S366f
intString S238f
kind S424b
LITERAL S421c
MONO_FUN S423e
MONO_VAL S423e
mu S424b
optionList S242a
POLY_FUN S423e
POLY_VAL S423e
result S424c
schemeShape S424a
sigma S424b
streamOfEffects

S251b
TYCON 418
TYPE,

in µML 364a
in µML S425a
TypeError S237c
typeSchemeString

S412b
typeString S411d
TYVAR 418
VCONX 498a

Supporting code
for µMLS

S452

if eqType (tau, TYCON mu) then
()

else
〈type of K should be desiredType but is sigma S451d〉

| (MONO_FUN (_, result), TYPE) =>
if eqType (result, TYCON mu) then
()

else
〈result type of K should be desiredType but is result S451e〉

| (POLY_VAL (alphas, tau), _) =>
if appliesMu tau orelse eqType (tau, TYCON mu) then
validateTypeArguments tau

else
〈type of K should be desiredType but is sigma S451d〉

| (POLY_FUN (alphas, _, result), _) =>
if appliesMu result orelse eqType (result, TYCON mu) then
validateTypeArguments result

else
〈result type of K should be desiredType but is result S451e〉

| _ =>
〈for K, complain that alphas is inconsistent with kind S451c〉

S.11 SYNTACTIC SUGAR FOR implicit-data

An implicit data definition gives type parameters, the name of the type constructor,
and definitions for one or more value constructors.
S452a. 〈definition of implicit_data_def for µML S452a〉≡ (S422b)

datatype implicit_data_def
= IMPLICIT_DATA of tyvar list * name * implicit_vcon list

and implicit_vcon
= IMPLICIT_VCON of vcon * tyex list

The following code translates an implicit data definition into an explicit one.
S452b.

makeExplicit : implicit_data_def -> data_def
〈definition of makeExplicit, to translate implicit-data to data S452b〉≡ (S440a)

fun makeExplicit (IMPLICIT_DATA ([], t, vcons)) =
let val tx = TYNAME t

fun convertVcon (IMPLICIT_VCON (K, [])) = (K, tx)
| convertVcon (IMPLICIT_VCON (K, txs)) = (K, FUNTYX (txs, tx))

in (t, TYPE, map convertVcon vcons)
end

| makeExplicit (IMPLICIT_DATA (alphas, t, vcons)) =
let val kind = ARROW (map (fn _ => TYPE) alphas, TYPE)

val tx = CONAPPX (TYNAME t, map TYVARX alphas)
fun close tau = FORALLX (alphas, tau)
fun vconType (vcon, []) = tx
| vconType (vcon, txs) = FUNTYX (txs, tx)

fun convertVcon (IMPLICIT_VCON (K, [])) = (K, close tx)
| convertVcon (IMPLICIT_VCON (K, txs)) = (K, close (FUNTYX (txs, tx)))

in (t, kind, map convertVcon vcons)
end

S.12 ERROR CASES FOR ELABORATION OF TYPE SYNTAX

Error messages for bad type syntax are issued here.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§S.12
Error cases for

elaboration of type
syntax

S453

S453a. 〈applied type constructor tx has the wrong kind S453a〉≡ (S426b)
if length argks <> length kinds then
raise TypeError ("type constructor " ^ typeString tau ^ " is expecting " ^

countString argks "argument" ^ ", but got " ^
Int.toString (length taus))

else
let fun findBad n (k::ks) (k'::ks') =

if eqKind (k, k') then
findBad (n+1) ks ks'

else
raise TypeError ("argument " ^ Int.toString n ^ " to type constructor " ^

typeString tau ^ " should have kind " ^ kindString k ^
", but it has kind " ^ kindString k')

| findBad _ _ _ = raise InternalError "undetected length mismatch"
in findBad 1 argks kinds
end

S453b. 〈type tau is not expecting any arguments S453b〉≡ (S426b)
raise TypeError ("type " ^ typeString tau ^ " is not a type constructor, but it " ^

"was applied to " ^ countString taus "other type")

S453c. 〈definition of xdef (shared) [[assert-types]] S453c〉≡
| ASSERT_PTYPE of name * tyex

S453d. 〈definition of testIsGood for µML S449e〉+≡ (S428b) ◁ S449e
fun assertPtype (x, t, (Gamma, Delta, _)) =
let val sigma_x = findtyscheme (x, Gamma)

val sigma = txTyScheme (t, Delta)
fun fail ss = raise TypeError (concat ss)

in if typeSchemeIsEquivalent (VAR x, sigma_x, sigma) then
()

else
fail ["In (check-principal-type* ", x, " ", typeSchemeString sigma, "), "

, x, " has principal type ", typeSchemeString sigma_x]
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

argks S426b
ARROW,
in µML 364a
in µML S425a
CONAPPX S425c
countString S238g
eqKind,
in µML S425b
in µML 364b
findtyscheme446b
FORALLX S425c
FUNTYX S425c
InternalError

S366f
kinds S426b
kindString S449d
type name 310a
tau S426b
taus S426b
txTyScheme S427b
type tyex,
in molecule S456a
in µML S425c
TYNAME S425c
TYPE,

in µML S425a
in µML 364a
TypeError S237c
typeSchemeIs-

Equivalent
S416b

typeSchemeString
S412b

typeString S411d
type tyvar 418
TYVARX S425c
VAR S421c
type vcon 498a

CHAPTER CONTENTS
T.1 THE MOST EXCITING

PARTS OF THE INTER-
PRETER S455

T.1.1 Module identifiers and
paths S455

T.1.2 Types and type equality S456
T.1.3 Declarations and mod-

ule types S456
T.1.4 An invariant on com-

bined module types S456
T.1.5 Module subtyping S457
T.1.6 Possible future home:

translate path expres-
sions S460

T.1.7 Looking up path expres-
sions S460

T.1.8 Abstract syntax and val-
ues S462

T.1.9 Type checking for ex-
pressions S462

T.1.10 Type-checking mod-
ules: strengthening S465

T.1.11 Type-checking mod-
ules: generativity of top-
level definitions S465

T.1.12 Type-checking defini-
tions S466

T.2 PREDEFINED MODULES
AND MODULE TYPES S473

T.2.1 Unused predefined
module types S473

T.2.2 Resizeable arrays S475

T.3 IMPLEMENTATIONS OF
MOLECULEʼS PRIMITIVE
MODULES S477

T.3.1 Molecule s̓ arrays S477
T.3.2 Conversion between ML

functions and Molecule
functions S477

T.3.3 Utilities for equality,
similarity, copying, and
printing S480

T.3.4 Value parts of the built-
in type constructors S481

T.3.5 The initial basis S490
T.3.6 The initial basis S491

T.4 REFUGEES FROM THE
CHAPTER (TYPE CHECK-
ING) S494

T.4.1 Path and type basics S494
T.4.2 Substitutions (boring) S495
T.4.3 Realization S496
T.4.4 Instantiation S497
T.4.5 Translation/elaboration

of syntax into types S497
T.4.6 Exp and value represen-

tations S499
T.4.7 Wrapup S500

T.5 EVALUATION S501
T.5.1 Evaluating paths S502
T.5.2 Evaluating expressions S502

T.6 TYPE CHECKING S507
T.6.1 Functions on the static

environment S507
T.6.2 Getting permission S509
T.6.3 Argument checking S509
T.6.4 Operator overloading S510
T.6.5 Compatibility of a clus-

ter with a previously de-
fined interface S511

T.6.6 Types for export records
of primitive types S513

T.6.7 Easy notation for func-
tion types S513

T.6.8 Types of operations
for equality, similarity,
copying, and printing S513

T.6.9 Types of the exported
operations of primitive
clusters S514

T.6.10 Types of value parts of
array types S515

T.6.11 Types of value parts of
record types S516

T.6.12 Types of value parts of
sum types S517

T.6.13 Types of value parts of
arrow types S517

T.7 LEXICAL ANALYSIS AND
PARSING S517

T.8 PARSING S519
T.9 UNIT TESTING S526
T.10 MISCELLANEOUS ERROR

MESSAGES S528
T.11 PRINTING STUFF S531
T.12 PRIMITIVES S534

TSupporting code for the Molecule interpreter

T.1 THE MOST EXCITING PARTS OF THE INTERPRETER

Confirm names:

{ty,comp,mt}subst{Root,Manifest}

Maybe change Manifest to Abstract or just Type, i.e., name the thing substi-
tuted for?

Ideas:

•

Standard ML Molecule

signature module type
structure module
functor generic module
functor application specialized module

• “Module constructor” names a module. Just like a tycon in µML, it s̓ gen-
erative. A module constructor is generated for each definition of a named
module, and also for each formal parameter to a module function.

“Module identifier” is either a modcon or is the special identifier NAMEDMODTY
or MODTYPLACEHOLDER, which is attached to components in named module
types.

• Key operation: substitute a path for a module identifier. Most familiarly, we
substitute for formal parameters. But we might also substitute for the place-
holder, when a signature used to seal a module.

T.1.1 Module identifiers and paths

XXX TODO: re-do stamping as in µML. Note: a path in a module-type definition
starts with MODTYPLACEHOLDER.
S455.

genmodident : name -> modident
〈paths for Molecule S455〉≡ (S500b) S494d ▷

type modcon = { printName : name, serial : int }
datatype modident = MODCON of modcon | MODTYPLACEHOLDER of name

〈definition of function genmodident S494c〉

datatype 'modname path' = PNAME of 'modname
| PDOT of 'modname path' * name
| PAPPLY of 'modname path' * 'modname path' list

type pathex = name located path'
type path = modident path'

S455
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S456

T.1.2 Types and type equality

S456a. 〈definition of ty for Molecule S456a〉≡ (S500b)
datatype 'modname ty' = TYNAME of 'modname path'

| FUNTY of 'modname ty' list * 'modname ty'
| ANYTYPE (* type of (error ...) *)

type tyex = name located ty'
type ty = modident ty'

T.1.3 Declarations and module types

Maybe dec_component should be decty?
A ENVMOD has a module identifier only if it is a top-level module and has been

elaborated. MAYBE WHAT WE NEED INSTEAD IS FOR EVERY ENVMOD TO HAVE
A PATH?
S456b. 〈definition of modty for Molecule S456b〉≡ (S500b)

datatype modty
= MTEXPORTS of (name * component) list
| MTARROW of (modident * modty) list * modty
| MTALLOF of modty list

and component
= COMPVAL of ty
| COMPMANTY of ty
| COMPABSTY of path
| COMPMOD of modty

type 'a rooted = 'a * path
fun root (_, path) = path
fun rootedMap f (a, path) = (f a, path)

datatype binding
= ENVVAL of ty
| ENVMANTY of ty
| ENVMOD of modty rooted
| ENVOVLN of ty list (* overloaded name *)
| ENVMODTY of modty

datatype decl
= DECVAL of tyex
| DECABSTY
| DECMANTY of tyex
| DECMOD of modtyx
| DECMODTY of modtyx (* only at top level *)

and modtyx
= MTNAMEDX of name
| MTEXPORTSX of (name * decl) located list
| MTALLOFX of modtyx located list
| MTARROWX of (name located * modtyx located) list * modtyx located

T.1.4 An invariant on combined module types

Important invariant of the least upper bound: In any semantic MTALLOF, if a type
name appears as manifest in any alternative, it appears only as manifest, never as
abstract—and the module type has no references to an abstract type of that name.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S457

Violations of this invariant are detected by function mixedManifestations.
S457a.

abstractTypePaths : modty rooted -> path list
〈type components of module types S457a〉≡ (S500c)

fun abstractTypePaths (MTEXPORTS cs, path : path) =
let fun mts (t, COMPABSTY _) = [PDOT (path, t)]

| mts (x, COMPMOD mt) = abstractTypePaths (mt, PDOT (path, x))
| mts _ = []

in (List.concat o map mts) cs
end

| abstractTypePaths (MTALLOF mts, path) =
(List.concat o map (fn mt => abstractTypePaths (mt, path))) mts

| abstractTypePaths (MTARROW _, _) = [] (* could be bogus, cf Leroy rule 21 *)

S457b. 〈invariants of Molecule S457b〉≡ (S500c)
fun mixedManifestations mt =
let val path = PNAME (MODTYPLACEHOLDER "invariant checking")

val manifests = manifestSubsn (mt, path)
val abstracts = abstractTypePaths (mt, path)

in List.exists (hasKey manifests) abstracts
end

MOVE THE SMART CONSTRUCTOR HERE.

T.1.5 Module subtyping

MUST UNDERSTAND LEROYʼS SUBSTITUTIONS HERE.
IDEAS:

• Witness to lack of subtype should be keyed by path.

• Error message should tell the whole story, e.g., “context requires that t be
both int and bool.”

• Try a cheap and cheerful solution to uninhabited intersections, e.g., incom-
patible manifest types?

S457c.

csubtype : component * component -> unit error
subtype : modty * modty -> unit error

〈implements relation, based on subtype of two module types S457c〉≡ (S500c) S459c ▷
infix 1 >>
fun (OK ()) >> c = c
| (ERROR msg) >> _ = ERROR msg

fun allE [] = OK ()
| allE (e::es) = e >> allE es

fun subtype mts =
let fun st (MTARROW (args, res), MTARROW (args', res')) =

let fun contra ([], [], res') = st (res, res')
| contra ((x, tau) :: args, (x', tau') :: args', res') =

(* substitute x for x' *)
let val theta = mtsubstRoot (x' |--> PNAME x)
in st (theta tau', tau) >>

contra (args, map (prightmap theta) args', theta res')
end

| contra _ = ERROR "generic modules have different numbers of arguments"
in contra (args, args', res')
end

| st (MTARROW (args, _), _) =
ERROR ("expected an exporting module but got one that takes " ^

countString args "parameter")
| st (_, MTARROW (args, _)) =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

commaSep S239a
countString S238g
csubtype S458b
ERROR S243b
find 311b
hasKey S495c
InternalError

S366f
manifestSubsn

S458c
type modident

S455
MODTYPLACEHOLDER

S455
mtsubstRoot S496a
type name 310a
NotFound 311b
OK S243b
type path S455
type path' S455
PDOT S455
PNAME S455
prightmap S522b
whatcomp S507c
|--> S495b

Supporting code
for MoleculeT

S458

ERROR ("expected a module that takes " ^
countString args "parameter" ^ ", but got an exporting module")

| st (mt, MTALLOF mts') =
allE (map (fn mt' => st (mt, mt')) mts')

| st (mt, MTEXPORTS comps') =
compsSubtype (components mt, comps')

and components (MTEXPORTS cs) = cs
| components (MTALLOF mts) = List.concat (map components mts)
| components (MTARROW _) = raise InternalError "meet of arrow types"

and compsSubtype (comps, comps') =
let fun supplied (x, _) = List.exists (fn (y, _) => x = y) comps

val (present, absent) = List.partition supplied comps'
fun check (x, supercomp) =
let 〈definition of csubtype S458b〉
in csubtype (find (x, comps), supercomp)
end
handle NotFound y => raise InternalError "missed present component"

val missedMsg =
if null absent then OK ()
else
ERROR ("an interface expected some components that are missing: " ^

commaSep
(map (fn (x, c) => x ^ " (" ^ whatcomp c ^ ")") absent))

in allE (map check present) >> missedMsg
end

in st mts
end

S458a. 〈no component x matching c' in context S458a〉≡
raise TypeError ("interface calls for " ^ whatcomp c' ^ " called " ^ x ^

", but the implementation does not provide " ^ x)

THIS ONE LOOKS GOOD AND IMPORTANT
S458b.

csubtype : component * component -> unit error
〈definition of csubtype S458b〉≡ (S457c)

fun csubtype (COMPVAL tau, COMPVAL tau') =
if eqType (tau, tau') then OK ()
else ERROR ("interface calls for value " ^ x ^ " to have type " ^

typeString tau' ^ ", but it has type " ^ typeString tau)
| csubtype (COMPABSTY _, COMPABSTY _) = OK () (* XXX really OK? without comparing paths? *)
| csubtype (COMPMANTY _, COMPABSTY _) = OK () (* XXX likewise? *)
| csubtype (COMPMANTY tau, COMPMANTY tau') =

if eqType (tau, tau') then OK ()
else ERROR ("interface calls for type " ^ x ^ " to manifestly equal " ^

typeString tau' ^ ", but it is " ^ typeString tau)
| csubtype (COMPABSTY path, COMPMANTY tau') =

if eqType (TYNAME path, tau') then OK ()
else ERROR ("interface calls for type " ^ x ^ " to manifestly equal " ^

typeString tau' ^ ", but it is " ^ typeString (TYNAME path))
| csubtype (COMPMOD m, COMPMOD m') =

subtype (m, m')
| csubtype (c, c') =

ERROR ("interface calls for " ^ x ^ " to be " ^ whatcomp c' ^
", but implementation provides " ^ whatcomp c)

NOT CLEAR IF THIS BELONGS HERE OR IN SUPPLEMENT.
S458c.

manifestSubsn : modty rooted -> tysubst
〈module-type realization S458c〉≡ (S500c) S459a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S459

fun manifestSubsn (MTEXPORTS cs, path) =
let fun mts (x, COMPMANTY tau) = [(PDOT (path, x), tau)]

| mts (x, COMPMOD mt) = manifestSubsn (mt, PDOT(path, x))
| mts _ = []

in (List.concat o map mts) cs
end

| manifestSubsn (MTALLOF mts, path) =
(List.concat o map (fn mt => manifestSubsn (mt, path))) mts

| manifestSubsn (MTARROW _, path) = [] (* could be bogus, cf Leroy rule 21 *)

REWRITE THIS CODE USING THE LINGO OF SUBSTITUTION!
NOT CLEAR IF THIS BELONGS HERE OR IN SUPPLEMENT.
This is purely a heuristic to get things looking nice. We filter out redundant

manifest-type declarations, and we drop any argument that consists only of redun-
dant declarations (or is otherwise empty).
S459a. 〈module-type realization S458c〉+≡ (S500c) ◁ S458c S459b ▷

val simpleSyntacticMeet : modty -> modty =
let val path = PNAME (MODTYPLACEHOLDER "syntactic meet")

fun filterManifest (prev', []) = rev prev'
| filterManifest (prev', mt :: mts) =

let val manifests = manifestSubsn (MTALLOF prev', path)
fun redundant (COMPMANTY tau, p) =

(case associatedWith (p, manifests)
of SOME tau' => eqType (tau, tau')
| NONE => false)

| redundant _ = false
in filterManifest (filterdec (not o redundant) (mt, path) :: prev', mts)
end

val filterManifest = fn mts => filterManifest ([], mts)
fun mtall [mt] = mt
| mtall mts = MTALLOF mts

val meet = mtall o List.filter (not o emptyExports) o filterManifest
in fn (MTALLOF mts) => meet mts

| mt => mt
end

It establishes this invariant: In any semantic MTALLOF, if a type name appears as
manifest in any alternative, it appears only as manifest, never as abstract—and the
module type has no references to an abstract type of that name.
S459b. 〈module-type realization S458c〉+≡ (S500c) ◁ S459a S497b ▷

fun allofAt (mts, path) = (* smart constructor, rooted module type *)
let val mt = MTALLOF mts

val mantypes = manifestSubsn (mt, path)
val abstypes = abstractTypePaths (mt, path)

in if List.exists (hasKey mantypes) abstypes then
simpleSyntacticMeet (mtsubstManifest mantypes mt)

else
mt

end

What s̓ the path for? First argument tomanifestSubsn and toabstractTypePaths.
Which means it s̓ used as the prefix to produce the correct substitution, and that s̓ it.
So when we have an intersection type, that s̓ the substitution that is used. (Probably
not necessary?)

KEY THING! This is my approximation of Leroy s̓ modtype_match. Instead of
placing type equalities in an environment, I substitute. The ice is getting thin here.
S459c. 〈implements relation, based on subtype of two module types S457c〉+≡ (S500c) ◁ S457c

val mtsubstManifestDebug = fn theta => fn (super, p) =>

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

abstractTypePaths
S457a

associatedWith
S495c

COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
countString S238g
emptyExportsS497a
eprint S238a
eqType S494e
ERROR S243b
filterdec S496d
hasKey S495c
type modty S456b
MODTYPLACEHOLDER

S455
MTALLOF S456b
MTARROW S456b
MTEXPORTS S456b
mtString S532a
mtsubstManifest

S496c
OK S243b
type path S455
pathString S531b
PDOT S455
PNAME S455
subtype S457c
TYNAME S456a
typeString S531c
whatcomp S507c

Supporting code
for MoleculeT

S460

let val mt' = mtsubstManifest theta super
val () = app eprint [countString theta "substitution", "\n"]
val () = app (fn (pi, tau) => app eprint [" ", pathString pi, " |--> ", typeString tau, "\n"]) theta
val () = app eprint ["realized: ", mtString mt', "\n"]

in mt'
end

fun implements (p : path, submt, supermt) =
(* (app eprint ["At ", pathString p,

"\n sub: ", mtString submt, "\n sup: ", mtString supermt, "\n"]; id)
*)
let val theta = manifestSubsn (submt, p)

(* val () = app eprint ["substitution ", substString theta, "\n"] *)
in subtype (submt, mtsubstManifest theta supermt) (* XXX need unmixTypes? *)
end

T.1.6 Possible future home: translate path expressions

If we want to use txpath in pathfind, move it here.

T.1.7 Looking up path expressions

S460.

pathfind : pathex * binding env -> binding
asBinding : component * path -> binding
uproot : binding -> component

〈path-expression lookup S460〉≡ (S500c)

fun asBinding (COMPVAL tau, root) = ENVVAL tau
| asBinding (COMPABSTY path, root) = ENVMANTY (TYNAME path)
| asBinding (COMPMANTY tau, root) = ENVMANTY tau
| asBinding (COMPMOD mt, root) = ENVMOD (mt, root)

fun uproot (ENVVAL tau) = COMPVAL tau
| uproot (ENVMANTY tau) = COMPMANTY tau
| uproot (ENVMOD (mt, _)) = COMPMOD mt
| uproot d = raise InternalError (whatdec d ^ " as component")

fun notModule (dcl, px) =
raise TypeError ("looking for a module, but " ^ pathexString px ^

" is a " ^ whatdec dcl)
fun pathfind (PNAME x, Gamma) = find (snd x, Gamma)
| pathfind (PDOT (path, x), Gamma) =

let 〈definition of mtfind S461b〉
in case pathfind (path, Gamma)

of ENVMOD (mt, root) =>
(asBinding (valOf (mtfind (x, mt)), root) handle Option =>
noComponent (path, x, mt))

| dec => 〈tried to select path.x but path is a dec S499c〉
end

| pathfind (PAPPLY (fpx, actualpxs) : pathex, Gamma) =
〈instantiation of module fpx to actualpxs S461a〉

fun addloc loc (PNAME x) = PNAME (loc, x)
| addloc loc (PDOT (path, x)) = PDOT (addloc loc path, x)
| addloc loc (PAPPLY _) = raise InternalError "application vcon"

fun vconfind (k, Gamma) = pathfind (addloc ("bogus", ~99) k, Gamma)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S461

This is Leroy s̓ Apply rule. The idea is summarized as follows:

f : ΠA:T.B f @@M : B[A 7→M]

This works even if B is itself an arrow type. Uncurrying, it means that when sub-
stituting for the first formal parameter, we substitute in all the remaining formal
parameters.
S461a. 〈instantiation of module fpx to actualpxs S461a〉≡ (S460)

let fun rootedModtype px = case pathfind (px, Gamma)
of ENVMOD (mt, root) => (mt, root)
| dec => notModule (dec, px)

val (fmod, actuals) = (rootedModtype fpx, map rootedModtype actualpxs)
val (formals, result) = case fmod

of (MTARROW fr, _) => fr
| _ => 〈instantiated exporting module fpx S497c〉

fun resty ([], [], result) = result
| resty ((formalid, formalmt) :: formals, (actmt, actroot) :: actuals, result) =

let val theta = formalid |--> actroot
fun fsubst (ident, mt) = (ident, mtsubstRoot theta mt)
val mtheta = manifestSubsn (actmt, actroot)
val () = if true orelse null mtheta then ()
else app (fn (pi, tau) => app eprint ["manifestly ", pathString pi, " |--> ", typeString tau, "\n"]) mtheta

val subst = mtsubstManifest mtheta o mtsubstRoot theta
(* XXX need to substitute manifest types from the actuals? *)

in case implements (actroot, actmt, mtsubstRoot theta formalmt)
of OK () => resty (map fsubst formals, actuals, subst result)
| ERROR msg => 〈can’t pass actroot as formalid to fpx S497d〉

end
| resty _ = 〈wrong number of arguments to fpx S497e〉

in ENVMOD (resty (formals, actuals, result), PAPPLY (root fmod, map root actuals))
end

S461b.

mtfind : name * modty -> component option
〈definition of mtfind S461b〉≡ (S460)

fun mtfind (x, mt as MTEXPORTS comps) : component option =
(SOME (find (x, comps)) handle NotFound _ => NONE)

| mtfind (x, MTARROW _) =
raise TypeError ("tried to select component " ^ x ^

" from generic module " ^ pathexString path)
| mtfind (x, mt as MTALLOF mts) =

(case List.mapPartial (fn mt => mtfind (x, mt)) mts
of [comp] => SOME comp
| [] => NONE
| comps =>

let val abstract = (fn COMPABSTY _ => true | _ => false)
val manifest = (fn COMPMANTY _ => true | _ => false)
fun tycomp c = abstract c orelse manifest c

in if not (List.all tycomp comps) then
if List.exists tycomp comps then
raise BugInTypeChecking "mixed type and non-type components"

else
unimp "value or module component in multiple signatures"

else
case List.filter manifest comps
of [comp] => SOME comp
| [] => SOME (hd comps) (* all abstract *)
| _ :: _ :: _ =>

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

BugInTypeChecking
S237b

COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
type component

S456b
COMPVAL S456b
ENVMANTY S456b
ENVMOD S456b
ENVVAL S456b
eprint S238a
ERROR S243b
find 311b
implements S459c
InternalError

S366f
manifestSubsn

S458c
MTALLOF S456b
MTARROW S456b
MTEXPORTS S456b
mtString S532a
mtsubstManifest

S496c
mtsubstRoot S496a
ncompString S532a
NotFound 311b
OK S243b
PAPPLY S455
type pathex S455
pathexStringS531b
pathString S531b
PDOT S455
PNAME S455
root S456b
snd S263d
TYNAME S456a
TypeError S237b
typeString S531c
unimp S501a
whatdec S507c
|--> S495b

Supporting code
for MoleculeT

S462

(app (fn c => app eprint ["saw ", ncompString (x, c), "\n"]) comps
;

unimp ("manifest-type component " ^ x ^ " in multiple signatures")
)

end)
fun noComponent (path, x, mt) =
raise TypeError ("module " ^ pathexString path ^ " does not have a component " ^

pathexString (PDOT (path, x)) ^ "; its type is " ^ mtString mt)

T.1.8 Abstract syntax and values

S462a.

type exp
〈definitions of exp and value for Molecule S462a〉≡ (S500b) S499d ▷

type overloading = int ref
type formal = name * tyex
datatype exp
= LITERAL of value
| VAR of pathex
| VCONX of vcon
| CASE of exp * (pat * exp) list (* XXX pat needs to hold a path *)
| IFX of exp * exp * exp (* could be syntactic sugar for CASE *)
| SET of name * exp
| WHILEX of exp * exp
| BEGIN of exp list
| APPLY of exp * exp list * overloading
| LETX of let_kind * (name * exp) list * exp
| LETRECX of ((name * tyex) * exp) list * exp
| LAMBDA of formal list * exp
| MODEXP of (name * exp) list (* from body of a generic module *)
| ERRORX of exp list
| EXP_AT of srcloc * exp

and let_kind = LET | LETSTAR

The definitions of Molecule are the definitions of nano-ML, plusDATA, OVERLOAD,
and three module-definition forms.
S462b.

type def
type data_def

〈definition of def for Molecule S462b〉≡ (S500b)
type modtyex = modtyx
datatype baredef = VAL of name * exp

| VALREC of name * tyex * exp
| EXP of exp (* not in a module *)
| QNAME of pathex (* not in a module *)
| DEFINE of name * tyex * (formal list * exp)
| TYPE of name * tyex
| DATA of data_def
| OVERLOAD of pathex list
| MODULE of name * moddef
| GMODULE of name * (name * modtyex) list * moddef
| MODULETYPE of name * modtyex (* not in a module *)

and moddef = MPATH of pathex
| MPATHSEALED of modtyex * pathex
| MSEALED of modtyex * def list
| MUNSEALED of def list

withtype data_def = name * (name * tyex) list
and def = baredef located

T.1.9 Type checking for expressions

Here s̓ how operator overloading works:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S463

• An overloaded name is associated with a sequence of values: one for each type
at which the name is overloaded.

• At run time, the sequence is represented by an array of values.

• At compile time, the sequence is represented by a list of types.

• Adding an overloading means consing on to the front of the sequence.

• Using an overloaded name requires an index into the sequence. The first
matching type wins.

• An overloaded name can be used only in a function application. At every
application, therefore, the type checker writes the sequence index into the
AST node.

S463a. 〈utility functions on Molecule types S463a〉≡ (S500c) S463b ▷

fun firstArgType (x, FUNTY (tau :: _, _)) = OK tau
| firstArgType (x, FUNTY ([], _)) =

ERROR ("function " ^ x ^ " cannot be overloaded because it does not take any arguments")
| firstArgType (x, _) =

ERROR (x ^ " cannot be overloaded because it is not a function")

S463b.

resolveOverloaded : name * ty * ty list -> (ty * int) error
〈utility functions on Molecule types S463a〉+≡ (S500c) ◁ S463a

fun okOrTypeError (OK a) = a
| okOrTypeError (ERROR msg) = raise TypeError msg

fun ok a = okOrTypeError a handle _ => raise InternalError "overloaded non-function?"
fun resolveOverloaded (f, argty : ty, tys : ty list) : (ty * int) error =
let fun findAt (tau :: taus, i) = if eqType (argty, ok (firstArgType (f, tau))) then

OK (tau, i)
else
findAt (taus, i + 1)

| findAt ([], _) =
ERROR ("cannot figure out how to resolve overloaded name " ^ f ^

" when applied to first argument of type " ^ typeString argty ^
" (resolvable: " ^ separate ("", ", ") (map typeString tys) ^ ")")

in findAt (tys, 0)
end

S463c. 〈typeof a Molecule expression [[prototype]] S463c〉≡
fun typeof (e, Gamma) : ty = raise LeftAsExercise "typeof"

S463d.

typeof : exp * binding env -> ty
ty : exp -> ty

〈type of CASE (e, choices) S463d〉≡
let fun badChoice n msg =

raise TypeError ("in choice " ^ intString n ^ " of case expression, " ^ msg)

val tau = typeof (e, Gamma)
〈definition of function patenv for Molecule S464a〉

fun choiceRtype (p, e) =
let val Gamma' = patenv (p, Gamma, tau)
in typeof (e, extendEnv (Gamma, Gamma'))
end

val rights = map choiceRtype choices

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

eqType S494e
ERROR S243b
type error S243b
FUNTY S456a
InternalError

S366f
LeftAsExercise

S237a
type modtyx S456b
type name 310a
OK S243b
type pat S500b
type pathex S455
separate S239a
type ty S456a
type tyex S456a
TypeError S237b
typeString S531c
type value S499d
type vcon S500b

Supporting code
for MoleculeT

S464

fun rightsType [] =
raise TypeError "empty case expression cannot be assigned a type"

| rightsType (firstright :: rights) =
let fun check ([], _) = firstright

| check (r::rs, n) =
if eqType (r, firstright) then
check (rs, n + 1)

else
badChoice n ("right-hand side has type " ^ typeString r ^

", which does not match first right-hand side " ^
"(of type " ^ typeString firstright ^ ")")

in check (rights, 2)
end

val tau' = rightsType rights

in tau'
end

S464a. 〈definition of function patenv for Molecule S464a〉≡ (S463d) S464b ▷

fun extendEnv (Gamma, bindings) =
let fun add ((x, d), Gamma) = bind (x, d, Gamma)
in foldl add Gamma bindings
end

S464b. 〈definition of function patenv for Molecule S464a〉+≡ (S463d) ◁ S464a S464c ▷
fun pvconType (K, Gamma) =
(case vconfind (K, Gamma)

of ENVVAL tau => tau
| comp => raise TypeError (vconString K ^ " is not a value constructor"))
handle NotFound x => raise TypeError ("no value constructor named " ^ x)

S464c. 〈definition of function patenv for Molecule S464a〉+≡ (S463d) ◁ S464b

fun patenv (WILDCARD, _, tau) =
emptyEnv

| patenv (PVAR x, _, tau) =
bind (x, ENVVAL tau, emptyEnv)

| patenv (CONPAT (K, pats), Gamma, tau) =
let fun badK what tau' =

raise TypeError ("expected pattern with type " ^ typeString tau ^
", but found value constructor " ^ vconString K ^
" with " ^ what ^ " " ^ typeString tau')

fun patenvs ([], []) = []
| patenvs (p::ps, tau::taus) = patenv(p, Gamma, tau) :: patenvs(ps, taus)
| patenvs _ =

raise TypeError ("wrong number of arguments to value constructor " ^ vconString K)

in case (pats, pvconType (K, Gamma))
of ([], tau') => if eqType (tau, tau') then emptyEnv

else badK "type" tau'
| (_, FUNTY (args, res)) =>

if eqType (tau, res) then
let val Gamma's = patenvs (pats, args)
in disjointUnion Gamma's
end

else
badK "result type" res

| (_, tau') =>

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S465

Γ ` e : τ

CASE
Γ ` e : τ

Γ ` [pi ei] : τ → τi, 1 ≤ i ≤ n
τ1 = · · · = τn

Γ ` CASE(e, [p1 e1], . . . , [pn en]) : τ1

VCON
Γ(K) = τ

Γ ` K : τ

Γ ` [p e] : τ → τ ′

CHOICE
Γ,Γ′ ` p : τ Γ + Γ′ ` e : τ ′

Γ ` [p e] : τ → τ ′

Γ,Γ′ ` p : τ

PATVCON
Γ ` K : τ1 × · · · × τk → τ

Γ,Γ′
i ` pi : τi, 1 ≤ i ≤ k

Γ′ = Γ′
1] · · ·] Γ′

k

Γ,Γ′ ` (K p1 · · · pk) : τ

PATBAREVCON
Γ ` K : τ

Γ, {} ` K : τ

PATWILDCARD

Γ, {} ` WILDCARD : τ

PATVAR

Γ, {x 7→ τ} ` x : τ

Figure T.1: Typing rules for monomorphic case expressions, choices, and patterns

raise TypeError ("value constructor " ^ vconString K ^ " is applied to " ^
"patterns, but its type " ^ typeString tau' ^
" is not a function type")

end

T.1.10 Type-checking modules: strengthening

Is this the principal type of a module?
S465a.

strengthen : modty rooted -> modty
〈principal type of a module S465a〉≡ (S500c)

fun strengthen (MTEXPORTS comps, p) =
let fun comp (c as (x, dc)) =

case dc
of COMPABSTY _ => (x, COMPMANTY (TYNAME (PDOT (p, x))))
| COMPMOD mt => (x, COMPMOD (strengthen (mt, PDOT (p, x)))) (* XXX check me *)
| COMPVAL _ => c
| COMPMANTY _ => c

in MTEXPORTS (map comp comps)
end

| strengthen (MTALLOF mts, p) =
allofAt (map (fn mt => strengthen (mt, p)) mts, p)

| strengthen (mt as MTARROW _, p) =
mt

T.1.11 Type-checking modules: generativity of top-level definitions

Function binding can be used only in a known context—because if the def defines
a module, we need to know the path for every component.
S465b.

type context
contextDot : context * name -> path

〈context for a Molecule definition S465b〉≡ (S500c)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

allofAt S459b
COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
genmodident S494c
MTALLOF S456b
MTARROW S456b
MTEXPORTS S456b
type path S455
pathString S531b
PDOT S455
PNAME S455
TYNAME S456a

Supporting code
for MoleculeT

S466

datatype context
= TOPLEVEL
| INMODULE of path

fun contextDot (TOPLEVEL, name) = PNAME (genmodident name) (* XXX key to uniqueness *)
| contextDot (INMODULE path, name) = PDOT (path, name)

fun contextString TOPLEVEL = "at top level"
| contextString (INMODULE p) = "in module " ^ pathString p

T.1.12 Type-checking definitions

Type-checking a definition extends the environment. But because definitions nest,
we structure things a bit differently. This is why we have binding. So when we
get a definition, we turn it into a named binding. The binding gets added to the
environment in elabd. Among other benefits, this structure makes it easier to allow
certain definition forms at top level only.

S466a. 〈elaborate a Molecule definition S466a〉≡ (S500c) S466b ▷

fun declarableResponse c =
case c
of ENVMODTY mt => mtString mt
| ENVVAL tau => typeString tau
| ENVMANTY _ => "manifest type"
| ENVMOD (mt, _) => mtString mt
| ENVOVLN _ => "overloaded name"

S466b.

printStrings : string list -> value_printer
defResponse : name * binding -> value_printer

〈elaborate a Molecule definition S466a〉+≡ (S500c) ◁ S466a S466c ▷
fun printStrings ss _ vs =
app print ss

type value_printer = (name -> ty -> value -> unit) -> value list -> unit

fun printMt what m how mt = printStrings [what, " ", m, " ", how, " ", mtString mt]

fun defResponse (x, c) =
case c
of ENVVAL tau =>

(fn printfun => fn [v] => (printfun x tau v; app print [" : ", typeString tau])
| _ => raise InternalError "value count for val definition")

| ENVMANTY tau =>
let val expansion = typeString tau
in if x = expansion then

printStrings ["abstract type ", x]
else
printStrings ["type ", x, " = ", typeString tau]

end
| ENVMOD (mt as MTARROW _, _) => printMt "generic module" x ":" mt
| ENVMOD (mt, _) => printMt "module" x ":" mt
| ENVMODTY mt => printMt "module type" x "=" mt
| ENVOVLN _ => raise InternalError "defResponse to overloaded name"

S466c.

defPrinter : baredef * binding env -> value_printer
〈elaborate a Molecule definition S466a〉+≡ (S500c) ◁ S466b S467a ▷

fun defName (VAL (x, _)) = x
| defName (VALREC (x, _, _)) = x
| defName (EXP _) = "it"
| defName (QNAME _) = raise InternalError "defName QNAME"
| defName (DEFINE (x, _, _)) = x
| defName (TYPE (t, _)) = t

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S467

| defName (DATA (t, _)) = raise InternalError "defName DATA"
| defName (OVERLOAD _) = raise InternalError "defName OVERLOAD"
| defName (MODULE (m, _)) = m
| defName (GMODULE (m, _, _)) = m
| defName (MODULETYPE (t, _)) = t

fun defPrinter (d, Gamma) =
let val x = defName d
in defResponse (x, find (x, Gamma))

handle NotFound _ => raise InternalError "defName not found"
end

S467a. 〈elaborate a Molecule definition S466a〉+≡ (S500c) ◁ S466c S467b ▷

fun findModule (px, Gamma) =
case pathfind (px, Gamma)
of ENVMOD (mt, _) => mt
| dec => raise TypeError ("looking for a module, but " ^ pathexString px ^

" is a " ^ whatdec dec)

S467b.

elabd : baredef * context * binding env -> (name * binding) list
〈elaborate a Molecule definition S466a〉+≡ (S500c) ◁ S467a

〈more overloading things S470c〉
fun elabd (d : baredef, context, Gamma) =
let fun toplevel what =

case context
of TOPLEVEL => id
| _ => raise TypeError (what ^ " cannot appear " ^ contextString context)

〈new definition of mtypeof S468〉
in case d

of EXP e => toplevel ("an expression (like " ^ expString e ^ ")")
(elabd (VAL ("it", e), context, Gamma))

| MODULETYPE (T, mtx) =>
let val mt = elabmt ((mtx, PNAME (MODTYPLACEHOLDER T)), Gamma)
in toplevel ("a module type (like " ^ T ^ ")")

[(T, ENVMODTY mt)]
end

| MODULE (name, mx) =>
let val root = contextDot (context, name)

val mt = mtypeof ((mx, root), Gamma)
in [(name, ENVMOD (mt, root))]
end

| GMODULE (f, formals, body) =>
let val () = toplevel ("a generic module (like " ^ f ^ ")") ()

val fpath = contextDot (context, f)
val idformals = map (fn (x, mtx) => (genmodident x, (x, mtx))) formals
val resultpath = PAPPLY (fpath, map (PNAME o fst) idformals)

fun addarg arg (args, res) = (arg :: args, res)

fun arrowtype ((mid : modident, (x, mtx)) :: rest, Gamma) =
let val mt = elabmt ((mtx, PNAME mid), Gamma)

val Gamma' = bind (x, ENVMOD (mt, PNAME mid), Gamma)
in addarg (mid, mt) (arrowtype (rest, Gamma'))
end

| arrowtype ([], Gamma) = ([], mtypeof ((body, resultpath), Gamma))
val mt = MTARROW (arrowtype (idformals, Gamma))

in [(f, ENVMOD (mt, fpath))]
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

type baredef S462b
bind 312b
contextDot S465b
contextString

S465b
DATA S462b
DEFINE S462b
elabDataDef S469b
elabmt S499b
elabty S498a
ENVMANTY S456b
ENVMOD S456b
ENVMODTY S456b
ENVOVLN S456b
ENVVAL S456b
eqType S494e
EXP S462b
expString S532d
find 311b
fst S263d
FUNTY S456a
genmodident S494c
GMODULE S462b
id S263d
InternalError

S366f
LAMBDA S462a
type modident

S455
MODTYPLACEHOLDER

S455
MODULE S462b
MODULETYPE S462b
MTARROW S456b
mtString S532a
mtypeof S468
type name 310a
NotFound 311b
OVERLOAD S462b
overloadBindings

S470c
PAPPLY S455
pathexStringS531b
pathfind S460
PNAME S455
QNAME S462b
TOPLEVEL S465b
type ty S456a
tyexString S531c
TYPE S462b
TypeError S237b
typeof S463c
typeString S531c
VAL S462b
VALREC S462b
VAR S462a
whatdec S507c

Supporting code
for MoleculeT

S468

| QNAME px => toplevel ("a qualified name (like " ^ pathexString px ^ ")")
(elabd (EXP (VAR px), context, Gamma))

| DEFINE (name, tau, lambda as (formals, body)) =>
let val funty = FUNTY (map (fn (n, ty) => ty) formals, tau)
in elabd (VALREC (name, funty, LAMBDA lambda), context, Gamma)
end

| VAL (x, e) =>
let val tau = typeof (e, Gamma)
in [(x, ENVVAL tau)]
end

| VALREC (f, tau, e as LAMBDA _) =>
let val tau = elabty (tau, Gamma)

val Gamma' = bind (f, ENVVAL tau, Gamma)
val tau' = typeof (e, Gamma')

in if not (eqType (tau, tau')) then
raise TypeError ("identifier " ^ f ^

" is declared to have type " ^
typeString tau ^ " but has actual type " ^
typeString tau')

else
[(f, ENVVAL tau)]

end
| VALREC (name, tau, _) =>

raise TypeError ("(val-rec [" ^ name ^ " : " ^ tyexString tau ^ "] ...) must use (lambda ...) on right-hand side")
| TYPE (t, tx) =>

let val tau = elabty (tx, Gamma)
in [(t, ENVMANTY tau)]
end

| DATA dd => elabDataDef (dd, context, Gamma)
| OVERLOAD ovl => overloadBindings (ovl, Gamma)

end

WILL WANT TO ADD A CONTEXT TO IDENTIFY THE MODULE TOsubtypeError.
S468.

type value_printer
mtypeof : moddef rooted * binding env -> modty

〈new definition of mtypeof S468〉≡ (S467b)

fun mtypeof ((m, path), Gamma) =
let fun ty (MPATH p) = strengthen (findModule (p, Gamma), txpath (p, Gamma))

(* YYY only use of txpath --- move it? *)
| ty (MPATHSEALED (mtx, p)) = sealed (mtx, ty (MPATH p))
| ty (MUNSEALED defs) = principal defs
| ty (MSEALED (mtx, defs)) = sealed (mtx, principal defs)

and sealed (mtx, mt') =
let val mt = elabmt ((mtx, path), Gamma)
in case implements (path, mt', mt)

of OK () => mt
| ERROR msg => raise TypeError msg

end
and principal ds = MTEXPORTS (elabdefs (ds, INMODULE path, Gamma))
and elabdefs ([], c, Gamma) = [] : (name * component) list
| elabdefs ((loc, d) :: ds, c, Gamma) =

let val bindings = atLoc loc elabd (d, c, Gamma)
val comps' = List.mapPartial asComponent bindings
val Gamma' = Gamma <+> bindings
val comps'' = elabdefs (ds, c, Gamma')
〈definition of asUnique S469a〉

in List.mapPartial (asUnique comps'') comps' @ comps''
end

in ty m
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S469

S469a. 〈definition of asUnique S469a〉≡ (S468)
fun asUnique following (x, c : component) =
let val c' = find (x, following)
in case (c, c')

of (COMPVAL _, COMPVAL _) => NONE (* repeated values are OK *)
| _ => raise TypeError ("Redefinition of " ^ whatcomp c ^ " " ^ x ^

" in module " ^ pathString path)
end handle NotFound _ => SOME (x, c)

Elaborating definitions

S469b.

elabDataDef : data_def * context * binding env -> (name * binding) list
〈elaboration and evaluation of data definitions for Molecule S469b〉≡ (S500c) S469c ▷

fun elabDataDef ((T, vcons), context, Gamma) =
let val tau = TYNAME (contextDot (context, T))

val Gamma' = bind (T, ENVMANTY tau, Gamma)
fun translateVcon (K, tx) =

(K, elabty (tx, Gamma'))
handle TypeError msg =>
raise TypeError ("in type of value constructor " ^ K ^ ", " ^ msg)

val Ktaus = map translateVcon vcons

fun validate (K, FUNTY (_, result)) =
if eqType (result, tau) then
()

else
〈result type of K should be tau but is result S534a〉

| validate (K, tau') =
if eqType (tau', tau) then
()

else
〈type of K should be tau but is tau' S534b〉

val () = app validate Ktaus
in (* thin ice here: the type component should be abstract? *)

(T, ENVMANTY tau) :: map (fn (K, tau) => (K, ENVVAL tau)) Ktaus
end

S469c. 〈elaboration and evaluation of data definitions for Molecule S469b〉+≡ (S500c) ◁ S469b S469d ▷

fun ddString (_, COMPMANTY _) = "*" (* paper over the thin ice *)
| ddString (_, COMPVAL tau) = typeString tau
| ddString _ = raise InternalError "component of algebraic data type"

N.B. Duplicates DATA case in defexps XXX.
S469d.

evalDataDef : data_def * value ref env -> value ref env * string list
〈elaboration and evaluation of data definitions for Molecule S469b〉+≡ (S500c) ◁ S469c S470a ▷

fun evalDataDef ((_, typed_vcons), rho) =
let fun isfuntype (FUNTY _) = true

| isfuntype _ = false
fun addVcon ((K, t), rho) =
let val v = if isfuntype t then

PRIMITIVE (fn vs => CONVAL (PNAME K, map ref vs))
else
CONVAL (PNAME K, [])

in bind (K, ref v, rho)
end

in (foldl addVcon rho typed_vcons, map fst typed_vcons)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<+> 312d
asComponent S470a
atLoc S255d
bind 312b
COMPMANTY S456b
type component

S456b
COMPVAL S456b
contextDot S465b
CONVAL S499d
elabd S467b
elabmt S499b
elabty S498a
ENVMANTY S456b
ENVVAL S456b
eqType S494e
ERROR S243b
find 311b
findModule S467a
fst S263d
FUNTY S456a
implements S459c
INMODULE S465b
InternalError

S366f
MPATH S462b
MPATHSEALED S462b
MSEALED S462b
MTEXPORTS S456b
MUNSEALED S462b
type name 310a
NotFound 311b
OK S243b
pathString S531b
PNAME S455
PRIMITIVE S499d
strengthen S465a
txpath S497f
TYNAME S456a
TypeError S237b
typeString S531c
whatcomp S507c

Supporting code
for MoleculeT

S470

S470a.

processDataDef : data_def * basis * interactivity -> basis
〈elaboration and evaluation of data definitions for Molecule S469b〉+≡ (S500c) ◁ S469d

fun asComponent (x, ENVVAL tau) = SOME (x, COMPVAL tau)
| asComponent (x, ENVMANTY tau) = SOME (x, COMPMANTY tau)
| asComponent (m, ENVMOD (mt, _)) = SOME (m, COMPMOD mt)
| asComponent (_, ENVOVLN _) = NONE
| asComponent (_, ENVMODTY _) = raise InternalError "module type as component"

type basis = binding env * value ref env
fun processDataDef (dd, (Gamma, rho), interactivity) =
let val bindings = elabDataDef (dd, TOPLEVEL, Gamma)

val Gamma' = Gamma <+> bindings
val comps = List.mapPartial asComponent bindings
(* could convert first component to abstract type here XXX *)

val (rho', vcons) = evalDataDef (dd, rho)
val tystrings = map ddString comps
val _ = if prints interactivity then

〈print the new type and each of its value constructors for Molecule S470b〉
else
()

in (Gamma', rho')
end

S470b. 〈print the new type and each of its value constructors for Molecule S470b〉≡ (S470a)
let val (T, _) = dd

val tau = (case find (T, Gamma')
of ENVMANTY tau => tau
| _ => raise Match)

handle _ => raise InternalError "datatype is not a type"
val (kind, vcon_types) =
case tystrings of s :: ss => (s, ss)

| [] => let exception NoKindString in raise NoKindString end
in (println (typeString tau ^ " :: " ^ kind)

; ListPair.appEq (fn (K, tau) => println (K ^ " : " ^ tau)) (vcons, vcon_types)
)

end

S470c. 〈more overloading things S470c〉≡ (S467b)
fun overloadBinding (p, Gamma) =
let val (tau, first) =

case pathfind (p, Gamma)
of ENVVAL tau => (tau, okOrTypeError (firstArgType (pathexString p, tau)))
| c => 〈can’t overload a c S471d〉

val x = plast p

val currentTypes =
(case find (x, Gamma)

of ENVOVLN vals => vals
| _ => []) handle NotFound _ => []

in (x, ENVOVLN (tau :: currentTypes))
end

fun overloadBindings (ps, Gamma) =
let fun add (bs', Gamma, []) = bs'

| add (bs', Gamma, p :: ps) =
let val b = overloadBinding (p, Gamma)
in add (b :: bs', Gamma <+> [b], ps)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.1
The most exciting

parts of the
interpreter

S471

in add ([], Gamma, ps)
end

S471a. 〈definitions of basis and processDef for Molecule S471a〉≡ (S501b) S471e ▷
fun processOverloading (ps, (Gamma, rho), interactivity) =
let fun next (p, (Gamma, rho)) =

let val (tau, first) =
case pathfind (p, Gamma)
of ENVVAL tau => (tau, okOrTypeError (firstArgType (pathexString p, tau)))
| c => 〈can’t overload a c S471d〉

val x = plast p

val currentTypes =
(case find (x, Gamma)

of ENVOVLN vals => vals
| _ => []) handle NotFound _ => []

val newTypes = tau :: currentTypes
val Gamma' = bind (x, ENVOVLN newTypes, Gamma)

(************
val currentVals =
if null currentTypes then Array.fromList []
else case find (x, rho)

of ref (ARRAY a) => a
| _ => raise BugInTypeChecking "overloaded name is not ARRAY"

val v = evalpath (p, rho)
val newVals = Array.tabulate (1 + Array.length currentVals,

fn 0 => v | i => Array.sub (currentVals, i - 1))
*****)
val newVals = extendOverloadTable (x, evalpath (p, rho), rho)
val rho' = bind (x, ref (ARRAY newVals), rho)

val _ = if prints interactivity then
app print ["overloaded ", x, " : ", typeString tau, "\n"]

else
()

in (Gamma', rho')
end

in foldl next (Gamma, rho) ps
end

S471b. 〈no overload; p hasn’t any args S471b〉≡
raise TypeError ("function " ^ pathexString p ^ " cannot be overloaded " ^

"because it does not take any arguments")

S471c. 〈no overload; p isn’t a function S471c〉≡
raise TypeError ("value " ^ pathexString p ^ " cannot be overloaded " ^

"because it is not a function")

S471d. 〈can’t overload a c S471d〉≡ (S470c 471a)
raise TypeError ("only functions can be overloaded, but " ^ whatdec c ^ " " ^

pathexString p ^ " is not a function")

S471e.

processDef : def * basis * interactivity -> basis
〈definitions of basis and processDef for Molecule S471a〉+≡ (S501b) ◁ S471a

type basis = binding env * value ref env
fun defmarker (MODULETYPE _) = " = "
| defmarker (DATA _) = ""

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<+> 312d
APPLY S462a
ARRAY S499d
atLoc S255d
bind 312b
type binding S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
DATA S462b
ddString S469c
defPrinter S466c
elabd S467b
elabDataDef S469b
type env 310b
ENVMANTY S456b
ENVMOD S456b
ENVMODTY S456b
ENVOVLN S456b
ENVVAL S456b
ERROR S243b
eval S502b
evalDataDef S469d
evaldef S506d
evalpath S502a
EXP S462b
extendOverload-

Table
S505d

find 311b
firstArgTypeS463a
fst S263d
FUNTY S456a
InternalError

S366f
LITERAL S462a
MODULETYPE S462b
MTARROW S456b
mtString S532a
NotFound 311b
OK S243b
okOrTypeError

S463b
OVERLOAD S462b
pathexStringS531b
pathfind S460
plast S494d
PNAME S455
println S238a
prints S368c
QNAME S462b
resolveOverloaded

S463b
TOPLEVEL S465b
TypeError S237b
typeString S531c
valueString S507a
VAR S462a
whatdec S507c

Supporting code
for MoleculeT

S472

| defmarker _ = " : "

fun processDef ((loc, DATA dd), (Gamma, rho), interactivity) =
atLoc loc processDataDef (dd, (Gamma, rho), interactivity)

| processDef ((loc, QNAME px), (Gamma, rho), interactivity) =
let val c = pathfind (px, Gamma)

val x = pathexString px
val respond = println o concat
fun typeResponse ty = if x = ty then ["abstract type ", x]

else ["type ", x, " = ", ty]
fun response (ENVVAL _) = raise InternalError "ENVVAL reached response"
| response (ENVMANTY tau) = typeResponse(typeString tau)
| response (ENVMOD (mt as MTARROW _, _)) = ["generic module ", x, " : ", mtString mt]
| response (ENVMOD (mt, _)) = ["module ", x, " : ", mtString mt]
| response (ENVMODTY mt) = ["module type ", x, " = ", mtString mt]
| response (ENVOVLN []) = raise InternalError "empty overloaded name"
| response (ENVOVLN (tau :: taus)) =

"overloaded " :: x :: " : " :: typeString tau ::
map (fn t => "\n " ^ x ^ " : " ^ typeString t) taus

val _ = if prints interactivity then
case c
of ENVVAL _ =>

ignore (processDef ((loc, EXP (VAR px)), (Gamma, rho), interactivity))
| _ =>

respond (response c)
else
()

in (Gamma, rho)
end

| processDef ((loc, OVERLOAD ps), (Gamma, rho), interactivity) =
atLoc loc processOverloading (ps, (Gamma, rho), interactivity)

| processDef ((loc, d), (Gamma, rho), interactivity) =
(* (app (fn (x, c) => app print [x, " is ", whatcomp c, "\n"]) Gamma; id) *)
let val bindings = atLoc loc elabd (d, TOPLEVEL, Gamma)

val Gamma = Gamma <+> bindings
val printer = defPrinter (d, Gamma)
val (rho, vs) = atLoc loc evaldef (d, rho)

fun callPrintExp i v =
APPLY (VAR (PNAME (loc, "print")), [LITERAL v], ref i)

fun printfun x tau v =
let val resolved = (case find ("print", Gamma)

of ENVOVLN taus => resolveOverloaded ("print", tau, taus)
| _ => ERROR "no printer for tau")

handle NotFound _ => ERROR "'print' not found"
in case resolved

of OK (_, i) => ignore (eval (callPrintExp i v, rho))
| ERROR _ =>

case d
of EXP _ => print (valueString v)
| _ => case tau

of FUNTY _ => print x
| _ => print (valueString v)

end

val _ = if prints interactivity then

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.2
Predefined modules
and module types

S473

(printer printfun vs; print "\n")
else
()

in (Gamma, rho)
end

T.2 PREDEFINED MODULES AND MODULE TYPES

(val newline (Char new: 10)) (val left-round (Char new: 40)) (val space (Char new:
32)) (val right-round (Char new: 41)) (val semicolon (Char new: 59)) (val left-curly
(Char new: 123)) (val quotemark (Char new: 39)) (val right-curly (Char new: 125))
(val left-square (Char new: 91)) (val right-square (Char new: 93))
S473a. 〈definition of module Char S473a〉≡

(module [Char : (exports [abstype t]
[new : (int -> t)]
[left-curly : t]
[right-curly : t]
[left-round : t]
[right-round : t]
[left-square : t]
[right-square : t]
[newline : t]
[space : t]
[semicolon : t]
[quotemark : t]
[= : (t t -> bool)]
[!= : (t t -> bool)]
[print : (t -> unit)]
[println : (t -> unit)])]

〈definitions inside module Char 569a〉
(define int new ([n : int]) n)
(val semicolon 59)
(val quotemark 39)
(val left-round 40)
(val right-round 41)
(val left-curly 123)
(val right-curly 125)
(val left-square 91)
(val right-square 93)

(val = Int.=)
(val != Int.!=)

(val print Int.printu)
(define unit println ([c : t]) (print c) (print newline))

)

T.2.1 Unused predefined module types

In addition to the ARRAY module type defined in chunk 539b, Molecule defines
S473b. 〈Molecule’s predefined module types S473b〉≡ (S475a) S474a ▷

(module-type PRINTS
(exports [abstype t]

[print : (t -> unit)]
[println : (t -> unit)]))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S474

S474a. 〈Molecule’s predefined module types S473b〉+≡ (S475a) ◁ S473b S474b ▷

(module-type BOOL
(exports [abstype t]

[#f : t]
[#t : t]))

;;;; omitted: and, or, not, similar?, copy, print, println

S474b. 〈Molecule’s predefined module types S473b〉+≡ (S475a) ◁ S474a S474c ▷
(module-type SYM

(exports [abstype t]
[= : (t t -> Bool.t)]
[!= : (t t -> Bool.t)]))

;;;; omitted: hash, similar?, copy, print, println

S474c. 〈Molecule’s predefined module types S473b〉+≡ (S475a) ◁ S474b
(module-type ORDER
(exports [abstype t]

[LESS : t]
[EQUAL : t]
[GREATER : t]))

(module [Order : ORDER]
(data t
[LESS : t]
[EQUAL : t]
[GREATER : t]))

(module-type RELATIONS
(exports [abstype t]

[< : (t t -> Bool.t)]
[<= : (t t -> Bool.t)]
[> : (t t -> Bool.t)]
[>= : (t t -> Bool.t)]
[= : (t t -> Bool.t)]
[!= : (t t -> Bool.t)]))

(generic-module [Relations : ([M : (exports [abstype t]
[compare : (t t -> Order.t)])]

--m-> (allof RELATIONS
(exports [type t M.t])))]

(type t M.t)
(define bool < ([x : t] [y : t])

(case (M.compare x y)
[Order.LESS #t]
[_ #f]))

(define bool > ([x : t] [y : t])
(case (M.compare y x)

[Order.LESS #t]
[_ #f]))

(define bool <= ([x : t] [y : t])
(case (M.compare x y)

[Order.GREATER #f]
[_ #t]))

(define bool >= ([x : t] [y : t])
(case (M.compare y x)

[Order.GREATER #f]
[_ #t]))

(define bool = ([x : t] [y : t])
(case (M.compare x y)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.2
Predefined modules
and module types

S475

[Order.EQUAL #t]
[_ #f]))

(define bool != ([x : t] [y : t])
(case (M.compare x y)

[Order.EQUAL #f]
[_ #t])))

S475a. 〈predefined Molecule types, functions, and modules S475a〉≡ S475b ▷

〈Molecule’s predefined module types S473b〉

T.2.2 Resizeable arrays

S475b. 〈predefined Molecule types, functions, and modules S475a〉+≡ ◁ S475a S491a ▷
〈arraylist.mcl S475c〉

S475c. 〈arraylist.mcl S475c〉≡ (S475b)
(generic-module

[ArrayList : ([Elem : (exports [abstype t])] --m-> (allof ARRAYLIST
(exports [type elem Elem.t])))]

(module A (@m Array Elem))
(module U (@m UnsafeArray Elem))
(record-module Rep t ([elems : A.t]

[low-index : int]
[population : int]
[low-stored : int]))

(type t Rep.t)
(type elem Elem.t)

(define t from ([i : int])
(Rep.make (U.new 3) i 0 0))

(define int size ([a : t]) (Rep.population a))

(define bool in-bounds? ([a : t] [i : int])
(if (>= i (Rep.low-index a))

(< (- i (Rep.low-index a)) (Rep.population a))
#f))

(define int internal-index ([a : t] [i : int])
(let* ([k (+ (Rep.low-stored a) (- i (Rep.low-index a)))]

[_ (when (< k 0) (error 'internal-error: 'array-index))]
[n (A.size (Rep.elems a))]
[idx (if (< k n) k (- k n))])

idx))

(define elem at ([a : t] [i : int])
(if (in-bounds? a i)

(A.at (Rep.elems a) (internal-index a i))
(error 'array-index-out-of-bounds)))

(define unit at-put ([a : t] [i : int] [v : elem])
(if (in-bounds? a i)

(A.at-put (Rep.elems a) (internal-index a i) v)
(error 'array-index-out-of-bounds)))

(define int lo ([a : t]) (Rep.low-index a))
(define int nexthi ([a : t]) (+ (Rep.low-index a) (Rep.population a)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S476

(define unit maybe-grow ([a : t])
(when (>= (size a) (A.size (Rep.elems a)))
(let* ([n (A.size (Rep.elems a))]

[n' (if (Int.= n 0) 8 (Int.* 2 n))]
[new-elems (U.new n')]
[start (lo a)]
[limit (nexthi a)]
[i 0]
[_ (while (< start limit) ; copy the elements

(A.at-put new-elems i (at a start))
(set i (+ i 1))
(set start (+ start 1)))])

(Rep.set-elems! a new-elems)
(Rep.set-low-stored! a 0))))

(define unit addhi ([a : t] [v : elem])
(maybe-grow a)
(let ([i (nexthi a)])

(Rep.set-population! a (+ (Rep.population a) 1))
(at-put a i v)))

(define unit addlo ([a : t] [v : elem])
(maybe-grow a)
(Rep.set-population! a (+ (Rep.population a) 1))
(Rep.set-low-index! a (- (Rep.low-index a) 1))
(Rep.set-low-stored! a (- (Rep.low-stored a) 1))
(when (< (Rep.low-stored a) 0)
(Rep.set-low-stored! a (+ (Rep.low-stored a) (A.size (Rep.elems a)))))

(at-put a (Rep.low-index a) v))

(define elem remhi ([a : t])
(if (<= (Rep.population a) 0)

(error 'removal-from-empty-array)
(let* ([v (at a (- (nexthi a) 1))]

[_ (Rep.set-population! a (- (Rep.population a) 1))])
v)))

(define elem remlo ([a : t])
(if (<= (Rep.population a) 0)

(error 'removal-from-empty-array)
(let* ([v (at a (lo a))]

[_ (Rep.set-population! a (- (Rep.population a) 1))]
[_ (Rep.set-low-index! a (+ (lo a) 1))]
[_ (Rep.set-low-stored! a (+ (Rep.low-stored a) 1))]
[_ (when (Int.= (Rep.low-stored a) (A.size (Rep.elems a)))

(Rep.set-low-stored! a 0))])
v)))

(define unit setlo ([a : t] [i : int])
(Rep.set-low-index! a i))

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S477

T.3 IMPLEMENTATIONS OF MOLECULEʼS PRIMITIVE MODULES

T.3.1 Molecule’s arrays

T.3.2 Conversion between ML functions and Molecule functions

µScheme has 20 primitive functions. Moleculehas over 140 primitive functions.
Defining that many functions to operate directly on Molecule values would be a ton
of work. Instead, I do it indirectly: I write primitive functions that manipulate na-
tive ML values, then wrap those functions to their arguments are converted from
Molecule values to ML values, and their results are converted from ML values back
to Molecule values. The technique is useful for writing interpreters in any language
that is statically typed and has higher-order functions; the details can be found in
one of my papers (Ramsey 2011).

At bottom is the idea of an embedding/projection pair.
S477a. 〈conversion between ML values and Molecule values S477a〉≡ S477b ▷

type ('a, 'b) ep = { embed : 'a -> 'b, project : 'b -> 'a }

We typically embed ML results into Molecule values, and we project Molecule
values into ML arguments.
S477b.

project : 'a map -> value -> 'a
embed : 'a map -> 'a -> value

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S477a S477c ▷
type 'a map = ('a, value) ep

fun project { embed = e, project = p } = p
fun embed { embed = e, project = p } = e

Given an ML type that is used in the interpreter, I can define an embed-
ding/projection pair for that type. I choose types that I know can be embedded,
so embedding always succeeds. But projection need not succeed; for example,
a Molecule Boolean canʼt be projected into an ML record. If the type checker is
written correctly, such a projection will never be attempted. If a bad projection is
attempted anyway, I raise the exception BugInTypeChecking.
S477c.

bool : bool map
int : int map
sym : string map
value : value map

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S477b S477d ▷

fun badRep what =
raise BugInTypeChecking ("bad representation of " ^ what)

val bool = { embed = BOOLV, project = projectBool }
val int = { embed = NUM, project = fn NUM n => n | _ => badRep "int" }
val sym = { embed = SYM, project = fn SYM n => n | _ => badRep "sym" }
val value = { embed = id, project = id }
val nullmap = { embed = fn _ => NIL, project = fn NIL => () | _ => badRep "null" }

Here are maps for arrays, records, sums, and iterators.
S477d. 〈conversion between ML values and Molecule values S477a〉+≡ ◁ S477c S478a ▷

val marray =
{ embed = MARRAY, project = fn MARRAY r => r | _ => badRep "mutable array" }

val iarray =
{ embed = IARRAY, project = fn IARRAY r => r | _ => badRep "immutable array" }

val mrecord =
{ embed = MRECORD, project = fn MRECORD r => r | _ => badRep "mutable record" }

val irecord =
{ embed = IRECORD, project = fn IRECORD r => r | v => badRep "immutable record" }

val moneof =
{ embed = MONEOF, project = fn MONEOF r => r | _ => badRep "mutable oneof" }

val ioneof =
{ embed = IONEOF, project = fn IONEOF r => r | _ => badRep "immutable oneof" }

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S478

The goal is to define primitive operations. Since a primitive operation is rep-
resented as an ML function of type value list -> value list, I define a mapf for
such functions.
S478a. 〈conversion between ML values and Molecule values S477a〉+≡ ◁ S477d S478b ▷

type 'a mapf = ('a, value list -> value list) ep

The most important conversion function is the one that adds another argument
to a Molecule function. The **-> operation converts between curried ML func-
tions and uncurried Molecule functions. It builds an embedding/projection pair
inductively from firstarg, which is an embedding/projection pair for the first ar-
gument, and from lastargs, which is an embedding/projection pair for a function
that takes one less argument. To build firstarg **-> lastargs, we need an em-
bedding (apply) and a projection (unapply).
S478b.

**-> : 'a map * 'b mapf -> ('a -> 'b) mapf
apply : ('a -> 'b) -> (value list -> value list)
unapply : (value list -> value list) -> ('a -> 'b)

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S478a S478c ▷

infixr 1 **->
fun (firstarg : 'a map) **-> (lastargs : 'b mapf) : ('a -> 'b) mapf =
let fun apply (f : 'a -> 'b) = fn actuals =>

let val (v, vs) =
case actuals
of v :: vs => (v, vs)
| [] => raise InternalError

"not enough arguments to primitive function"
val f_v = f (project firstarg v)

in embed lastargs f_v vs
end

fun unapply (f_clu : value list -> value list) =
fn (v : 'a) => project lastargs (fn vs => f_clu (embed firstarg v :: vs))

in { embed = apply, project = unapply }
end

The base case for the conversion of functions is an embedding/projection pair
for a function that takes no arguments and returns some results. In Molecule, it
is possible to return a list of results, but in ML, it is not. If a ML function wants to
return multiple results, it must wrap them in a tuple, and if the function wants to
return zero results, it must return the empty tuple. To deal with this mismatch in
languages, the base case for conversion of a function requires conversions between
the ML return type 'a and the Molecule return type value list.
S478c.

results : ('a -> value list) -> (value list -> 'a) -> 'a mapf
〈conversion between ML values and Molecule values S477a〉+≡ ◁ S478b S478d ▷

fun results a_to_values a_of_values =
{ embed = (fn (a:'a) => fn clu_args => a_to_values a)
, project = (fn f_clu => a_of_values (f_clu []) : 'a)
}

What the results and **-> functions do is build up a conversion by build-
ing a list of the arguments that the function expects. The map from results
acts like a function of no arguments, and each **-> acts like a cons operation,
adding another argument. (That s̓ why **-> is declared to associate to the right.)
So an integer comparison function, for example, can be mapped using the map
int **-> int **-> results bool. A single result is such a common case that I de-
fine some convenience functions just for that case.
S478d.

result : 'a map -> 'a mapf
*->> : 'a map * 'b map -> ('a -> 'b) mapf

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S478c S479a ▷

fun take1 [v] = v

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S479

| take1 _ = raise InternalError "wrong number of results from primitive"

fun result r = results (fn v => [embed r v]) (fn vs => project r (take1 vs))
infixr 1 **->>
fun t **->> t' = t **-> result t'

Functions are also values, so to get from a mapf, which works with ML functions
of type value list -> value list, to a map, which works with ML values of type
value, I define func. Embedding is done with PRIMFUN, but to project, I have to
handle not only primitive functions but also closures.
S479a.

func : 'a mapf -> 'a map
〈conversion between ML values and Molecule values S477a〉+≡ ◁ S478d S479b ▷

fun func (arrow : 'a mapf) : ('a map) =
{ embed = PRIMFUN o embed arrow
, project = #project arrow o primitiveOfValue
}
and primitiveOfValue (PRIMFUN f) = f
| primitiveOfValue (CLOSURE ((xs, body), rho)) =

(fn vs => case runStmt (body, bindList (xs, map (ref o SOME) vs, rho), NONE)
of RETURNS results => results
| TERMINATES => []
| _ => raise InternalError "closure executescontrol operator")

| primitiveOfValue _ = badRep "function"

Most specifications I write will have mapf types, but I want to embed and project
primitive operations as values. I use efunc and pfunc.
S479b.

efunc : 'a mapf -> 'a -> value
pfunc : 'a mapf -> value -> 'a

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S479a S479c ▷
fun efunc tyspec f = embed (func tyspec) f
fun pfunc tyspec v = project (func tyspec) v

And to implement a XRECORD, which puts its operation in a mutable reference cell,
I want to embed each primitive function into a reference cell.
S479c.

efuncr : 'a mapf -> 'a -> value ref
〈conversion between ML values and Molecule values S477a〉+≡ ◁ S479b S479d ▷

fun efuncr tyspec f = ref (efunc tyspec f)

A Molecule function might not return any values, but an ML function always
has to return something. I therefore project a no-value Molecule function into an
ML function that returns the empty tuple, which has ML type unit.
S479d.

unit : unit mapf
〈conversion between ML values and Molecule values S477a〉+≡ ◁ S479c S479e ▷

val unit = results (fn () => []) (fn _ => ()) : unit mapf

CLU has a handful of primitive iterators, and I define similar machinery. For-
tunately, I need only to embed ML functions as Molecule-iterators; I never need to
project a Molecule iterator as an ML function. So the machinery is simple.
S479e.

type 'a mapi
iterator : (loop_body -> behavior) mapi
-> : 'a map * 'b mapi -> ('a -> 'b) mapi
eiterr : 'a mapi -> 'a -> value ref

〈conversion between ML values and Molecule values S477a〉+≡ ◁ S479d S480a ▷

infixr **->*
type 'a mapi = 'a -> (value list * loop_body -> behavior)
fun iterator prim ([], yc) = prim yc
| iterator prim (_::_, yc) = raise InternalError "too many args to iter"

fun (a **->* f) prim (v::vs, yc) = f (prim (project a v)) (vs, yc)
| (a **->* f) prim ([], yc) = raise InternalError "too few args to iter"

fun eiterr imap = ref o PRIMITER o imap

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S480

Here are convenience functions for two recurring types: the type of a copy op-
eration and the type of a comparison operation.
S480a. 〈conversion between ML values and Molecule values S477a〉+≡ ◁ S479e

fun copyOf tau = tau **->> tau
fun comparisonOf tau = tau **-> tau **->> bool

T.3.3 Utilities for equality, similarity, copying, and printing

Types like int, bool, sym, and null can be tested for equality by testing equality of
their ML representations. And because they are immutable, they can be “copied”
by the identity function.
S480b. 〈functions that build operations for equality, similarity, copying, and printing S480b〉≡ S480c ▷

fun equalityOps tyspec =
[("=", efuncr (comparisonOf tyspec) (curry op =))
, ("!=", efuncr (comparisonOf tyspec) (curry (not o op =)))
, ("similar?", efuncr (comparisonOf tyspec) (curry op =))
, ("copy", efuncr (copyOf tyspec) id)
]

Arrays, records, and sums can support equality, similarity, and copying only
when the underlying element, component, or variant types also support equality,
similarity, and copying. To decide what an underlying type supports, we look at
components of its value part.
S480c.

maybeXrComponent : xrecord * name -> value option
maybeXrComponents : xrecord list * name -> value list option

〈functions that build operations for equality, similarity, copying, and printing S480b〉+≡ ◁ S480b S480d ▷

fun maybeXrComponent (vp, f) =
if xrHasComponent (vp, f) then SOME (xrComponent (vp, f)) else NONE

fun maybeXrComponents (vps, f) =
optionList (map (fn vp => maybeXrComponent (vp, f)) vps)

Underlying operations for equivalence and copying are passed in. Because the
type is immutable, = and similar? are the same.
S480d.

tau : 'a map
mkEqv : (value -> value -> bool) list -> ('a -> 'a -> bool)
mkCp : (value -> value) list -> ('a -> 'a)
argxrs : xrecord list

〈functions that build operations for equality, similarity, copying, and printing S480b〉+≡ ◁ S480c S481a ▷

fun impPair (opname, mk) imps = Option.map (fn imps => (opname, mk imps)) imps

fun 'a mkImmutableEqualityOps tau { mkEqv, mkCp } argxrs =
let fun cmp mk = efuncr (comparisonOf tau) o mk o map (pfunc (comparisonOf value))

fun cpy mk = efuncr (copyOf tau) o mk o map (pfunc (copyOf value))
fun complement eq a a' = not (eq a a')
fun impsOf f = maybeXrComponents (argxrs, f)

in List.mapPartial id
[impPair ("=", cmp mkEqv) (impsOf "=")
, impPair ("!=", cmp (complement o mkEqv)) (impsOf "=")
, impPair ("similar?", cmp mkEqv) (impsOf "similar?")
, impPair ("copy", cpy mkCp) (impsOf "copy")
] : value ref env

end

For a mutable type, we pass in an additional value, identical, which defines
object identity.
S480e. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉≡ S483a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S481

S481a. 〈functions that build operations for equality, similarity, copying, and printing S480b〉+≡ ◁ S480d S481b ▷

fun mkMutableEqualityOps tau { identical, mkEqv, mkCp } argxrs =
let fun cmp mk = efuncr (comparisonOf tau) o mk o map (pfunc (comparisonOf value))

fun cpy mk = efuncr (copyOf tau) o mk o map (pfunc (copyOf value))
fun impsOf f = maybeXrComponents (argxrs, f)

in List.mapPartial id
[SOME ("=", efuncr (comparisonOf tau) (curry identical))
, SOME ("!=", efuncr (comparisonOf tau) (curry (not o identical)))
, impPair ("similar?", cmp mkEqv) (impsOf "similar?")
, impPair ("similar1?", cmp mkEqv) (impsOf "=")
, impPair ("copy", cpy mkCp) (impsOf "copy")
, SOME ("copy1", efuncr (copyOf tau) (mkCp (map (fn _ => id) argxrs)))
]

end

If each of the underlying types inargxrshas aprintoperation, thenmkPrintOps
delivers print and println.
S481b.

tau : 'a map
mkPrint : (value -> unit) list -> ('a -> unit)

〈functions that build operations for equality, similarity, copying, and printing S480b〉+≡ ◁ S481a

fun 'a mkPrintOps tau mkPrint argxrs =
let fun prn mk = efuncr (tau **-> unit) o mk o map (pfunc (value **-> unit))

fun impsOf f = maybeXrComponents (argxrs, f)
fun mkPrintln printers v = (mkPrint printers v; print "\n")

in List.mapPartial id
[impPair ("print", prn mkPrint) (impsOf "print")
, impPair ("println", prn mkPrintln) (impsOf "print")
]

end

T.3.4 Value parts of the built-in type constructors

Value part of type int

Most operations on integers can be implemented by predefined ML functions like
+, -, and so on—but these functions have to be Curried. The exceptions are power,
from-to-by, and printu.
S481c.

intXrecord : xrecord
〈value parts of primitive clusters int, bool, sym, and null S481c〉≡ S482c ▷

val intXrecord =
let 〈definitions of functions power and from_to_by for int S482b〉
in [("+", efuncr (int **-> int **->> int) (curry op +))

, ("-", efuncr (int **-> int **->> int) (curry op -))
, ("*", efuncr (int **-> int **->> int) (curry op *))
, ("/", efuncr (int **-> int **->> int) (curry op div))
, ("negated", efuncr (int **->> int) ~)
, ("mod", efuncr (int **-> int **->> int) (curry op mod))
, ("power", efuncr (int **-> int **->> int) power)
, ("max", efuncr (int **-> int **->> int) (curry Int.max))
, ("min", efuncr (int **-> int **->> int) (curry Int.min))
, ("abs", efuncr (int **->> int) Int.abs)
, ("from-to-by", eiterr (int **->* int **->* int **->* iterator) from_to_by)
, ("from-to", eiterr (int **->* int **->* iterator) fromTo)
, ("<", efuncr (int **-> int **->> bool) (curry op <))
, (">", efuncr (int **-> int **->> bool) (curry op >))
, ("<=", efuncr (int **-> int **->> bool) (curry op <=))
, (">=", efuncr (int **-> int **->> bool) (curry op >=))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S482

, ("print", efuncr (int **-> unit) (print o intString))
, ("println", efuncr (int **-> unit) (println o intString))
, ("printu", efuncr (int **-> unit) printUTF8)
]
@ equalityOps int

end

ML does not have power built in, so here it is. This version is deliberately inef-
ficient; making power take logarithmic time is a homework problem.
S482a. 〈definitions of functions power and from_to_by for int [[prototype]] S482a〉≡

fun power base 0 = 1
| power base n = base * power base (n - 1)

S482b. 〈definitions of functions power and from_to_by for int S482b〉≡ (S481c)
fun from_to_by low high by =
if by < 0 then
iterateLb (fn n => if n < high then NONE else SOME ([NUM n], n + by)) low

else
iterateLb (fn n => if n > high then NONE else SOME ([NUM n], n + by)) low

Value part of type bool

S482c. 〈value parts of primitive clusters int, bool, sym, and null S481c〉+≡ ◁ S481c S482d ▷

val boolXrecord =
[("and", efuncr (bool **-> bool **->> bool) (fn b => fn b' => b andalso b'))
, ("or", efuncr (bool **-> bool **->> bool) (fn b => fn b' => b orelse b'))
, ("not", efuncr (bool **->> bool) not)
, ("print", efuncr (bool **-> unit) (print o valueString o BOOLV))
, ("println", efuncr (bool **-> unit) (println o valueString o BOOLV))
]
@ equalityOps bool

Value part of type null

S482d. 〈value parts of primitive clusters int, bool, sym, and null S481c〉+≡ ◁ S482c S482e ▷
val nullXrecord =
[("print", efuncr (nullmap **-> unit) (fn _ => print "nil"))
, ("println", efuncr (nullmap **-> unit) (fn _ => println "nil"))
]
@ equalityOps nullmap

Value part of type sym

S482e. 〈value parts of primitive clusters int, bool, sym, and null S481c〉+≡ ◁ S482d
val symXrecord =
[("print", efuncr (sym **-> unit) print)
, ("println", efuncr (sym **-> unit) println)
, ("hash", efuncr (sym **->> int) fnvHash)
]
@ equalityOps sym

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S483

Value parts of arrow types

We canʼt do much with routines, but they still get their primitives. A routine isnʼt
equal to anything, even itself.
S483a. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S480e S483b ▷

val arrowXrecord =
let fun eq _ _ = false (* can't compare possible LITERAL functions *)
in [("=", efuncr (value **-> value **->> bool) eq)

, ("!=", efuncr (value **-> value **->> bool) (fn _ => fn _ => true))
, ("similar?", efuncr (value **-> value **->> bool) eq)
, ("copy", efuncr (value **->> value) id)
, ("print", efuncr (value **-> unit) (fn _ => print "<routine>"))
, ("println", efuncr (value **-> unit) (fn _ => println "<routine>"))
]

end

Value parts of array types

CLEAN ME UP LATER
S483b. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S483a S483c ▷

fun fromTo low high : loop_body -> behavior =
iterateLb (fn n => if n > high then NONE else SOME ([NUM n], n + 1)) low

val fromTo : int -> int -> loop_body -> behavior = fromTo

fun primStmt (f, es) = SETRESULTS ([], CALL (LITERAL (PRIMFUN f), ref NONE, es))

fun primLoopBody (f : value -> unit) = (* YAGNI - as simple as possible *)
let val rho = bind ("x", ref NONE, emptyEnv)

val prim = fn [v] => (f v; [])
| _ => raise InternalError "wrong # of values from iterator loop"

in LB ((["x"], primStmt (prim, [VAR "x"])), rho, NONE)
end

S483c. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S483b S485a ▷
fun arrayXrecord (IMMUTABLE, elem) =

let val array = iarray
〈internal functions for immutable-array primitives S484a〉

in [("new", efuncr (result array) (Vector.fromList []))
, ("empty?", efuncr (array **->> bool) (fn a => size a = 0))
, ("at", efuncr (array **-> int **->> value) (curry Vector.sub))
, ("bottom", efuncr (array **->> value) (fn a => Vector.sub (a, 0)))
, ("top", efuncr (array **->> value) (fn a => Vector.sub (a, size a - 1)))
, ("size", efuncr (array **->> int) size)
, ("elements", eiterr (array **->* iterator) vectorElements)
, ("indices", eiterr (array **->* iterator) vectorIndices)
]
@ mkPrintOps array (aprint o single) [elem]
@
[("replace", efuncr (array **-> int **-> value **->> array) replace)
, ("addh", efuncr (array **-> value **->> array) addh)
, ("addl", efuncr (array **-> value **->> array) addl)
, ("remh", efuncr (array **->> array) remh)
, ("reml", efuncr (array **->> array) reml)
, ("subseq", efuncr (array **-> int **-> int **->> array) subseq)
, ("fill", efuncr (int **-> value **->> array) fill)
, ("e2a", efuncr (value **->> array) (fn a => Vector.fromList [a]))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S484

, ("append", efuncr (array **-> array **->> array) append)
, ("ia2ma", efuncr (array **->> marray) ia2ma)
, ("ma2ia", efuncr (marray **->> array) ma2ia)
]
@ mkImmutableEqualityOps array

{ mkEqv = equal o single, mkCp = copy o single }
[elem]

end

S484a. 〈internal functions for immutable-array primitives S484a〉≡ (S483c) S484b ▷

fun vectorIndices a = fromTo 1 (Vector.length a)
fun vectorElements a =
let val size = Vector.length a

fun next i =
if i = size then NONE else SOME ([Vector.sub (a, i)], i + 1)

in iterateLb next 0
end

S484b. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484a S484c ▷
val replace = curry3 Vector.update
val size = Vector.length
fun addh a v = Vector.concat [a, Vector.fromList [v]]
fun addl a v = Vector.concat [Vector.fromList [v], a]
fun remh a = Vector.tabulate (size a - 1, fn i => Vector.sub (a, i))
fun reml a = Vector.tabulate (size a - 1, fn i => Vector.sub (a, i+1))

S484c. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484b S484d ▷

fun subseq a start n =
Vector.tabulate (n, fn i => Vector.sub (a, i + start))

fun fill n v = Vector.tabulate (n, fn _ => v)
(* XXX fill_copy XXX *)
fun append a a' = Vector.concat [a, a']
fun ma2ia a =
let val bound = caBound a
in Vector.tabulate (caPop a, fn i => caAt (a, i + bound))
end

fun ia2ma a = caNew (0, Vector.foldr op :: [] a)

S484d. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484c S484e ▷
fun aprint printElem a =
(print "(immutable array"
; Vector.app (fn v => (print " "; printElem v)) a
; print ")"
)

S484e. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484d S484f ▷
fun equal elemEq a a' =
Vector.length a = Vector.length a' andalso
let fun cmp (x, y) = if elemEq x y then EQUAL else LESS
in Vector.collate cmp (a, a') = EQUAL
end

S484f. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484e S484g ▷
fun copy elemCp a =
Vector.tabulate (Vector.length a, fn i => elemCp (Vector.sub (a, i)))

S484g. 〈internal functions for immutable-array primitives S484a〉+≡ (S483c) ◁ S484f
fun single [imp] = imp
| single _ = raise InternalError "wrong number of valpart args to array"

val eq = equal o single : (value -> value -> bool) list -> value vector -> value vector -> bool

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S485

S485a. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S483c S486b ▷

| arrayXrecord (MUTABLE, elem) =
let val array = marray

〈internal functions for mutable-array primitives S485b〉
in [("new", ref (PRIMFUN (fn _ => [MARRAY (caNew (0, []))])))

, ("empty?", efuncr (array **->> bool) (fn a => caPop a = 0))
, ("at", efuncr (array **-> int **->> value) (curry caAt))
, ("bottom", efuncr (array **->> value) caBottom)
, ("top", efuncr (array **->> value) caTop)
, ("size", efuncr (array **->> int) caPop)
, ("elements", eiterr (array **->* iterator) elements)
, ("indices", eiterr (array **->* iterator) indices)
]
@ mkPrintOps array (aprint o single) [elem]
@
[("create", efuncr (int **->> array) (fn n => caNew (n, [])))
, ("low", efuncr (array **->> int) caBound)
, ("high", efuncr (array **->> int) caHigh)
, ("at-put", efuncr (array **-> int **-> value **-> unit) (curry3 caAtPut))
, ("set-low", efuncr (array **-> int **-> unit) caSetLow)
, ("fill", efuncr (int **-> int **-> value **->> array) fill)
, ("addh", efuncr (array **-> value **-> unit) (curry caAddh))
, ("addl", efuncr (array **-> value **-> unit) (curry caAddl))
, ("remh", efuncr (array **->> value) caRemh)
, ("reml", efuncr (array **->> value) caReml)
]
@
mkMutableEqualityOps array

{ mkEqv = caSimilar o single, mkCp = caCopy o single, identical = caEq }
[elem]
(* not (curry op =): see http://mlton.org/PolymorphicEquality *)

@ (if isbound ("copy", elem) then
[("fill-copy", efuncr (int **-> int **-> value **->> array) fill_copy)]

else
[])

@
[("copy1", efuncr (array **->> array) (caCopy id))
]

end

S485b. 〈internal functions for mutable-array primitives S485b〉≡ (S485a) S485c ▷
fun indices a = fromTo (caBound a) (caHigh a)
fun elements a =
let val high = caHigh a

fun next i = if i > high then NONE else SOME ([caAt (a, i)], i + 1)
in iterateLb next (caBound a)
end

S485c. 〈internal functions for mutable-array primitives S485b〉+≡ (S485a) ◁ S485b S485d ▷

fun fill low n v = caNew (low, List.tabulate (n, fn _ => v))
fun fill_copy low n v =
let val copy = pfunc (value **->> value) (!(find ("copy", elem)))
in caNew (low, List.tabulate (n, fn _ => copy v))
end

S485d. 〈internal functions for mutable-array primitives S485b〉+≡ (S485a) ◁ S485c S486a ▷
fun aprint printElem a =

(app print ["(mutable array [at ", intString (caBound a), "]"]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S486

; elements a (primLoopBody (fn v => (print " "; printElem v)))
; app print [")"]
)

S486a. 〈internal functions for mutable-array primitives S485b〉+≡ (S485a) ◁ S485d
fun single [imp] = imp
| single _ = raise InternalError "wrong number of valpart args to array"

Value parts of record types

S486b. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S485a S486c ▷
fun findField x r =
find (x, r) handle NotFound _ => raise BugInTypeChecking "missing record field"

S486c. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S486b S487c ▷
fun recordXrecord (IMMUTABLE, fields : (name * xrecord) list) =

let val record = irecord
〈internal functions for immutable-record primitives S486d〉

in
[("ir2mr", efuncr (irecord **->> mrecord) (map (fn (x, v) => (x, ref v))))
, ("mr2ir", efuncr (mrecord **->> irecord) (map (fn (x, r) => (x, !r))))
]
@ fimps getOp
@ fimps replaceOp
@ mkImmutableEqualityOps record

{ mkEqv = eqRecords, mkCp = cpRecord }
(map snd fields)

@ mkPrintOps record mkPrint (map snd fields)
end

S486d. 〈internal functions for immutable-record primitives S486d〉≡ (S486c) S486e ▷
fun fimps f = map f fields
fun getOp (x, _) = ("get-" ^ x, efuncr (record **->> value) (findField x))
fun replaceField x r v =
List.map (fn (x', v') => (x', if x = x' then v else v')) r

fun replaceOp (x, _) =
("replace-" ^ x, efuncr (record **-> value **->> record) (replaceField x))

S486e. 〈internal functions for immutable-record primitives S486d〉+≡ (S486c) ◁ S486d S486f ▷
fun checkFields r =
if map fst r = map fst fields then
()

else
raise BugInTypeChecking ("field order in record value doesn't match " ^

"type (value " ^ spaceSep (map fst r) ^
") vs (type " ^ spaceSep (map fst fields) ^ ")")

S486f. 〈internal functions for immutable-record primitives S486d〉+≡ (S486c) ◁ S486e S487a ▷
fun eqRecords argEqs r r' =
(checkFields r
; checkFields r'
; let fun all [] [] [] = true

| all (eq::eqs) ((_, v)::fs) ((_, v')::fs') =
eq v v' andalso all eqs fs fs'

| all _ _ _ =
raise BugInTypeChecking "wrong number of fields in record"

in all argEqs r r'
end

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S487

S487a. 〈internal functions for immutable-record primitives S486d〉+≡ (S486c) ◁ S486f S487b ▷

fun cpRecord argCps r =
(checkFields r
; let fun copy [] [] = []

| copy (cp::cps) ((x, v)::fs) = (x, cp v) :: copy cps fs
| copy _ _ =

raise BugInTypeChecking "wrong number of fields in record"
in copy argCps r
end

)

S487b. 〈internal functions for immutable-record primitives S486d〉+≡ (S486c) ◁ S487a
fun mkPrint printers pairs =
let fun printField (fp, (x, v)) =

(print " ["; print x; print " "; fp v; print "]")
in (print "(immutable record"

; ListPair.appEq printField (printers, pairs)
; print ")"
)

end

S487c. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S486c S488c ▷
| recordXrecord (MUTABLE, fields) =

let val record = mrecord
〈internal functions for mutable-record primitives S487d〉

in
[("mr_gets_mr", efuncr (mrecord **-> mrecord **-> unit) mr_gets_mr)
, ("mr_gets_ir", efuncr (mrecord **-> irecord **-> unit) mr_gets_ir)
]
@ fimps getOp
@ fimps setOp
@ mkMutableEqualityOps record

{ mkEqv = simRecords, mkCp = cpRecord, identical = op = }
(map snd fields)

@ mkPrintOps record mkPrint (map snd fields)
end

S487d. 〈internal functions for mutable-record primitives S487d〉≡ (S487c) S487e ▷
fun fimps f = map f fields
fun setField x r v = findField x r := v
fun mr_gets_mr dst src =

app (fn (x, cell) => cell := !(findField x src)) dst
fun mr_gets_ir dst src =

app (fn (x, cell) => cell := findField x src) dst
fun getOp (x, _) = ("get-" ^ x, efuncr (record **->> value) (! o findField x))
fun setOp (x, _) =
("set-" ^ x, efuncr (record **-> value **-> unit) (setField x))

S487e. 〈internal functions for mutable-record primitives S487d〉+≡ (S487c) ◁ S487d S487f ▷
fun checkFields r =
if map fst r = map fst fields then
()

else
raise BugInTypeChecking "field order in record value doesn't match type"

S487f. 〈internal functions for mutable-record primitives S487d〉+≡ (S487c) ◁ S487e S488a ▷
fun simRecords argEqs r r' =
(checkFields r
; checkFields r'
; let fun all [] [] [] = true

| all (eq::eqs) ((_, vr)::fs) ((_, vr')::fs') =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S488

eq (!vr) (!vr') andalso all eqs fs fs'
| all _ _ _ =

raise BugInTypeChecking "wrong number of fields in record"
in all argEqs r r'
end

)

S488a. 〈internal functions for mutable-record primitives S487d〉+≡ (S487c) ◁ S487f S488b ▷

fun cpRecord argCps r =
(checkFields r
; let fun copy [] [] = []

| copy (cp::cps) ((x, vr)::fs) = (x, ref (cp (!vr))) :: copy cps fs
| copy _ _ =

raise BugInTypeChecking "wrong number of fields in record"
in copy argCps r
end

)

S488b. 〈internal functions for mutable-record primitives S487d〉+≡ (S487c) ◁ S488a
fun mkPrint printers pairs =
let fun printField (fp, (x, ref v)) =

(print " ["; print x; print " "; fp v; print "]")
in (print "(mutable record"

; ListPair.appEq printField (printers, pairs)
; print ")"
)

end

Value parts of sum types

S488c. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S487c S488d ▷

fun variantTagged variants x =
find (x, variants)
handle NotFound _ =>
raise BugInTypeChecking ("unrecognized variant " ^ x)

fun printOneof (mutability, variants) (x, v) =
(app print ["(", mutabilityString mutability, " oneof [", x, " "]
; pfunc (value **-> unit) (xrComponent (variantTagged variants x, "print")) v
; print "])"
)

fun eqOneof variantEqs (x, v) (x', v') = x = x' andalso (find (x, variantEqs) v v')
fun cpOneof variantCps (x, v) = (x, find (x, variantCps) v)

S488d. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S488c S489 ▷
fun oneofXrecord (IMMUTABLE, variants : (name * xrecord) list) =

let val oneof = ioneof
val vt = variantTagged variants
fun vimps f = map f variants
fun makeOp (x, _) =
("make-" ^ x, efuncr (value **->> oneof) (fn v => (x, v)))

fun isOp (x, _) =
("is-" ^ x ^ "?", efuncr (oneof **->> bool) (fn (x', _) => x = x'))

fun valueOp (x, _) =
("value-" ^ x, efuncr (oneof **->> value)

(fn (x', v) => if x = x' then
v

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S489

else
raise RuntimeError ("applied value-" ^ x ^

", but tag is " ^ x')))

fun tag functions = ListPair.zip (map fst variants, functions)

fun mkPrint _ = printOneof (IMMUTABLE, variants)

in
List.concat (map vimps [makeOp, isOp, valueOp])
@
[("io2mo", efuncr (ioneof **->> moneof) ref)
, ("mo2io", efuncr (moneof **->> ioneof) !)
]
@ mkImmutableEqualityOps oneof { mkEqv = eqOneof o tag, mkCp = cpOneof o tag }

(map snd variants)
@ mkPrintOps oneof mkPrint (map snd variants)

end

S489. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S488d S490a ▷
| oneofXrecord (MUTABLE, variants) =

let val oneof = moneof
val vt = variantTagged variants
fun vimps f = map f variants
fun makeOp (x, _) =
("make-" ^ x, efuncr (value **->> oneof) (fn v => ref (x, v)))

fun changeOp (x, _) =
("change-" ^ x, efuncr (oneof **-> value **-> unit)

(fn cell => fn v => cell := (x, v)))
fun isOp (x, _) =
("is-" ^ x ^ "?", efuncr (oneof **->> bool) (fn (ref (x', _)) => x = x'))

fun valueOp (x, _) =
("value-" ^ x, efuncr (oneof **->> value)

(fn (ref (x', v)) =>
if x = x' then
v

else
raise RuntimeError ("applied value-" ^ x ^

", but tag is " ^ x')))

fun mkEqv variants one one' = eqOneof variants (!one) (!one')
fun mkCp variants one = ref (cpOneof variants (!one))
fun tag functions = ListPair.zip (map fst variants, functions)

fun mkPrint _ = printOneof (IMMUTABLE, variants) o !
in

List.concat (map vimps [makeOp, isOp, valueOp, changeOp])
@
[("mo_gets_mo", efuncr (oneof **-> oneof **-> unit)

(fn c => fn c' => c := !c'))
, ("mo_gets_io", efuncr (oneof **-> ioneof **-> unit)

(fn c => fn pair => c := pair))
]
@ mkMutableEqualityOps oneof

{ identical = op =, mkEqv = mkEqv o tag, mkCp = mkCp o tag }
(map snd variants)

@ mkPrintOps oneof mkPrint (map snd variants)
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S490

This function tests to make sure an export record is consistent with its type.
S490a. 〈evaluation of the value parts of array, record, sum, and arrow types S480e〉+≡ ◁ S489

fun exportSanityCheck (what, exports, xr) =
let fun checkType (x, tau) =

if isbound (x, xr) then ()
else
raise InternalError (what ^ " claims to export " ^ x ^ " : " ^

typeString tau ^ ", but it's not in the export record")
fun checkValue (x, ref v) =
if isbound (x, exports) then ()
else
raise InternalError (what ^ " exports value " ^ x ^ " = " ^

valueString v ^ ", but it's not in the type")
in (app checkType exports

; app checkValue xr
)

end

T.3.5 The initial basis

S490b. 〈implementations of Molecule primitives and definition of initialBasis S490b〉≡ (S501a)
val intmodenv = foldl (addValWith (ref o PRIMITIVE)) emptyEnv intPrims
val arraymodenv = foldl (addValWith (ref o PRIMITIVE)) emptyEnv arrayPrims
val boolmodenv = foldl (addValWith (ref o PRIMITIVE)) emptyEnv boolPrims
val unitmodenv = bind ("unit", ref (CONVAL (PNAME "unit", [])), emptyEnv)
val symmodenv = foldl (addValWith (ref o PRIMITIVE)) emptyEnv symPrims

val modules =
[("Int", intmod, MODVAL intmodenv)
, ("Bool", boolmod, MODVAL boolmodenv)
, ("Unit", unitmod, MODVAL unitmodenv)
, ("Sym", symmod, MODVAL symmodenv)
, (arraymodname, arraymod,

CLOSURE ((["Elem"], MODEXP (map (fn (x, f, _) => (x, LITERAL (PRIMITIVE f))) arrayPrims)),
emptyEnv))

, ("UnsafeArray", uarraymod,
CLOSURE ((["Elem"], MODEXP (map (fn (x, f, _) => (x, LITERAL (PRIMITIVE f))) uarrayPrims)),

emptyEnv))
, ("ArrayCore", arraymod,

CLOSURE ((["Elem"], MODEXP (map (fn (x, f, _) => (x, LITERAL (PRIMITIVE f))) arrayPrims)),
emptyEnv))

, ("#t", ENVVAL booltype, CONVAL (PNAME "#t", []))
, ("#f", ENVVAL booltype, CONVAL (PNAME "#f", []))
]

fun addmod ((x, dbl, v), (Gamma, rho)) =
(bind (x, dbl, Gamma), bind (x, ref v, rho))

val initialRho = bind (overloadTable, ref (ARRAY emptyOverloadTable), emptyEnv)

val initialBasis = foldl addmod (emptyEnv, initialRho) modules : basis

val initialBasis =
let val predefinedTypes = 〈predefined Molecule types, functions, and modules, as strings generated automatically〉

val xdefs = stringsxdefs ("built-in types", predefinedTypes)
in readEvalPrintWith predefinedFunctionError (xdefs, initialBasis, noninteractive)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S491

end

val options = case OS.Process.getEnv "BPCOPTIONS" of SOME s => ":" ^ s ^ ":" | NONE => ""
val () =
if String.isSubstring ":basis:" options then
let fun show (x, c) = app print [whatdec c, " ", x, "\n"]
in app show (fst initialBasis)
end

else
()

S491a. 〈predefined Molecule types, functions, and modules S475a〉+≡ ◁ S475b S494a ▷
(define bool and ([b : bool] [c : bool]) (if b c b))
(define bool or ([b : bool] [c : bool]) (if b b c))
(define bool not ([b : bool]) (if b (= 1 0) (= 0 0)))
(define int mod ([m : int] [n : int]) (- m (* n (/ m n))))

T.3.6 The initial basis

S491b. 〈primitive modules and types used to type literal expressions S491b〉≡ (S500c)
val arraymodname = "Array"

val intmodident = genmodident "Int"
val symmodident = genmodident "Sym"
val boolmodident = genmodident "Bool"
val unitmodident = genmodident "Unit"
val arraymodident = genmodident arraymodname
val uarraymodident = genmodident "UnsafeArray"

val inttype = TYNAME (PDOT (PNAME intmodident, "t"))
val symtype = TYNAME (PDOT (PNAME symmodident, "t"))
val booltype = TYNAME (PDOT (PNAME boolmodident, "t"))
val unittype = TYNAME (PDOT (PNAME unitmodident, "t"))

fun arraytype tau =
case tau
of TYNAME (PDOT (module, "t")) =>

TYNAME (PDOT (PAPPLY (PNAME arraymodident, [module]), "t"))
| _ => raise InternalError "unable to form internal array type"

fun addValWith f ((x, v, ty), rho) = bind (x, f v, rho)
fun decval (x, v, ty) = (x, ENVVAL ty)
fun compval (x, v, ty) = (x, COMPVAL ty)

〈shared utility functions for building primitives in languages with type checking S389d〉
〈primitives [[mcl]] S492a〉

val unitval =
("unit", CONVAL (PNAME "unit", []), TYNAME (PDOT (PNAME unitmodident, "t")))

local
fun module id primvals : binding =
ENVMOD (MTEXPORTS (("t", COMPABSTY (PDOT (PNAME id, "t"))) :: map compval primvals),

PNAME id)
in

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY S499d
arraymodtypeS493
arrayPrims S493
type basis S471e
bind 312b
type binding S456b
boolPrims S492a
CLOSURE S499d
COMPABSTY S456b
COMPVAL S456b
CONVAL S499d
emptyEnv 311a
emptyOverloadTable

S500d
ENVMOD S456b
ENVVAL S456b
fst S263d
genmodident S494c
InternalError

S366f
intPrims S492b
LITERAL S462a
MODEXP S462a
MODVAL S499d
MTEXPORTS S456b
noninteractive

S368c
overloadTable

S500d
PAPPLY S455
PDOT S455
PNAME S455
predefined-

FunctionError
S238e

PRIMITIVE S499d
readEvalPrintWith

S369c
stringsxdefsS254c
symPrims S492a
TYNAME S456a
uarraymodtype

S493
uarrayPrims S493
whatdec S507c

Supporting code
for MoleculeT

S492

val intmod = module intmodident intPrims
val symmod = module symmodident symPrims
val boolmod = module boolmodident boolPrims
val unitmod = module unitmodident [unitval]
val arraymod = ENVMOD (arraymodtype, PNAME arraymodident)
val uarraymod = ENVMOD (uarraymodtype, PNAME uarraymodident)

end

S492a. 〈primitives [[mcl]] S492a〉≡ (S491b) S492b ▷

fun eqPrintPrims tau strip =
let val comptype = FUNTY ([tau, tau], booltype)

fun comparison f = binaryOp (embedBool o (fn (x, y) => f (strip x, strip y)))
in ("similar?", comparison op =, comptype) ::

("dissimilar?", comparison op =, comptype) ::
("=", comparison op =, comptype) ::
("!=", comparison op <>, comptype) ::
("print", unaryOp (fn x => (print (valueString x);unitVal)), FUNTY ([tau], unittype)) ::
("println", unaryOp (fn x => (println (valueString x);unitVal)), FUNTY ([tau], unittype)) ::
[]

end

val symPrims =
eqPrintPrims symtype (fn SYM s => s | _ => raise BugInTypeChecking "comparing non-symbols")

val boolPrims =
eqPrintPrims booltype (fn CONVAL (K, []) => K

| _ => raise BugInTypeChecking "comparing non-Booleans")

S492b. 〈primitives [[mcl]] S492a〉+≡ (S491b) ◁ S492a S493 ▷
fun comparison f = binaryOp (embedBool o f)
fun intcompare f =

comparison (fn (NUM n1, NUM n2) => f (n1, n2)
| _ => raise BugInTypeChecking "comparing non-numbers")

fun asInt (NUM n) = n
| asInt v = raise BugInTypeChecking ("expected a number; got " ^ valueString v)

val arithtype = FUNTY ([inttype, inttype], inttype)
val comptype = FUNTY ([inttype, inttype], booltype)

fun wordOp f = arithOp (fn (n, m) => Word.toInt (f (Word.fromInt n, Word.fromInt m)))
fun unaryIntOp f = unaryOp (NUM o f o asInt)
fun unaryWordOp f = unaryIntOp (Word.toInt o f o Word.fromInt)

val intPrims =
("+", arithOp op +, arithtype) ::
("-", arithOp op -, arithtype) ::
("*", arithOp op *, arithtype) ::
("/", arithOp op div, arithtype) ::

("land", wordOp Word.andb, arithtype) ::
("lor", wordOp Word.orb, arithtype) ::
(">>u", wordOp Word.>>, arithtype) ::
(">>s", wordOp Word.~>>, arithtype) ::
("<<", wordOp Word.<<, arithtype) ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.3
Implementations

of Molecule’s
primitive modules

S493

("of-int", unaryOp id, FUNTY ([inttype], inttype)) ::
("negated", unaryIntOp ~, FUNTY ([inttype], inttype)) ::
("lnot", unaryWordOp Word.notb, FUNTY ([inttype], inttype)) ::

("<", intcompare op <, comptype) ::
(">", intcompare op >, comptype) ::
("<=", intcompare op <=, comptype) ::
(">=", intcompare op >=, comptype) ::
("printu", unaryOp (fn n => (printUTF8 (asInt n); unitVal)), FUNTY ([inttype], unittype)) ::
eqPrintPrims inttype (fn NUM n => n | _ => raise BugInTypeChecking "comparing non-numbers")

S493. 〈primitives [[mcl]] S492a〉+≡ (S491b) ◁ S492b S534d ▷

local
val arraypath = PNAME arraymodident
val arrayarg = genmodident "Elem"
val argpath = PNAME arrayarg
val resultpath = PAPPLY (arraypath, [argpath])
val elemtype = TYNAME (PDOT (argpath, "t"))
val arraytype = TYNAME (PDOT (resultpath, "t"))

fun protect f x = f x
handle Size => raise RuntimeError "array too big"

| Subscript => raise RuntimeError "array index out of bounds"

fun asArray (ARRAY a) = a
| asArray _ = raise BugInTypeChecking "non-array value as array"

fun arrayLeft f (a, x) = f (asArray a, x)
in
val arrayPrims =
("size", unaryOp (NUM o Array.length o asArray), FUNTY ([arraytype], inttype)) ::
("new", binaryOp (fn (NUM n, a) => ARRAY (protect Array.array (n, a))

| _ => raise BugInTypeChecking "array size not a number"),
FUNTY ([inttype, elemtype], arraytype)) ::

("empty", fn _ => ARRAY (Array.fromList []), FUNTY ([], arraytype)) ::
("at", binaryOp (fn (ARRAY a, NUM i) => protect Array.sub (a, i)

| _ => raise BugInTypeChecking "Array.at array or index"),
FUNTY ([arraytype, inttype], elemtype)) ::

("at-put", fn [ARRAY a, NUM i, x] => (protect Array.update (a, i, x); unitVal)
| _ => raise BugInTypeChecking "number or types of args to Array.at-put",

FUNTY ([arraytype, inttype, elemtype], unittype)) ::
[]

val arraymodtype : modty =
MTARROW ([(arrayarg, MTEXPORTS [("t", COMPABSTY (PDOT (argpath, "t")))] : modty)],

MTEXPORTS (("t", COMPABSTY (PDOT (resultpath, "t"))) ::
("elem", COMPMANTY elemtype) ::
map compval arrayPrims) : modty)

val uarrayPrims =
("new", unaryOp (fn (NUM n) => ARRAY (protect Array.array (n, CONVAL (PNAME "uninitialized", [])))

| _ => raise BugInTypeChecking "array size not a number"),
FUNTY ([inttype], arraytype)) ::

[]

val uarraymodtype : modty =
MTARROW ([(arrayarg, MTEXPORTS [("t", COMPABSTY (PDOT (argpath, "t")))] : modty)],

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arithOp S389e
ARRAY S499d
arraymodident

S491b
binaryOp S389d
booltype S491b
BugInTypeChecking

S237b
COMPABSTY S456b
COMPMANTY S456b
compval S491b
CONVAL S499d
embedBool S433d
FUNTY S456a
genmodident S494c
id S263d
inttype S491b
type modty S456b
MTARROW S456b
MTEXPORTS S456b
NUM S499d
PAPPLY S455
PDOT S455
PNAME S455
println S238a
printUTF8 S239b
RuntimeErrorS366c
SYM S499d
symtype S491b
TYNAME S456a
unaryOp S389d
unittype S491b
unitVal S500b
valueString S507a

Supporting code
for MoleculeT

S494

MTEXPORTS (("t", COMPABSTY (PDOT (resultpath, "t"))) ::
map compval uarrayPrims) : modty)

end

S494a. 〈predefined Molecule types, functions, and modules S475a〉+≡ ◁ S491a S494b ▷

(generic-module
[Array : ([M : (exports (abstype t))] --m->

(allof ARRAY (exports (type elem M.t))))]
(module A (@m ArrayCore M))
(type t A.t)
(type elem M.t)
(val new A.new)
(val empty A.empty)
(val at A.at)
(val size A.size)
(val at-put A.at-put))

S494b. 〈predefined Molecule types, functions, and modules S475a〉+≡ ◁ S494a
(generic-module

[Ref : ([M : (exports (abstype t))] --m->
(exports [abstype t]

[new : (M.t -> t)]
[! : (t -> M.t)]
[:= : (t M.t -> unit)]))]

(module A (@m ArrayCore M))
(type t A.t)
(define t new ([x : M.t]) (A.new 1 x))
(define M.t ! ([cell : t]) (A.at cell 0))
(define unit := ([cell : t] [x : M.t]) (A.at-put cell 0 x)))

T.4 REFUGEES FROM THE CHAPTER (TYPE CHECKING)

T.4.1 Path and type basics

S494c. 〈definition of function genmodident S494c〉≡ (S455)
local
val timesDefined : int env ref = ref emptyEnv

(* how many times each modident is defined *)
in
fun genmodident name =
let val n = find (name, !timesDefined) handle NotFound _ => 0

val n = 0 (* XXX fix this later *)
val _ = timesDefined := bind (name, n + 1, !timesDefined)

in MODCON { printName = name, serial = n }
end

end

S494d. 〈paths for Molecule S455〉+≡ (S500b) ◁ S455
fun plast (PDOT (_, x)) = x
| plast (PNAME (_, x)) = x
| plast (PAPPLY _) = "??last??"

S494e.

eqType : ty * ty -> bool
eqTypes : ty list * ty list -> bool

〈type equality for Molecule S494e〉≡ (S500c)

fun eqType (TYNAME p, TYNAME p') = p = p'
| eqType (FUNTY (args, res), FUNTY (args', res')) =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.4
Refugees from the

chapter (type
checking)

S495

eqTypes (args, args') andalso eqType (res, res')
| eqType (ANYTYPE, _) = true
| eqType (_, ANYTYPE) = true
| eqType _ = false

and eqTypes (taus, tau's) = ListPair.allEq eqType (taus, tau's)

T.4.2 Substitutions (boring)

S495a.

type rootsubst
idsubst : rootsubst

〈substitutions for Molecule S495a〉≡ (S500c 501a) S495b ▷

type rootsubst = (modident * path) list
val idsubst = []

S495b.

|--> : modident * path -> rootsubst
〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495a S495c ▷

infix 7 |-->
fun id |--> p = [(id, p)]

S495c.

type tysubst
associatedWith : path * tysubst -> ty option
hasKey : tysubst -> path -> bool

〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495b S495d ▷

type tysubst = (path * ty) list
fun associatedWith (x, []) =

NONE
| associatedWith (x, (key, value) :: pairs) =

if x = key then SOME value else associatedWith (x, pairs)

fun hasKey [] x = false
| hasKey ((key, value) :: pairs) x = x = key orelse hasKey pairs x

S495d.

pathsubstRoot : rootsubst -> path -> path
〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495c S495e ▷

fun pathsubstRoot theta =
let fun subst (PNAME id) =

(case List.find (fn (id', p') => id = id') theta
of SOME (_, p) => p
| NONE => PNAME id)

| subst (PDOT (p, x)) = PDOT (subst p, x)
| subst (PAPPLY (p, ps)) = PAPPLY (subst p, map subst ps)

in subst
end

S495e.

tysubstRoot : rootsubst -> ty -> ty
〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495d S495f ▷

fun tysubstRoot theta (TYNAME p) = TYNAME (pathsubstRoot theta p)
| tysubstRoot theta (FUNTY (args, res)) =

FUNTY (map (tysubstRoot theta) args, tysubstRoot theta res)
| tysubstRoot theta ANYTYPE = ANYTYPE

S495f.

dom : rootsubst -> modident set
compose : rootsubst * rootsubst -> rootsubst

〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495e S496a ▷

fun dom theta = map (fn (a, _) => a) theta
fun compose (theta2, theta1) =
let val domain = union (dom theta2, dom theta1)

val replace = pathsubstRoot theta2 o pathsubstRoot theta1 o PNAME
in map (fn a => (a, replace a)) domain
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ANYTYPE S456a
bind 312b
emptyEnv 311a
type env 310b
find 311b
FUNTY S456a
MODCON S455
type modident

S455
NotFound 311b
PAPPLY S455
type path S455
PDOT S455
PNAME S455
type ty S456a
TYNAME S456a
union S240b

Supporting code
for MoleculeT

S496

S496a.

mtsubstRoot : rootsubst -> modty -> modty
compsubstRoot : rootsubst -> component -> component

〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S495f S496b ▷

fun bsubstRoot s =
map (fn (x, a) => (x, s a))

fun mtsubstRoot theta =
let fun s (MTEXPORTS comps) = MTEXPORTS (bsubstRoot (compsubstRoot theta) comps)

| s (MTALLOF mts) = MTALLOF (map s mts)
| s (MTARROW (args, res)) = MTARROW (bsubstRoot s args, s res)

in s
end

and compsubstRoot theta =
let fun s (COMPVAL t) = COMPVAL (tysubstRoot theta t)

| s (COMPABSTY path) = COMPABSTY (pathsubstRoot theta path)
| s (COMPMANTY t) = COMPMANTY (tysubstRoot theta t)
| s (COMPMOD mt) = COMPMOD (mtsubstRoot theta mt)

in s
end

S496b.

tysubstManifest : tysubst -> ty -> ty
〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S496a S496c ▷

fun tysubstManifest mantypes =
let fun r (TYNAME path) = getOpt (associatedWith (path, mantypes), TYNAME path)

| r (FUNTY (args, res)) = FUNTY (map r args, r res)
| r (ANYTYPE) = ANYTYPE

in r
end

S496c.

mtsubstManifest : tysubst -> modty -> modty
〈substitutions for Molecule S495a〉+≡ (S500c 501a) ◁ S496b

fun mtsubstManifest mantypes mt =
let val newty = tysubstManifest mantypes

fun newmt (MTEXPORTS cs) = MTEXPORTS (map (fn (x, c) => (x, newcomp c)) cs)
| newmt (MTALLOF mts) = MTALLOF (map newmt mts) (* can't violate unmix invariant *)
| newmt (MTARROW (args, result)) =

MTARROW (map (fn (x, mt) => (x, newmt mt)) args, newmt result)
and newcomp (COMPVAL tau) = COMPVAL (newty tau)
| newcomp (COMPABSTY p) =

(case associatedWith (p, mantypes)
of SOME tau => COMPMANTY tau
| NONE => COMPABSTY p) (* used to be this on every path *)

| newcomp (COMPMANTY tau) = COMPMANTY (newty tau)
| newcomp (COMPMOD mt) = COMPMOD (newmt mt)

in newmt mt
end

T.4.3 Realization

This general-purpose code ought to go elsewhere.
S496d. 〈utilities for module-type realization S496d〉≡ (S500c) S497a ▷

fun filterdec p (MTARROW f, path) = MTARROW f
| filterdec p (MTALLOF mts, path) = MTALLOF (map (fn mt => filterdec p (mt, path)) mts)
| filterdec p (MTEXPORTS xcs, path) =

let fun cons ((x, c), xcs) =
let val path = PDOT (path, x)

val c = case c of COMPMOD mt => COMPMOD (filterdec p (mt, path))
| _ => c

in if p (c, path) then
(x, c) :: xcs

else

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.4
Refugees from the

chapter (type
checking)

S497

xcs
end

in MTEXPORTS (foldr cons [] xcs)
end

S497a. 〈utilities for module-type realization S496d〉+≡ (S500c) ◁ S496d
fun emptyExports (MTEXPORTS []) = true
| emptyExports _ = false

Restores the invariant at need.
S497b.

unmixTypes : modty rooted -> modty
〈module-type realization S458c〉+≡ (S500c) ◁ S459b

fun unmixTypes (mt, path) =
let fun mtype (MTEXPORTS cs) = MTEXPORTS (map comp cs)

| mtype (MTALLOF mts) = allofAt (map mtype mts, path)
| mtype (MTARROW (args, result)) =

MTARROW (map (fn (x, mt) => (x, mtype mt)) args, mtype result)
and comp (x, COMPMOD mt) = (x, COMPMOD (unmixTypes (mt, PDOT (path, x))))
| comp c = c

in mtype mt
end

T.4.4 Instantiation

S497c. 〈instantiated exporting module fpx S497c〉≡ (S461a)
raise TypeError ("module " ^ pathexString fpx ^ " is an exporting module, and only " ^

" a generic module can be instantiated")

S497d. 〈can’t pass actroot as formalid to fpx S497d〉≡ (S461a)
raise TypeError ("module " ^ pathString actroot ^ " cannot be used as argument " ^

modidentString formalid ^ " to generic module " ^ pathexString fpx ^
": " ^ msg)

S497e. 〈wrong number of arguments to fpx S497e〉≡ (S461a)
raise TypeError ("generic module " ^ pathexString fpx ^ " is expecting " ^

countString formals "parameter" ^ ", but got " ^
countString actuals "actual parameter")

T.4.5 Translation/elaboration of syntax into types

We translate paths, types, declarations, and module types.

S497f.

txpath : pathex * binding env -> path
〈translation of Molecule type syntax into types S497f〉≡ (S500c 501a) S498a ▷

fun txpath (px, Gamma) =
let fun tx (PAPPLY (f, args)) = PAPPLY (tx f, map tx args)

| tx (PDOT (p, x)) = PDOT (tx p, x)
| tx (PNAME (loc, m)) =

let fun bad aThing =
raise TypeError ("I was expecting " ^ m ^ " to refer to a module, " ^

"but at " ^ srclocString loc ^ ", it's " ^ aThing)
in case find (m, Gamma)

of ENVMODTY _ => bad "a module type"
| ENVMOD (mt, p) => p
| c => bad (whatdec c)

end
in tx px
end

val elabpath = txpath

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

actroot S461a
actuals S461a
allofAt S459b
ANYTYPE S456a
associatedWith

S495c
COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
countString S238g
ENVMOD S456b
ENVMODTY S456b
find 311b
formalid S461a
formals S461a
fpx S460
FUNTY S456a
modidentString

S531b
msg S461a
MTALLOF S456b
MTARROW S456b
MTEXPORTS S456b
PAPPLY S455
pathexStringS531b
pathString S531b
pathsubstRoot

S495d
PDOT S455
PNAME S455
srclocStringS254d
TYNAME S456a
TypeError S237b
tysubstRoot S495e
whatdec S507c

Supporting code
for MoleculeT

S498

S498a.

elabty : tyex * binding env -> ty
〈translation of Molecule type syntax into types S497f〉+≡ (S500c 501a) ◁ S497f S498b ▷

fun elabty (t, Gamma) =
let fun tx (TYNAME px) =

(case pathfind (px, Gamma)
of ENVMANTY tau => tau
| dec => raise TypeError ("I was expecting a type, but " ^

pathexString px ^ " is " ^ whatdec dec))
| tx (FUNTY (args, res)) = FUNTY (map tx args, tx res)
| tx ANYTYPE = ANYTYPE

in tx t
end

S498b.

findModty : name * binding env -> modty
〈translation of Molecule type syntax into types S497f〉+≡ (S500c 501a) ◁ S498a S498c ▷

fun findModty (x, Gamma) =
case find (x, Gamma)
of ENVMODTY mt => mt
| dec => raise TypeError ("Tried to use " ^ whatdec dec ^ " " ^ x ^

" as a module type")

S498c.

elabmt : modtyx rooted * binding env -> modty
〈translation of Molecule type syntax into types S497f〉+≡ (S500c 501a) ◁ S498b S499b ▷

fun elabmt ((mtx : modtyx, path), Gamma) =
let fun tx (MTNAMEDX t) = mtsubstRoot (MODTYPLACEHOLDER t |--> path) (findModty (t, Gamma))

| tx (MTEXPORTSX exports) =
let val (this', _) = foldl (leftLocated export) ([], Gamma) exports
in MTEXPORTS (rev this')
end

| tx (MTALLOFX mts) = allofAt (map (located tx) mts, path)
| tx (MTARROWX (args, body)) =

let val resultName = PNAME (MODTYPLACEHOLDER "functor result")
fun txArrow ([], (loc, body), Gamma : binding env, idents') =

let val resultName = PAPPLY (path, reverse idents')
in
([], atLoc loc elabmt ((body, resultName), Gamma))
end

| txArrow (((mloc, m), (mtloc, mtx)) :: rest, body, Gamma, idents') =
let val modid = genmodident m

val modty = atLoc mtloc elabmt ((mtx, PNAME modid), Gamma)
val () = 〈if modty is generic, bleat about m S499a〉
val Gamma' = bind (m, ENVMOD (modty, PNAME modid), Gamma)

(* XXX check 1st arg to ENVMOD *)
val (rest', body') = txArrow (rest, body, Gamma', PNAME modid :: idents')

in ((modid, modty) :: rest', body')
end

in MTARROW (txArrow (args, body, Gamma, []))
end

and export ((x, ctx : decl), (theseDecls, Gamma)) =
if isbound (x, theseDecls) then
raise TypeError ("duplicate declaration of " ^ x ^ " in module type")

else
let val c = txComp ((ctx, PDOT (path, x)), Gamma)
in ((x, c) :: theseDecls, bind (x, asBinding (c, path), Gamma))
end

in tx mtx

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.4
Refugees from the

chapter (type
checking)

S499

end

S499a. 〈if modty is generic, bleat about m S499a〉≡ (S498c)
case modty
of MTARROW _ =>
raise TypeError ("module parameter " ^ m ^ " is generic, but a generic " ^

"module may not take another generic module as a parameter")
| _ => ()

S499b.

txDecl : decl rooted * binding env -> binding
txComp : decl rooted * binding env -> component

〈translation of Molecule type syntax into types S497f〉+≡ (S500c 501a) ◁ S498c

and txComp ((comp : decl, path), Gamma : binding env) : component =
let fun ty t = elabty (t, Gamma)
in case comp

of DECVAL tau => COMPVAL (ty tau)
| DECABSTY => COMPABSTY path
| DECMANTY t => COMPMANTY (ty t)
| DECMOD mt => COMPMOD (elabmt ((mt, path), Gamma))

(* XXX is path really OK here??? *)
| DECMODTY mt =>

raise TypeError ("module type " ^ pathString path ^ " may not be a component of another module")
end

and txDecl ((comp : decl, path), Gamma : binding env) : binding =
let fun ty t = elabty (t, Gamma)
in case comp

of DECVAL tau => ENVVAL (ty tau)
| DECABSTY => ENVMANTY (TYNAME path)
| DECMANTY t => ENVMANTY (ty t)
| DECMOD mt => ENVMOD (elabmt ((mt, path), Gamma), path)

(* XXX is path really OK here??? *)
| DECMODTY mt => ENVMODTY (elabmt ((mt, path), Gamma))

end
val elabmt = fn a =>
let val mt = elabmt a
in if mixedManifestations mt then

raise BugInTypeChecking ("invariant violation (mixed M): " ^ mtString mt)
else
mt

end

S499c. 〈tried to select path.x but path is a dec S499c〉≡ (S460)
raise TypeError ("Tried to select " ^ pathexString (PDOT (path, x)) ^ ", but " ^

pathexString path ^ " is " ^ whatdec dec ^ ", which does not " ^
" have components")

T.4.6 Exp and value representations

S499d.

type value
〈definitions of exp and value for Molecule S462a〉+≡ (S500b) ◁ S462a

and value
= CONVAL of vcon * value ref list
| SYM of name
| NUM of int
| MODVAL of value ref env
| CLOSURE of lambda * value ref env
| PRIMITIVE of primop
| ARRAY of value array
withtype lambda = name list * exp

and primop = value list -> value

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

allofAt S459b
ANYTYPE S456a
asBinding S460
atLoc S255d
bind 312b
type binding S456b
BugInTypeChecking

S237b
COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
type component

S456b
COMPVAL S456b
dec S460
DECABSTY S456b
type decl S456b
DECMANTY S456b
DECMOD S456b
DECMODTY S456b
DECVAL S456b
type env 310b
ENVMANTY S456b
ENVMOD S456b
ENVMODTY S456b
ENVVAL S456b
type exp S462a
find 311b
FUNTY S456a
genmodident S494c
isbound 312a
leftLocated S255e
located S255e
mixed-

Manifestations
S457b

MODTYPLACEHOLDER
S455

type modtyx S456b
MTALLOFX S456b
MTARROW S456b
MTARROWX S456b
MTEXPORTS S456b
MTEXPORTSX S456b
MTNAMEDX S456b
mtString S532a
mtsubstRoot S496a
type name 310a
PAPPLY S455
path S460
pathexStringS531b
pathfind S460
pathString S531b
PDOT S455
PNAME S455
reverse S241c
TYNAME S456a
TypeError S237b
type vcon S500b
whatdec S507c
|--> S495b

Supporting code
for MoleculeT

S500

S500a. 〈translation of definition list of MODEXP S500a〉≡
fun modexp defs =
let fun bindings [] = []

| bindings (d :: ds) =

The representations defined above are combined with representations from
other chapters as follows:
S500b. 〈abstract syntax and values for Molecule S500b〉≡ (S501a)

〈paths for Molecule S455〉
〈definition of ty for Molecule S456a〉
〈definition of modty for Molecule S456b〉
type vcon = name path'
datatype pat = WILDCARD

| PVAR of name
| CONPAT of vcon * pat list

〈definitions of exp and value for Molecule S462a〉
val unitVal = SYM "unit" (* XXX placeholder *)
〈definition of def for Molecule S462b〉
(*<definition of [[implicit_data_def]] for \mcl>*)
〈definition of unit_test for explicitly typed languages generated automatically〉
| CHECK_MTYPE of pathex * modtyx

〈definition of xdef (shared) S365b〉
val BugInTypeInference = BugInTypeChecking (* to make \uml utils work *)
〈definition of valueString for Molecule S507a〉
〈definition of patString for µML and µHaskell generated automatically〉
〈definition of typeString for Molecule types S531b〉
〈definition of expString for Molecule S532d〉
〈utility functions on µML values generated automatically〉

T.4.7 Wrapup

S500c. 〈type checking for Molecule S500c〉≡ (S501a)
〈context for a Molecule definition S465b〉
〈type equality for Molecule S494e〉
〈substitutions for Molecule S495a〉
〈type components of module types S457a〉
〈utilities for module-type realization S496d〉
〈module-type realization S458c〉
〈invariants of Molecule S457b〉
〈implements relation, based on subtype of two module types S457c〉
〈path-expression lookup S460〉
〈translation of Molecule type syntax into types S497f〉
〈primitive modules and types used to type literal expressions S491b〉
〈utility functions on Molecule types S463a〉
〈typeof a Molecule expression generated automatically〉
〈principal type of a module S465a〉
〈elaboration and evaluation of data definitions for Molecule S469b〉
〈elaborate a Molecule definition S466a〉

S500d. 〈support for operator overloading in Molecule S500d〉≡ (S501a)
val notOverloadedIndex = ~1
val overloadTable = "overloaded operators" (* name cannot appear in source code *)
val emptyOverloadTable = Array.tabulate (10, fn _ => SYM "<empty entry in overload table>")
fun overloadCell rho =
find (overloadTable, rho) handle NotFound _ => raise InternalError "missing overload table"

fun overloadedAt (rho, i) =
case overloadCell rho
of ref (ARRAY a) => Array.sub (a, i)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.5. Evaluation

S501

| _ => raise InternalError "representation of overload table"
local
val next = ref 0

in
fun nextOverloadedIndex () = !next before next := !next + 1

end

fun overloadedPut (i, v, rho) =
let val cell = overloadCell rho

val a = case cell of ref (ARRAY a) => a | _ => raise InternalError "rep of overload table"
val a' = if i >= Array.length a then

let val n = 2 * Array.length a
val a' = Array.tabulate (n, fn j => if j < n then Array.sub (a, j) else v)
val _ = cell := ARRAY a'

in a'
end

else
a

in Array.update (a', i, v)
end

S501a. 〈mcl.sml S501a〉≡
exception Unimp of string
fun unimp s = raise Unimp s
〈exceptions used in languages with type checking S237b〉
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈abstract syntax and values for Molecule S500b〉
〈support for operator overloading in Molecule S500d〉
〈lexical analysis and parsing for Molecule, providing filexdefs and stringsxdefs S517c〉

(*<\mcl's overloaded operators>*)
〈environments for Molecule’s defined names S507c〉

〈type checking for Molecule S500c〉

〈substitutions for Molecule S495a〉

〈translation of Molecule type syntax into types S497f〉
〈type checking for Molecule S500c〉
〈evaluation, testing, and the read-eval-print loop for Molecule S501b〉

〈implementations of Molecule primitives and definition of initialBasis S490b〉
〈function runAs, which evaluates standard input given initialBasis S372c〉
〈code that looks at command-line arguments and calls runAs to run the interpreter S372d〉

T.5 EVALUATION

The components of the evaluator and read-eval-print loop are organized as follows:
S501b. 〈evaluation, testing, and the read-eval-print loop for Molecule S501b〉≡ (S501a)

〈definition of namedValueString for functional bridge languages S505a〉
fun basename (PDOT (_, x)) = PNAME x
| basename (PNAME x) = PNAME x
| basename (instance as PAPPLY _) = instance

〈definitions of matchRef and Doesn'tMatch generated automatically〉
〈definitions of eval and evaldef for Molecule S502a〉

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY S499d
BugInTypeChecking

S237b
find 311b
InternalError

S366f
type modtyx S456b
type name 310a
NotFound 311b
PAPPLY S455
type path' S455
type pathex S455
PDOT S455
PNAME S455
SYM S499d

Supporting code
for MoleculeT

S502

〈definitions of basis and processDef for Molecule S471a〉

〈shared definition of withHandlers S371a〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for Molecule S526d〉
fun assertPtype (x, t, basis) = unimp "assertPtype"

〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined S369a〉

T.5.1 Evaluating paths

S502a. 〈definitions of eval and evaldef for Molecule S502a〉≡ (S501b) S502b ▷

val nullsrc : srcloc = ("translated name in LETRECX", ~1)

fun evalpath (p : pathex, rho) =
let fun findpath (PNAME (srcloc, x)) = !(find (x, rho))

| findpath (PDOT (p, x)) =
(case findpath p

of MODVAL comps => (!(find (x, comps))
handle NotFound x =>
raise BugInTypeChecking "missing component")

| _ => raise BugInTypeChecking "selection from non-module")
| findpath (PAPPLY (f, args)) = apply (findpath f, map findpath args)

in findpath p
end

and apply (PRIMITIVE prim, vs) = prim vs
| apply (CLOSURE ((formals, body), rho_c), vs) =

(eval (body, bindList (formals, map ref vs, rho_c))
handle BindListLength =>
raise BugInTypeChecking ("Wrong number of arguments to closure; " ^

"expected (" ^ spaceSep formals ^ ")"))
| apply _ = raise BugInTypeChecking "applied non-function"

T.5.2 Evaluating expressions

The implementation of the evaluator is almost identical to the implementation in
Chapter 5. There are only two significant differences: we have to deal with the
mismatch in representations between the abstract syntax LAMBDA and the value
CLOSURE, and we have to write cases for the TYAPPLY and TYLAMBDA expressions.
Another difference is that many potential run-time errors should be impossible be-
cause the relevant code would be rejected by the type checker. If one of those errors
occurs anyway, we raise the exception BugInTypeChecking, not RuntimeError.
S502b.

eval : exp * value ref env -> value
ev : exp -> value

〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S502a S504d ▷

and eval (e, rho : value ref env) =
let fun ev (LITERAL n) = n

〈more alternatives for ev for Molecule S502c〉
| ev (EXP_AT (loc, e)) = atLoc loc ev e

in ev e
end

Code for variables is just as in Chapter 5.
S502c. 〈more alternatives for ev for Molecule S502c〉≡ (S502b) S503a ▷

| ev (VAR p) = evalpath (p, rho)
| ev (SET (n, e)) =

let val v = ev e

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.5. Evaluation

S503

in find (n, rho) := v;
unitVal

end

S503a. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S502c S503b ▷

| ev (VCONX c) = evalpath (addloc ("bogus", ~33) c, rho)
| ev (CASE (LITERAL v, (p, e) :: choices)) =

(let val rho' = matchRef (p, v)
in eval (e, extend (rho, rho'))
end
handle Doesn'tMatch => ev (CASE (LITERAL v, choices)))

| ev (CASE (LITERAL v, [])) =
raise RuntimeError ("'case' does not match " ^ valueString v)

| ev (CASE (e, choices)) =
ev (CASE (LITERAL (ev e), choices))

Code for control flow is just as in Chapter 5.
S503b. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S503a S503c ▷

| ev (IFX (e1, e2, e3)) = ev (if projectBool (ev e1) then e2 else e3)
| ev (WHILEX (guard, body)) =

if projectBool (ev guard) then
(ev body; ev (WHILEX (guard, body)))

else
unitVal

| ev (BEGIN es) =
let fun b (e::es, lastval) = b (es, ev e)

| b ([], lastval) = lastval
in b (es, unitVal)
end

Code for a lambda removes the types from the abstract syntax.
S503c. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S503b S503d ▷

| ev (LAMBDA (args, body)) = CLOSURE ((map (fn (x, ty) => x) args, body), rho)

Code for application is almost as in Chapter 5, except if the program tries to apply
a non-function, we raise BugInTypeChecking, not RuntimeError, because the type
checker should reject any program that could apply a non-function.
S503d. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S503c S503e ▷

| ev (APPLY (f, args, ref i)) =
let val fv =

if i < 0 then
ev f

else
case ev f
of ARRAY a =>

(Array.sub (a, i)
handle Subscript => raise BugInTypeChecking "overloaded index")

| _ => raise BugInTypeChecking "overloaded name is not array"
in case fv

of PRIMITIVE prim => prim (map ev args)
| CLOSURE clo => 〈apply closure clo to args 317b〉
| v => raise BugInTypeChecking "applied non-function"

end

Code for the LETX family is as in Chapter 5.
S503e. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S503d S504a ▷

| ev (LETX (LET, bs, body)) =
let val (names, values) = ListPair.unzip bs
in eval (body, bindList (names, map (ref o ev) values, rho))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

addloc S460
APPLY S462a
applyChecking-

Overflow
S242b

ARRAY S499d
atLoc S255d
BEGIN S462a
bind 312b
bindList 312c
BindListLength

312c
BugInTypeChecking

S237b
CASE S462a
CLOSURE S499d
type env 310b
EXP_AT S462a
extend S428e
find 311b
id S263d
IFX S462a
LAMBDA S462a
LET S462a
LETSTAR S462a
LETX S462a
LITERAL S462a
MODVAL S499d
NotFound 311b
PAPPLY S455
type pathex S455
PDOT S455
PNAME S455
PRIMITIVE S499d
projectBool S433d
RuntimeErrorS366c
SET S462a
spaceSep S239a
unitVal S500b
valueString S507a
VAR S462a
VCONX S462a
WHILEX S462a

Supporting code
for MoleculeT

S504

end
| ev (LETX (LETSTAR, bs, body)) =

let fun step ((x, e), rho) = bind (x, ref (eval (e, rho)), rho)
in eval (body, foldl step rho bs)
end

S504a. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S503e S504b ▷

| ev (LETRECX (bs, body)) =
let val (lhss, values) = ListPair.unzip bs

val names = map fst lhss
val _ = errorIfDups ("bound name", names, "letrec")
fun unspecified () = NUM 42
val rho' = bindList (names, map (fn _ => ref (unspecified())) values, rho)
val updates = map (fn (x, e) => (x, eval (e, rho'))) bs

in List.app (fn ((x, _), v) => find (x, rho') := v) updates;
eval (body, rho')

end

S504b. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S504a S504c ▷
| ev (MODEXP components) =

let fun step ((x, e), (results', rho)) =
let val loc = ref (eval (e, rho))
in ((x, loc) :: results', bind (x, loc, rho))
end

val (results', _) = foldl step ([], rho) components
in MODVAL results'
end

S504c. 〈more alternatives for ev for Molecule S502c〉+≡ (S502b) ◁ S504b
| ev (ERRORX es) =

raise RuntimeError (spaceSep (map (valueString o ev) es))

Evaluating a definition can produce a new environment. The function evaldef
also returns a string which, if nonempty, should be printed to show the value of the
item. Type soundness requires a change in the evaluation rule for VAL; as described
in Exercise 46 in Chapter 2, VAL must always create a new binding.
S504d.

defbindings : baredef * value ref env -> (name * value ref) list
〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S502b S505b ▷

and defbindings (VAL (x, e), rho) =
[(x, ref (eval (e, rho)))]

| defbindings (VALREC (x, tau, e), rho) =
let val this = ref (SYM "placedholder for val rec")

val rho' = bind (x, this, rho)
val v = eval (e, rho')
val _ = this := v

in [(x, this)]
end

| defbindings (EXP e, rho) =
defbindings (VAL ("it", e), rho)

| defbindings (QNAME _, rho) =
[]

| defbindings (DEFINE (f, tau, lambda), rho) =
defbindings (VALREC (f, tau, LAMBDA lambda), rho)

In the VALREC case, the interpreter evaluates e while name is still bound to NIL—that
is, before the assignment to find (name, rho). Therefore, as in Typed µScheme,
evaluating e must not evaluate name—because the mutable cell for name does not
yet contain its correct value.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.5. Evaluation

S505

The string returned by evaldef is the value, unless the value is a named proce-
dure, in which case it is the name.
S505a.

namedValueString : name -> value -> string
〈definition of namedValueString for functional bridge languages S505a〉≡ (S501b)

fun namedValueString x v =
case v of CLOSURE ((_, MODEXP _), _) => "generic module " ^ x

| CLOSURE _ => x
| PRIMITIVE _ => x
| MODVAL _ => "module " ^ x
| _ => valueString v

XXX I probably should evaluate a definition by using defexps and eval.
S505b. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S504d S505c ▷

| defbindings (TYPE _, _) =
[]

| defbindings (DATA (t, typed_vcons), rho) =
let fun binding (K, tau) =

let val v = case tau of FUNTY _ => PRIMITIVE (fn vs => CONVAL (PNAME K, map ref vs))
| _ => CONVAL (PNAME K, [])

in (K, ref v)
end

in map binding typed_vcons
end

| defbindings (MODULE (x, m), rho) =
[(x, ref (evalmod (m, rho)))]

| defbindings (GMODULE (f, formals, body), rho) =
[(f, ref (CLOSURE ((map fst formals, modexp body), rho)))]

| defbindings (MODULETYPE (a, _), rho) =
[]

S505c. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S505b S505d ▷

| defbindings (OVERLOAD ps, rho) =
let fun overload (p :: ps, rho) =

let val x = plast p
val v = extendOverloadTable (x, evalpath (p, rho), rho)
val loc = ref (ARRAY v)

in (x, loc) :: overload (ps, bind (x, loc, rho))
end

| overload ([], rho) = []
in overload (ps, rho)
end

S505d. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S505c S505e ▷
and extendOverloadTable (x, v, rho) =
let val currentVals =

(case find (x, rho)
of ref (ARRAY a) => a
| _ => Array.fromList [])

handle NotFound _ => Array.fromList []
in Array.tabulate (1 + Array.length currentVals,

fn 0 => v | i => Array.sub (currentVals, i - 1))
end

S505e. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S505d S506a ▷
and defexps (VAL (x, e)) = [(x, e)]
| defexps (VALREC (x, tau, e)) = [(x, LETRECX ([((x, tau), e)], VAR (PNAME (nullsrc, x))))]
| defexps (EXP e) = [("it", e)]
| defexps (QNAME _) = []
| defexps (DEFINE (f, tau, lambda)) = defexps (VALREC (f, tau, LAMBDA lambda))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ANYTYPE S456a
ARRAY S499d
bind 312b
bindList 312c
CLOSURE S499d
CONVAL S499d
DATA S462b
DEFINE S462b
errorIfDups S366e
ERRORX S462a
ev S502b
eval S502b
evalmod S506b
evalpath S502a
EXP S462b
find 311b
fst S263d
FUNTY S456a
GMODULE S462b
LAMBDA S462a
LETRECX S462a
LITERAL S462a
MODEXP S462a
modexp S506a
MODULE S462b
MODULETYPE S462b
MODVAL S499d
NotFound 311b
nullsrc S502a
NUM S499d
OVERLOAD S462b
plast S494d
PNAME S455
PRIMITIVE S499d
QNAME S462b
rho S502b
RuntimeErrorS366c
spaceSep S239a
SYM S499d
TYPE S462b
unimp S501a
VAL S462b
VALREC S462b
valueString S507a
VAR S462a

Supporting code
for MoleculeT

S506

| defexps (TYPE _) = []
| defexps (DATA (t, typed_vcons)) =

let fun isfuntype (FUNTY _) = true
| isfuntype _ = false

fun vconExp (K, t) =
let val v = if isfuntype t then

PRIMITIVE (fn vs => CONVAL (PNAME K, map ref vs))
else
CONVAL (PNAME K, [])

in (K, LITERAL v)
end

in map vconExp typed_vcons
end

| defexps (MODULE (x, m)) = [(x, modexp m)]
| defexps (GMODULE (f, formals, body)) =

[(f, LAMBDA (map (fn (x, _) => (x, ANYTYPE)) formals, modexp body))]
| defexps (MODULETYPE (a, _)) = []
| defexps (OVERLOAD ovls) = unimp "overloadiang within generic module"

S506a. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S505e S506b ▷

and modexp (MPATH px) = VAR px
| modexp (MPATHSEALED (_, px)) = VAR px
| modexp (MSEALED (_, defs)) = MODEXP ((List.concat o map (located defexps)) defs)
| modexp (MUNSEALED defs) = MODEXP ((List.concat o map (located defexps)) defs)

S506b. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S506a S506c ▷
and evalmod (MSEALED (_, ds), rho) = evalmod (MUNSEALED ds, rho)
| evalmod (MPATH p, rho) = evalpath (p, rho)
| evalmod (MPATHSEALED (mtx, p), rho) = evalpath (p, rho)
| evalmod (MUNSEALED defs, rho) = MODVAL (rev (defsbindings (defs, rho)))

(* XXX type checker should ensure there are no duplicates here *)

S506c. 〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S506b S506d ▷

and defsbindings ([], rho) = []
| defsbindings (d::ds, rho) =

let val bs = leftLocated defbindings (d, rho)
val rho' = foldl (fn ((x, loc), rho) => bind (x, loc, rho)) rho bs

in bs @ defsbindings (ds, rho')
end

S506d.

evaldef : baredef * value ref env -> value ref env * value list
〈definitions of eval and evaldef for Molecule S502a〉+≡ (S501b) ◁ S506c

and evaldef (d, rho) =
let fun single [(_, loc)] = ! loc

| single _ = raise InternalError "wrong number of bindings from def"
val bindings = defbindings (d, rho)

fun string (VAL (x, e)) = namedValueString x (single bindings)
| string (VALREC (x, tau, e)) = namedValueString x (single bindings)
| string (EXP _) = valueString (single bindings)
| string (QNAME px) = raise InternalError "NAME reached evaldef"
| string (DEFINE (f, _, _)) = namedValueString f (single bindings)
| string (TYPE (t, tau)) = "type " ^ t
| string (DATA _) = unimp "DATA definitions"
| string (GMODULE (f, _, _))= namedValueString f (single bindings)
| string (MODULE (x, m)) = namedValueString x (single bindings)
| string (MODULETYPE (a, _)) = "module type " ^ a
| string (OVERLOAD ps) = "overloaded names " ^ separate("", " ") (map plast ps)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.6
Type checking

S507

val rho' = foldl (fn ((x, loc), rho) => bind (x, loc, rho)) rho bindings
in (rho', map (! o snd) bindings) (* 2nd component was (string d) *)
end

Practically duplicates µML. Can we share code?
S507a. 〈definition of valueString for Molecule S507a〉≡ (S500b) S507b ▷

fun vconString (PNAME c) = c
| vconString (PDOT (m, c)) = vconString m ^ "." ^ c
| vconString (PAPPLY _) = "can't happen! (vcon PAPPLY)"

fun valueString (CONVAL (PNAME "cons", [ref v, ref vs])) = consString (v, vs)
| valueString (CONVAL (PNAME "'()", [])) = "()"
| valueString (CONVAL (c, [])) = vconString c
| valueString (CONVAL (c, vs)) =

"(" ^ vconString c ^ " " ^ spaceSep (map (valueString o !) vs) ^ ")"
| valueString (NUM n) = String.map (fn #"~" => #"-" | c => c) (Int.toString n)
| valueString (SYM v) = v
| valueString (CLOSURE _) = "<function>"
| valueString (PRIMITIVE _) = "<function>"
| valueString (MODVAL _) = "<module>"
| valueString (ARRAY a) =

"[" ^ spaceSep (map valueString (Array.foldr op :: [] a)) ^ "]"

S507b. 〈definition of valueString for Molecule S507a〉+≡ (S500b) ◁ S507a
and consString (v, vs) =

let fun tail (CONVAL (PNAME "cons", [ref v, ref vs])) = " " ^ valueString v ^ tail vs
| tail (CONVAL (PNAME "'()", [])) = ")"
| tail _ =

raise BugInTypeChecking
"bad list constructor (or cons/'() redefined)"

in "(" ^ valueString v ^ tail vs
end

T.6 TYPE CHECKING

T.6.1 Functions on the static environment

Looking up values

S507c. 〈environments for Molecule’s defined names S507c〉≡ (S501a)
(*
fun whatkind (COMPVAL _) = "a value"
| whatkind (COMPTY _) = "an ordinary type"
| whatkind (COMPOVL _) = "an overloading group"
| whatkind (COMPMOD _) = "a module"

*)

fun whatcomp (COMPVAL _) = "a value"
| whatcomp (COMPABSTY _) = "an abstract type"
| whatcomp (COMPMANTY _) = "a manifest type"
| whatcomp (COMPMOD _) = "a module"

fun whatdec (ENVVAL _) = "a value"
| whatdec (ENVMANTY _) = "a manifest type"
| whatdec (ENVOVLN _) = "an overloaded name"
| whatdec (ENVMOD _) = "a module"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY S499d
bind 312b
BugInTypeChecking

S237b
CLOSURE S499d
commaSep S239a
COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
CONVAL S499d
DATA S462b
defbindings S504d
defexps S505e
DEFINE S462b
ENVMANTY S456b
ENVMOD S456b
ENVMODTY S456b
ENVOVLN S456b
ENVVAL S456b
evalpath S502a
EXP S462b
GMODULE S462b
InternalError

S366f
leftLocated S255e
located S255e
MODEXP S462a
MODULE S462b
MODULETYPE S462b
MODVAL S499d
MPATH S462b
MPATHSEALED S462b
MSEALED S462b
mtString S532a
MUNSEALED S462b
namedValueString

S505a
NUM S499d
OVERLOAD S462b
PAPPLY S455
pathString S531b
PDOT S455
plast S494d
PNAME S455
PRIMITIVE S499d
QNAME S462b
separate S239a
snd S263d
spaceSep S239a
SYM S499d
TYPE S462b
typeString S531c
unimp S501a
VAL S462b
VALREC S462b
VAR S462a

Supporting code
for MoleculeT

S508

| whatdec (ENVMODTY _) = "a module type"

fun bigdec (ENVOVLN taus) = "overloaded at " ^ Int.toString (length taus) ^
" : [" ^ commaSep (map typeString taus) ^ "]"

| bigdec d = whatdec d

fun compString (ENVVAL tau) = "a value of type " ^ typeString tau
| compString (ENVMANTY tau) = "manifest type " ^ typeString tau
| compString (ENVOVLN _) = "an overloaded name"
| compString (ENVMOD (mt, path)) = "module " ^ pathString path ^ " of type " ^ mtString mt
| compString (ENVMODTY _) = "a module type"

(*
fun findModty (t, Gamma) =
case find (t, Gamma)
of MODTY mt => mt
| COMPONENT c =>

raise TypeError ("Used " ^ t ^ " to name a module type, but " ^ t ^
" is " ^ whatkind c)

*)

S508a. 〈definitions of functions varTypeScheme, varType, and mutableVarType S508a〉≡ S508b ▷

fun varInfo (x, env) =
case find (x, env)
of STATIC_VAL info => info
| _ => raise TypeError (x ^ " names a type, but a variable is expected")

S508b. 〈definitions of functions varTypeScheme, varType, and mutableVarType S508a〉+≡ ◁ S508a S508c ▷
fun varTypeScheme (x,E) = fst (varInfo (x, E))

S508c. 〈definitions of functions varTypeScheme, varType, and mutableVarType S508a〉+≡ ◁ S508b S508d ▷

fun varType (x, E) =
case varTypeScheme (x, E)
of FORALL ([], EXISTS _) =>

raise TypeError (x ^ " names a type, but a variable is expected")
| FORALL ([], tau) => tau
| FORALL (_ :: _, _) =>

raise TypeError (x ^ " must be instantiated before being used")

S508d. 〈definitions of functions varTypeScheme, varType, and mutableVarType S508a〉+≡ ◁ S508c
fun mutableVarType (x, E) =
case varInfo (x, E)
of (FORALL ([], tau), VARIABLE) => tau
| (_, VARIABLE) => raise InternalError "polymorphic variable"
| (_, _) => raise TypeError (x ^ " cannot be assigned to")

Looking up types

S508e. 〈internal functions asType and asTyvar, which check results of name lookup S508e〉≡ S509a ▷
fun asType (T, E) =
case (find (T, E)

handle NotFound _ => raise TypeError ("unknown type name " ^ T))
of STATIC_VAL (FORALL ([], EXISTS _), _) => CONAPP (TYPART T, [])
| STATIC_VAL (FORALL (_, EXISTS _), _) =>

raise TypeError
(T ^ " is a type constructor and must be applied to type parameters")

| STATIC_TYABBREV tau => tau
| STATIC_TYVAR _ => TYVAR T

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.6
Type checking

S509

| STATIC_VAL _ =>
raise TypeError (T ^ " names a value, but a type is expected")

S509a. 〈internal functions asType and asTyvar, which check results of name lookup S508e〉+≡ ◁ S508e
fun asTyvar (a, E) =
case (find (a, E)

handle NotFound _ =>
raise TypeError ("type variable " ^ a ^ " is not in scope"))

of STATIC_TYVAR _ => a
| _ => raise InternalError (a ^ " in environment, but a type variable")

Stripping global variables

S509b.

stripvars : static env -> static env
〈Molecule’s static environment S509b〉≡

fun stripvars E =
let fun isVar (_, STATIC_VAL (_, VARIABLE)) = true

| isVar _ = false
in List.filter (not o isVar) E
end

T.6.2 Getting permission

A return is permissible if and only if P contains permission to return. In this case,
returnPermission P returns SOME [τ1, . . . , τn], where [τ1, . . . , τn] gives the types
of the values that may be returned. Function yieldPermission does the same for
yielding.
S509c.

returnPermission : permissions -> ty list option
〈permissions S509c〉≡ S509d ▷

fun returnPermission [] = NONE
| returnPermission (MAY_RETURN taus :: _) = SOME taus
| returnPermission (_ :: permissions) = returnPermission permissions

S509d.

yieldPermission : permissions -> ty list option
〈permissions S509c〉+≡ ◁ S509c S509e ▷

fun yieldPermission [] = NONE
| yieldPermission (MAY_YIELD taus :: _) = SOME taus
| yieldPermission (_ :: permissions) = yieldPermission permissions

Functions mayBreak and mayContinue tell whether breaking and continuing are
permissible.
S509e.

mayBreak : permissions -> bool
mayContinue : permissions -> bool

〈permissions S509c〉+≡ ◁ S509d
val mayBreak =
List.exists (fn MAY_BREAK => true | _ => false)

val mayContinue =
List.exists (fn MAY_CONTINUE => true | _ => false)

T.6.3 Argument checking

In Molecule, there are three situations in which a list of expressions must have
expected types:

• When arguments are passed to a function or iterator

• When results are provided by return

• When values are provided by yield

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S510

In any of these situations, if the types donʼt match, a diagnostic error message is
produced by function argsTypeError.
S510a.

argsTypeError : string -> want : ty list, got : ty list -> 'a
〈definition of argsTypeError for Molecule S510a〉≡

fun argsTypeError what { want = ws , got = gs } =
let fun raiseTheError (n, [], []) =

raise InternalError "disappearing argsTypeError?!"
| raiseTheError (n, want :: wants, got :: gots) =

if eqType (want, got) then
raiseTheError (n + 1, wants, gots)

else
raise TypeError ("argument " ^ intString n ^ " to " ^ what ^

" should have type " ^ typeString want ^
", but it has type " ^ typeString got)

| raiseTheError _ = raise InternalError "length mismatch"
in if length ws = length gs then

raiseTheError (1, ws, gs)
else
raise TypeError (what ^ " expects " ^ countString ws "argument" ^

", but it got " ^ intString (length gs))
end

S510b. 〈e_string wanted arrow but got arrow' S510b〉≡
let val (wanted, got) = case arrow of FUNCTION => ("a function", "iterator")

| ITERATOR => ("an iterator", "function")
in raise TypeError ("used " ^ got ^ " " ^ e_string ^ " as " ^ wanted)
end

S510c. 〈applied non-arrow e_string S510c〉≡
raise TypeError ("applied " ^ e_string ^ " of type " ^ typeString e's_tau ^

", which is not a function type or iterator type")

T.6.4 Operator overloading

S510d. 〈Molecule’s overloaded operators S510d〉≡ S511a ▷
val overloaded = ["+"

, "-"
, "*"
, "/"
, "mod"
, "power"
, "="
, "!="
, "<"
, ">"
, "<="
, ">="
, "similar?"
, "copy"
, "and"
, "or"
, "not"
, "negated"
, "print"
, "println"
, "at"
, "at-put"
]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.6
Type checking

S511

S511a. 〈Molecule’s overloaded operators S510d〉+≡ ◁ S510d S511b ▷

fun isOverloaded name =
List.exists (fn rator => name = rator) overloaded orelse
String.isPrefix "get-" name orelse
String.isPrefix "set-" name

S511b. 〈Molecule’s overloaded operators S510d〉+≡ ◁ S511a
fun maybeOverloadedName (VAR x) = if isOverloaded x then SOME x else NONE
| maybeOverloadedName _ = NONE

T.6.5 Compatibility of a cluster with a previously defined interface

S511c. 〈if x is in E as a cluster interface, fail unless sigma is compatible S511c〉≡
case (SOME (varInfo (x, E)) handle _ => NONE)
of SOME (sigma', CLUSTER_INTERFACE) =>

checkInterfaceCompatibility { cluster = x, want = sigma', have = sigma }
| _ => ()

S511d. 〈functions to check equality and compatibility of Molecule types S511d〉≡
fun checkInterfaceCompatibility

{ cluster = x, want = FORALL (aCws, tau), have = FORALL (aCws', tau') } =
let fun fail ss = raise TypeError (String.concat ("in cluster " :: x :: ", " :: ss))

〈internal function checkParam S512a〉
fun badLengths () =
fail ["interface has ", countString aCws "type parameter", " but ",

"implementation has ", countString aCws' "type parameter"]

val _ = if length aCws <> length aCws' then badLengths () else ()
val _ = ListPair.appEq checkParam (aCws, aCws')

handle ListPair.UnequalLengths => badLengths ()

fun checkTypes (EXISTS (XRECORDTY exports), EXISTS (XRECORDTY exports')) =
let fun checkExport (x, tau) =

if eqType (find (x, exports), tau)
handle NotFound x =>
fail ["the implementation exports operation ", x,

", which is not exported by the interface"]
then
()

else
fail ["the interface exports ", x, " with type ",

typeString (find (x, exports)), ", but the implementation ",
"exports ", x, " with type ", typeString tau]

fun ensureNotMissing (x, tau) =
ignore (find (x, exports'))
handle NotFound x =>
fail ["the interface exports operation ", x,

", which is not exported by the implementation"]
in (app checkExport exports'

; app ensureNotMissing exports
)

end
| checkTypes (EXISTS _ , ARROWTY _) =

raise TypeError (x ^ " names a cluster interface and cannot be " ^
"redefined as a routine")

| checkTypes (tau, tau') =
if eqType (tau, tau') then
()

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S512

else
fail ["interface exports type ", typeString tau, ", but ",

"implementation exports type ", typeString tau']
val _ = checkTypes (tau, tau')

in ()
end

S512a. 〈internal function checkParam S512a〉≡ (S511d)
fun checkParam ((alpha, HAS Cw), (alpha', HAS Cw')) =
let fun has (x, tau) =

"[" ^ alpha ^ " has [" ^ x ^ " : " ^ typeString tau ^ "]]"
fun checkConstraint (x, tau) =
if (eqType (find (x, Cw), tau)

handle NotFound x =>
fail ["the implementation's where clause requires ", has (x, tau),

", which the interface does not"])
then
()

else
fail ["the interface's where clause requires ", has (x, find (x, Cw)),

", but the implementation requires ", has (x, tau)]
fun ensureNotMissing (x, tau) =
ignore (find (x, Cw'))
handle NotFound x =>
fail ["the interface's where clause requires ", has (x, tau),

", which the implementation does not"]
in if alpha <> alpha' then

fail ["type parameter is called ", alpha, " in the interface but ",
alpha', " in the implementation"]

else
(app checkConstraint Cw'
; app ensureNotMissing Cw
)

end

S512b. 〈legacy test cases S512b〉≡ S512c ▷
-> (cluster interface interface-routine-fail [exports [bar : (-> interface-routine-fail)]])
cluster interface-routine-fail
-> (define interface-routine-fail ([n : int] -> bool) (return #t))
type error: interface-routine-fail names a cluster interface and cannot be redefined as a routine

S512c. 〈legacy test cases S512b〉+≡ ◁ S512b S512d ▷

-> (cluster interface bad-interface [exports] (type rep null))
type error: cluster interface bad-interface must not have any definitions
-> (cluster interface mismatch1 [exports])
-> (cluster ['a] mismatch1 [exports] (type rep null))
type error: in cluster mismatch1, interface has 0 type parameters but implementation has 1 type parameter
-> (cluster interface ['b 'a] mismatch2 [exports])
-> (cluster ['a] mismatch2 [exports] (type rep null))
type error: in cluster mismatch2, interface has 2 type parameters but implementation has 1 type parameter
-> (cluster interface ['b 'a] mismatch3 [exports])
-> (cluster ['a 'b] mismatch3 [exports] (type rep null))
type error: in cluster mismatch3, type parameter is called 'b in the interface but 'a in the implementation

S512d. 〈legacy test cases S512b〉+≡ ◁ S512c S513a ▷
-> (cluster interface ['a] mm4 [exports])
-> (cluster ['a where ['a has [nifty? : ('a -> int)]]]

mm4 [exports] (type rep null))
type error: in cluster mm4, the implementation's where clause requires ['a has [nifty? : ('a -> int)]], which the interface does not

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.6
Type checking

S513

-> (cluster interface ['a where ['a has [nifty? : ('a -> bool)]]] mm5 [exports])
-> (cluster ['a where ['a has [nifty? : ('a -> int)]]]

mm5 [exports] (type rep null))
type error: in cluster mm5, the interface's where clause requires ['a has [nifty? : ('a -> bool)]], but the implementation requires ['a has [nifty? : ('a -> int)]]
-> (cluster interface ['a where ['a has [nifty? : ('a -> bool)]]] mm6 [exports])
-> (cluster ['a]

mm6 [exports] (type rep null))
type error: in cluster mm6, the interface's where clause requires ['a has [nifty? : ('a -> bool)]], which the implementation does not

S513a. 〈legacy test cases S512b〉+≡ ◁ S512d S528b ▷

-> (cluster interface mx0 [exports [ignore : (->)]])
-> (cluster mx0 [exports [ignore : (->)]]

(type rep null)
(define ignore (->) (return)))

-> (cluster interface mx1 [exports])
-> (cluster mx1 [exports [ignore : (->)]]

(type rep null)
(define ignore (->) (return)))

type error: in cluster mx1, the implementation exports operation ignore, which is not exported by the interface
-> (cluster interface mx2 [exports [ignore : (->)]])
-> (cluster mx2 [exports]

(type rep null)
(define ignore (->) (return)))

type error: in cluster mx2, the interface exports operation ignore, which is not exported by the implementation
-> (cluster interface mx3 [exports [ignore : (-> bool)]])
-> (cluster mx3 [exports [ignore : (->)]]

(type rep null)
(define ignore (->) (return)))

type error: in cluster mx3, the interface exports ignore with type (-> bool), but the implementation exports ignore with type (->)

T.6.6 Types for export records of primitive types

S513b. 〈types of export records for array, record, sum, arrow, and primitive types S513b〉≡
〈infix functions for writing arrow types S513c〉
〈functions that give the types of operations for equality, similarity, copying, and printing S513d〉
〈types of the value parts of the primitive clusters S514c〉
〈types of the value parts of array, record, sum, and arrow types S515d〉

T.6.7 Easy notation for function types

S513c. 〈infix functions for writing arrow types S513c〉≡ (S513b)
infix 3 --> -->*
fun args --> results = ARROWTY (args, FUNCTION, results)
fun args -->* results = ARROWTY (args, ITERATOR, results)

T.6.8 Types of operations for equality, similarity, copying, and printing

Type constructors can provide equality operations only if the underlying types also
provide equality operations.
S513d.

typeHas : static env -> ty * (name * ty) -> bool
〈functions that give the types of operations for equality, similarity, copying, and printing S513d〉≡ (S513b) S514a ▷

fun typeHas env (tau, (opname, optype)) =
eqType (optype, find (opname, xrecordExports (tau, env)))
handle NotFound _ => false

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S514

S514a.

eqSimCopyExports : static env -> mutability -> ty -> ty list -> (name * ty) list
〈functions that give the types of operations for equality, similarity, copying, and printing S513d〉+≡ (S513b) ◁ S513d S514b ▷

fun basetype x = CONAPP (TYPART x, []) : ty
val booltype = basetype "bool"

fun eqSimCopyExports env mutability tau argtypes =
let val bool = booltype

fun cmptype tau = [tau, tau] --> [bool]
fun cpytype tau = [tau] --> [tau]

fun whenAllArgsHave (opname, typeFrom) any =
if List.all (fn tau => typeHas env (tau, (opname, typeFrom tau))) argtypes then
SOME any

else
NONE

val always = SOME

val cmp = cmptype tau
val cpy = cpytype tau

in case mutability
of IMMUTABLE =>

List.mapPartial id
[whenAllArgsHave ("=", cmptype) ("=", cmp)
, whenAllArgsHave ("=", cmptype) ("!=", cmp)
, whenAllArgsHave ("similar?", cmptype) ("similar?", cmp)
, whenAllArgsHave ("copy", cpytype) ("copy", cpy)
]

| MUTABLE =>
List.mapPartial id
[always ("=", cmp)
, always ("!=", cmp)
, whenAllArgsHave ("similar?", cmptype) ("similar?", cmp)
, whenAllArgsHave ("=", cmptype) ("similar1?", cmp)
, always ("copy1", cpy)
, whenAllArgsHave ("copy", cpytype) ("copy", cpy)
]

end

SPECIAL CASES WORTH NOTING.
S514b. 〈functions that give the types of operations for equality, similarity, copying, and printing S513d〉+≡ (S513b) ◁ S514a

fun baseEqSimCopyExports mutability tau = eqSimCopyExports emptyEnv mutability tau []
fun printExports tau = [("print", [tau] --> [])

, ("println", [tau] --> [])
]

fun immutableExports tau = baseEqSimCopyExports IMMUTABLE tau @ printExports tau

T.6.9 Types of the exported operations of primitive clusters

Exported operations refer to the type.
S514c. 〈types of the value parts of the primitive clusters S514c〉≡ (S513b) S514d ▷

Exported operations of type bool

S514d. 〈types of the value parts of the primitive clusters S514c〉+≡ (S513b) ◁ S514c S515a ▷
val boolXrecordType =
[("and", [booltype, booltype] --> [booltype])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.6
Type checking

S515

, ("or", [booltype, booltype] --> [booltype])
, ("not", [booltype] --> [booltype])
] @
baseEqSimCopyExports IMMUTABLE booltype @
printExports booltype

S515a. 〈types of the value parts of the primitive clusters S514c〉+≡ (S513b) ◁ S514d S515b ▷

val nulltype = basetype "null"
val nullXrecordType = immutableExports nulltype

S515b. 〈types of the value parts of the primitive clusters S514c〉+≡ (S513b) ◁ S515a S515c ▷
val inttype = basetype "int"
val intXrecordType =
[("+", [inttype, inttype] --> [inttype])
, ("-", [inttype, inttype] --> [inttype])
, ("*", [inttype, inttype] --> [inttype])
, ("/", [inttype, inttype] --> [inttype])
, ("negated", [inttype] --> [inttype])
, ("mod", [inttype, inttype] --> [inttype])
, ("power", [inttype, inttype] --> [inttype])
, ("max", [inttype, inttype] --> [inttype])
, ("min", [inttype, inttype] --> [inttype])
, ("abs", [inttype] --> [inttype])
, ("from-to-by", [inttype, inttype, inttype] -->* [inttype])
, ("from-to", [inttype, inttype] -->* [inttype])
, ("<", [inttype, inttype] --> [booltype])
, (">", [inttype, inttype] --> [booltype])
, ("<=", [inttype, inttype] --> [booltype])
, (">=", [inttype, inttype] --> [booltype])
, ("printu", [inttype] --> [])
] @
immutableExports inttype

S515c. 〈types of the value parts of the primitive clusters S514c〉+≡ (S513b) ◁ S515b
val symtype = basetype "sym"
val symXrecordType = [("hash", [symtype] --> [inttype])] @ immutableExports symtype

T.6.10 Types of value parts of array types

I omit CLU s̓ trim primitive because it s̓ too hard to explain.
S515d.

arrayXrecordType : (mutability * ty) * static env -> ty env
〈types of the value parts of array, record, sum, and arrow types S515d〉≡ (S513b) S516 ▷

fun arrayXrecordType ((mutability, elem), env) =
let val array = ARRAYTY (mutability, elem)

val both = SOME
val (m, i) = case mutability

of MUTABLE => (SOME, fn _ => NONE)
| IMMUTABLE => (fn _ => NONE, SOME)

in List.mapPartial id
[both ("new", [] --> [array])
, m ("create", [inttype] --> [array])

, both ("bottom", [array] --> [elem])
, both ("top", [array] --> [elem])
, m ("low", [array] --> [inttype])
, m ("high", [array] --> [inttype])
, both ("size", [array] --> [inttype])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for MoleculeT

S516

, both ("empty?", [array] --> [booltype])

, both ("at", [array, inttype] --> [elem])
, m ("at-put", [array, inttype, elem] --> [])
, i ("replace", [array, inttype, elem] --> [array])

, m ("addl", [array, elem] --> [])
, m ("addh", [array, elem] --> [])
, m ("reml", [array] --> [elem])
, m ("remh", [array] --> [elem])
, i ("addl", [array, elem] --> [array])
, i ("addh", [array, elem] --> [array])
, i ("reml", [array] --> [array])
, i ("remh", [array] --> [array])

, m ("set-low", [array, inttype] --> [])

, m ("fill", [inttype, inttype, elem] --> [array])
, m ("fill-copy", [inttype, inttype, elem] --> [array])
, i ("fill", [inttype, elem] --> [array])

, both ("elements", [array] -->* [elem])
, both ("indices", [array] -->* [inttype])

, i ("subseq", [array, inttype, inttype] --> [array])
, i ("e2a", [elem] --> [array])
, i ("append", [array, array] --> [array])
, i ("ia2ma", [array] --> [ARRAYTY (MUTABLE, elem)])
, i ("ma2ia", [ARRAYTY (MUTABLE, elem)] --> [array])
]
@ eqSimCopyExports env mutability array [elem]
@ printExports array

end

T.6.11 Types of value parts of record types

S516.

recordXrecordType : (mutability * (name * ty) list) * static env -> ty env
〈types of the value parts of array, record, sum, and arrow types S515d〉+≡ (S513b) ◁ S515d S517a ▷

fun recordXrecordType ((mutability, fields), env) =
let val record = RECORDTY (mutability, fields)

fun fops f = map f fields
val all = fops (fn (x, tau) => ("get-" ^ x, [record] --> [tau]))
val special =
case mutability
of MUTABLE =>

fops (fn (x, tau) => ("set-" ^ x, [record,tau] --> [])) @
[("mr_gets_mr", [record, record] --> [])
, ("mr_gets_ir", [record, RECORDTY (IMMUTABLE, fields)] --> [])
]

| IMMUTABLE =>
fops (fn (x, tau) => ("replace-" ^ x, [record,tau] --> [record])) @
[("ir2mr", [record] --> [RECORDTY (MUTABLE, fields)])
, ("mr2ir", [RECORDTY (MUTABLE, fields)] --> [record])
]

in all @ special @ eqSimCopyExports env mutability record (map snd fields)
@ printExports record

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.7
Lexical analysis

and parsing

S517

end

T.6.12 Types of value parts of sum types

S517a.

oneofXrecordType : (mutability * (name * ty) list) * static env -> ty env
〈types of the value parts of array, record, sum, and arrow types S515d〉+≡ (S513b) ◁ S516 S517b ▷

fun oneofXrecordType ((mutability, variants), env) =
let val oneof = ONEOFTY (mutability, variants)

fun vops f = map f variants
val all = vops (fn (x, tau) => ("make-" ^ x, [tau] --> [oneof])) @

vops (fn (x, tau) => ("is-" ^ x ^ "?", [oneof] --> [booltype])) @
vops (fn (x, tau) => ("value-" ^ x, [oneof] --> [tau]))

val special =
case mutability
of MUTABLE =>

vops (fn (x, tau) => ("change-" ^ x, [oneof,tau] --> [])) @
[("mo_gets_mo", [oneof, oneof] --> [])
, ("mo_gets_io", [oneof, ONEOFTY (IMMUTABLE, variants)] --> [])
]

| IMMUTABLE =>
[("io2mo", [oneof] --> [ONEOFTY (MUTABLE, variants)])
, ("mo2io", [ONEOFTY (MUTABLE, variants)] --> [oneof])
]

in all @ special @ eqSimCopyExports env mutability oneof (map snd variants)
@ printExports oneof

end

T.6.13 Types of value parts of arrow types

S517b. 〈types of the value parts of array, record, sum, and arrow types S515d〉+≡ (S513b) ◁ S517a
fun arrowXrecordType (spec, _) =
let val tau = ARROWTY spec
in baseEqSimCopyExports IMMUTABLE tau @ printExports tau
end

T.7 LEXICAL ANALYSIS AND PARSING

S517c. 〈lexical analysis and parsing for Molecule, providing filexdefs and stringsxdefs S517c〉≡ (S501a)
〈lexical analysis for Molecule S517d〉
fun 'a parseAt at p = at <$> @@ p
〈parsers for Molecule tokens S519a〉
val booltok = pzero (* depressing *)
〈parsers for µML value constructors and value variables generated automatically〉
〈parsers and parser builders for formal parameters and bindings S375a〉
val tyvar = sat (fn _ => false) name (* must have a monomorphic type *)
〈parser builders for typed languages S387a〉
〈parsers and xdef streams for Molecule S519c〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

S517d. 〈lexical analysis for Molecule S517d〉≡ (S517c) S518a ▷
datatype pretoken = QUOTE

| INT of int
| RESERVED of string
| DOTTED of string * string list

(* name, possibly followed by dotted selection *)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
name S519a
pzero S264b
sat S266a

Supporting code
for MoleculeT

S518

| DOTNAMES of string list (* .x.y and so on *)
type token = pretoken plus_brackets

S518a. 〈lexical analysis for Molecule S517d〉+≡ (S517c) ◁ S517d S518b ▷

fun pretokenString (QUOTE) = "'"
| pretokenString (INT n) = intString n
| pretokenString (DOTTED (s, ss)) = separate ("", ".") (s::ss)
| pretokenString (DOTNAMES ss)= (concat o map (fn s => "." ^ s)) ss
| pretokenString (RESERVED x) = x

val tokenString = plusBracketsString pretokenString

Every character is either a symbol, an alphanumeric, a space, or a delimiter.
S518b.

mclToken : token lexer
〈lexical analysis for Molecule S517d〉+≡ (S517c) ◁ S518a

local
val isDelim = fn c => isDelim c orelse c = #"."
〈functions used in all lexers S374c〉
val reserved =
[〈words reserved for Molecule types S519b〉
, 〈words reserved for Molecule expressions S521a〉
, 〈words reserved for Molecule definitions S523〉
]

fun isReserved x = member x reserved
datatype part = DOT | NONDELIMS of string
val nondelims = (NONDELIMS o implode) <$> many1 (sat (not o isDelim) one)
val dot = DOT <$ eqx #"." one
fun dottedNames things =
let exception Can'tHappen

fun preDot (ss', DOT :: things) = postDot (ss', things)
| preDot (ss', nil) = OK (rev ss')
| preDot (ss', NONDELIMS _ :: _) = raise Can'tHappen

and postDot (ss', DOT :: _) = ERROR "A qualified name may not contain consecutive dots"
| postDot (ss', nil) = ERROR "A qualified name may not end with a dot"
| postDot (ss', NONDELIMS s :: things) =

if isReserved s then
ERROR ("reserved word '" ^ s ^ "' used in qualified name")

else
preDot (s :: ss', things)

in case things
of NONDELIMS s :: things => preDot ([], things) >>=+ curry DOTTED s
| DOT :: things => postDot ([], things) >>=+ DOTNAMES
| [] => ERROR "Lexer is broken; report to nr@cs.tufts.edu"

end

fun reserve (token as DOTTED (s, [])) =
if isReserved s then
RESERVED s

else
token

| reserve token = token

in
val mclToken =
whitespace *>
bracketLexer (QUOTE <$ eqx #"'" one

<|> INT <$> intToken isDelim
<|> reserve <$> (dottedNames <$>! many1 (nondelims <|> dot))
<|> noneIfLineEnds
)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.8. Parsing

S519

end

S519a. 〈parsers for Molecule tokens S519a〉≡ (S517c)
type 'a parser = (token, 'a) polyparser
val pretoken = (fn (PRETOKEN t)=> SOME t | _ => NONE) <$>? token : pretoken parser
val quote = (fn (QUOTE) => SOME () | _ => NONE) <$>? pretoken
val int = (fn (INT n) => SOME n | _ => NONE) <$>? pretoken
val name = (fn (DOTTED (x, [])) => SOME x | _ => NONE) <$>? pretoken
val dotted = (fn (DOTTED (x, xs)) => SOME (x, xs) | _ => NONE) <$>? pretoken
val dotnames = (fn (DOTNAMES xs) => SOME xs | _ => NONE) <$>? pretoken
val reserved = (fn RESERVED r => SOME r | _ => NONE) <$>? pretoken
val any_name = name

val arrow = eqx "->" reserved <|> eqx "--m->" reserved

val showErrorInput = (fn p => showErrorInput tokenString p)

T.8 PARSING

S519b. 〈words reserved for Molecule types S519b〉≡ (S518b S521b)
"->", ":"

S519c. 〈parsers and xdef streams for Molecule S519c〉≡ (S517c) S519d ▷

fun kw keyword = eqx keyword reserved
fun usageParsers ps = anyParser (map (usageParser kw) ps)

S519d. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519c S519e ▷
fun getkeyword (usage:string) = (one *> one *> one) (lexLineWith mclToken usage)

S519e. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519d S519f ▷
fun wrap what = wrapAround tokenString what
fun wrap_ what p = p

S519f. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519e S519g ▷
fun showParsed show p =
let fun diagnose a = (eprintln ("parsed " ^ show a); a)
in diagnose <$> p
end

fun showParsed_ show p = p

S519g. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519f S519h ▷

fun bracketOrFail (_, p) =
let fun matches (_, l) a (loc, r) =

if l = r then OK a
else errorAt (leftString l ^ " closed by " ^ rightString r) loc

in matches <$> left <*> p <*>! right
end

S519h. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519g S520a ▷

fun addDots p xs = foldl (fn (x, p) => PDOT (p, x)) p xs
fun dotsPath (loc, (x, xs)) = addDots (PNAME (loc, x)) xs
fun path tokens =
(dotsPath <$> @@ dotted
<|>

addDots <$>
bracketKeyword

(kw "@m", "(@m name path ...)", curry PAPPLY <$> (PNAME <$> @@ name) <*> many path)
<*> (dotnames <|> pure [])

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<$>! S268a
<$>? S266c
<*> S263a
<*>! S268a
<|> S264a
>>=+ S244b
anyParser S264c
bracket S276b
bracketKeyword

S276b
bracketLexerS271b
curry S263d
DOTNAMES S517d
DOTTED S517d
eprintln S238a
eqx S266b
ERROR S243b
errorAt S256a
FUNTY S456a
INT S517d
intString S238f
intToken S270d
isDelim S268c
left S274
leftString S271a
lexLineWith S279c
many S267b
many1 S267c
member S240b
noneIfLineEnds

S374c
OK S243b
one S265a
PAPPLY S455
PDOT S455
plusBracketsString

S271b
PNAME S455
type polyparser

S272c
PRETOKEN S271b
type pretoken

S517d
pure S261b
QUOTE S517d
RESERVED S517d
right S274
rightString S271a
sat S266a
separate S239a
showErrorInput

S278a
type token S517d
token S273a
type tyex S456a
TYNAME S456a
usageParser S277a
whitespace S270a
wrapAround S278b

Supporting code
for MoleculeT

S520

) tokens

fun mkTyex br tokens =
let val ty = wrap_ "inner type" (showErrorInput (mkTyex br))

fun arrows [] [] = ERROR "empty type ()"
| arrows (tycon::tyargs) [] = ERROR "missing @@ or ->"
| arrows args [rhs] =

(case rhs of [result] => OK (FUNTY (args, result))
| [] => ERROR "no result type after function arrow"
| _ => ERROR "multiple result types after function arrow")

| arrows args (_::_::_) = ERROR "multiple arrows in function type"
val parser =

TYNAME <$> path
<|> br

("(ty ty ... -> ty)"
, arrows <$> many ty <*>! many (kw "->" *> many ty)
)

in parser (* curry TYEX_AT () <$> @@ parser *)
end tokens

val tyex = wrap_ "tyex" (mkTyex (showErrorInput o bracket)) : tyex parser
val liberalTyex = mkTyex bracketOrFail

XXX NEED TO HANDLE CONVAL
S520a. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S519h S520b ▷

val bare_vcon = vcon
fun dottedVcon (x, xs) = addDots (PNAME x) xs
fun vconLast (PDOT (_, x)) = x
| vconLast (PNAME x) = x
| vconLast (PAPPLY _) = raise InternalError "application vcon"

val vcon = sat (isVcon o vconLast) (dottedVcon <$> dotted)
<|> PNAME <$> bare_vcon
<|> (fn (loc, (x, xs)) => errorAt ("Expected value constructor, but got name " ^

foldl (fn (x, p) => p ^ "." ^ x) x xs) loc)
<$>! @@ dotted

fun pattern tokens = (
WILDCARD <$ eqx "_" vvar

<|> PVAR <$> vvar
<|> curry CONPAT <$> vcon <*> pure []
<|> bracket ("(C x1 x2 ...) in pattern"

, curry CONPAT <$> vcon <*> many pattern
)

) tokens

NO COMPONENTS AT TOP LEVEL!
S520b.

exptable : exp parser -> exp parser
exp : exp parser

〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S520a S521b ▷

fun badReserved r =
ERROR ("reserved word '" ^ r ^ "' where name was expected")

fun quoteName "#f" = CONVAL (PNAME "#f", [])
| quoteName "#t" = CONVAL (PNAME "#t", [])
| quoteName s = SYM s

fun quotelit tokens = (
quoteName <$> name

<|> NUM <$> int
<|> (ARRAY o Array.fromList) <$> bracket ("(literal ...)", many quotelit)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.8. Parsing

S521

) tokens

val atomicExp = VAR <$> path
<|> badReserved <$>! reserved
<|> dotnames <!> "a qualified name may not begin with a dot"
<|> LITERAL <$> NUM <$> int
<|> VCONX <$> vcon
<|> quote *> (LITERAL <$> quotelit)

fun bindTo exp = bracket ("[x e]", pair <$> name <*> exp)

S521a. 〈words reserved for Molecule expressions S521a〉≡ (S518b)
"@m", "if", "&&", "||", "set", "let", "let*", "letrec", "case", "lambda",
"val", "set", "while", "begin", "error",
"when", "unless", "assert"
(* , "assert" *)

S521b. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S520b S522a ▷
val formal = bracket ("[x : ty]", pair <$> name <* kw ":" <*> tyex)
val lformals = bracket ("([x : ty] ...)", many formal)
fun nodupsty what (loc, xts) = nodups what (loc, map fst xts) >>=+ (fn _ => xts)

(* error on duplicate names *)

fun smartBegin [e] = e
| smartBegin es = BEGIN es

fun exptable exp =
let val zero = LITERAL (NUM 0)

fun single binding = [binding]
fun badReserved words =
let fun die w = ERROR ("while trying to parse an expression, I see " ^

"reserved word " ^ w ^
"... did you misspell a statement keyword earlier?")

in die <$>! sat (fn w => member w words) (left *> reserved)
end

val bindings = bindingsOf "[x e]" name exp
val tbindings = bindingsOf "[x : ty]" formal exp
val dbs = distinctBsIn bindings

val choice = bracket ("[pattern exp]", pair <$> pattern <*> exp)
val body = smartBegin <$> many1 exp
val nothing = pure (BEGIN [])

fun cand [e] = e
| cand (e::es) = IFX (e, cand es, LITERAL (embedBool false))
| cand [] = raise InternalError "parsing &&"

fun cor [e] = e
| cor (e::es) = IFX (e, LITERAL (embedBool true), cor es)
| cor [] = raise InternalError "parsing ||"

fun lambda (xs : (name * tyex) list located) exp =
nodupsty ("formal parameter", "lambda") xs >>=+ (fn xs => LAMBDA (xs, exp))

in usageParsers
[("(if e1 e2 e3)", curry3 IFX <$> exp <*> exp <*> exp)
, ("(when e1 e ...)", curry3 IFX <$> exp <*> body <*> nothing)
, ("(unless e1 e ...)", curry3 IFX <$> exp <*> nothing <*> body)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<*> S263a
<*>! S268a
<|> S264a
>>=+ S244b
addDots S519h
ARRAY S499d
BEGIN S462a
bindingsOf S375a
bracket S276b
CASE S462a
CONPAT S500b
CONVAL S499d
curry S263d
curry3 S263d
distinctBsInS375a
dotnames S519a
dotted S519a
embedBool S433d
eqx S266b
ERROR S243b
errorAt S256a
ERRORX S462a
fst S263d
IFX S462a
int S519a
InternalError

S366f
isVcon S437e
kw S519c
LAMBDA S462a
left S274
LET S462a
LETRECX S462a
LETSTAR S462a
LETX S462a
LITERAL S462a
many S267b
many1 S267c
member S240b
type name 310a
name S519a
nodups S277c
NUM S499d
pair S263d
PAPPLY S455
type parser S519a
path S519h
PDOT S455
PNAME S455
pure S261b
PVAR S500b
quote S519a
reserved S519a
sat S266a
SET S462a
SYM S499d
type tyex S456a
tyex S519h
usageParsersS519c
VAR S462a
vcon S438a
VCONX S462a
vvar S438a
WHILEX S462a
WILDCARD S500b

Supporting code
for MoleculeT

S522

, ("(set x e)", curry SET <$> name <*> exp)
, ("(while e body)", curry WHILEX <$> exp <*> body)
, ("(begin e ...)", BEGIN <$> many exp)
, ("(error e ...)", ERRORX <$> many exp)
, ("(let (bindings) body)", curry3 LETX LET <$> dbs "let" <*> body)
, ("(let* (bindings) body)", curry3 LETX LETSTAR <$> bindings <*> body)
, ("(letrec (typed-bindings) body)", curry LETRECX <$> tbindings <*> body)
, ("(case exp (pattern exp) ...)", curry CASE <$> exp <*> many choice)
, ("(lambda ([x : ty] ...) body)", lambda <$> @@ (lformals : (name * tyex) list parser) <*>! body)
, ("(&& e ...)", cand <$> many1 exp)
, ("(|| e ...)", cor <$> many1 exp)
, ("(assert e)",

curry3 IFX <$> exp <*> nothing <*> pure (ERRORX [LITERAL (SYM "assertion-failure")]))
, ("(quote sx)", LITERAL <$> quotelit)
]
<|> badReserved [〈words reserved for Molecule types S519b〉,

〈words reserved for Molecule definitions S523〉]
end

S522a. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S521b S522b ▷

fun applyNode f args = APPLY (f, args, ref notOverloadedIndex)
fun exp tokens = showParsed_ expString (parseAt EXP_AT replExp) tokens
and replExp tokens = showErrorInput

((* component here only if type with reserved word *)
atomicExp

<|> exptable exp
<|> leftCurly <!> "curly brackets are not supported"
<|> left *> right <!> "empty application"
<|> bracket("function application", applyNode <$> exp <*> many exp)

) tokens

val replExp = showParsed_ expString (parseAt EXP_AT replExp)

S522b.

decl : (name * decl) parser
locmodformal : (name located * modtyex located) parser
modformal : (name * modtyex) parser
modtype : modtyex parser

〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S522a S524a ▷
fun formalWith whatTy aTy =
bracket ("[x : " ^ whatTy ^ "]", pair <$> name <* kw ":" <*> aTy)

val formal = formalWith "ty" tyex

fun prightmap f (x, a) = (x, f a)
fun crightmap f x a = (x, f a)

fun recordOpsType tyname (loc, formals : (name * tyex) list) =
let val t = TYNAME (PNAME (loc, tyname))

val unitty = TYNAME (PDOT (PNAME (loc, "Unit"), "t"))
val conty = FUNTY (map snd formals, t)
fun getterty (x, tau) = (loc, (x, DECVAL (FUNTY ([t], tau))))
fun setname x = "set-" ^ x ^ "!"
fun setterty (x, tau) = (loc, (setname x, DECVAL(FUNTY ([t, tau], unitty))))
val exports = (loc, (tyname, DECABSTY)) :: (loc, ("make", DECVAL conty)) ::

map getterty formals @ map setterty formals
in MTEXPORTSX exports
end

fun recordModule (loc, name) tyname (formals : (name * tyex) list) =
let val t = TYNAME (PNAME (loc, tyname))

val vcon = "make-" ^ name ^ "." ^ tyname
val conpat = CONPAT (PNAME vcon, map (PVAR o fst) formals)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.8. Parsing

S523

val conname = name ^ ".make"
fun setname x = "set-" ^ x ^ "!"
fun var x = VAR (PNAME (loc, x))
val conval =
LAMBDA (formals, APPLY (VCONX (PNAME vcon), map (var o fst) formals, ref notOverloadedIndex))

fun getter n =
(LAMBDA ([("r", t)],

CASE (var "r", [(conpat, var (fst (List.nth (formals, n))))])))
fun setter n =
(LAMBDA ([("the record", t), ("the value", snd (List.nth (formals, n)))],

CASE (var "the record",
[(conpat, SET (fst (List.nth (formals, n)), var "the value"))])))

val modty = recordOpsType tyname (loc, formals)

fun prim (x, f) = VAL (x, f)
val indices = List.tabulate (length formals, id)
val components =
DATA (tyname, [(vcon, FUNTY (map snd formals, t))]) ::
prim ("make", conval) ::
ListPair.mapEq (fn ((x,_), i) => prim (x, getter i)) (formals, indices) @
ListPair.mapEq (fn ((x,_), i) => prim (setname x, setter i)) (formals, indices)

in MODULE (name, MSEALED (modty, map (fn d => (loc, d)) components))
end

fun decl tokens =
(usageParsers

[("(abstype t)", pair <$> name <*> pure DECABSTY)
, ("(type t ty)", crightmap DECMANTY <$> name <*> tyex)
, ("(module [A : modty])", prightmap DECMOD <$> modformal)
]

<|> prightmap DECVAL <$> formal
)
tokens

and locmodformal tokens =
bracket ("[M : modty]", pair <$> @@ name <* kw ":" <*> @@ modtype) tokens

and modformal tokens =
((fn (x, t) => (snd x, snd t)) <$> locmodformal) tokens

and modtype tokens = (
usageParsers
[("(exports component...)", MTEXPORTSX <$> many (@@ decl))
, ("(allof module-type...)", MTALLOFX <$> many (@@ modtype))
, ("(exports-record-ops t ([x : ty] ...))", recordOpsType <$> name <*> @@ lformals)
]
<|> MTNAMEDX <$> name
<|> bracket ("([A : modty] ... --m-> modty)",

curry MTARROWX <$> many locmodformal <*> kw "--m->" *> @@ modtype)
) tokens

S523. 〈words reserved for Molecule definitions S523〉≡ (S518b S521b)
":",
"val", "define", "exports", "allof", "module-type", "module", "--m->",
"generic-module", "unsealed-module", "type", "abstype", "data",
"record-module", "exports-record-ops",
"use", "check-expect", "check-assert",
"check-error", "check-type", "check-type-error",
"check-module-type",
"overload"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<*> S263a
<|> S264a
APPLY S462a
atomicExp S520b
bracket S276b
CASE S462a
CONPAT S500b
curry S263d
DATA S462b
DECABSTY S456b
DECMANTY S456b
DECMOD S456b
DECVAL S456b
EXP_AT S462a
expString S532d
exptable S521b
fst S263d
FUNTY S456a
id S263d
kw S519c
LAMBDA S462a
left S274
leftCurly S274
lformals S521b
many S267b
MODULE S462b
MSEALED S462b
MTALLOFX S456b
MTARROWX S456b
MTEXPORTSX S456b
MTNAMEDX S456b
type name 310a
name S519a
notOverloadedIndex

S500d
pair S263d
parseAt S517c
PDOT S455
PNAME S455
pure S261b
PVAR S500b
right S274
SET S462a
showErrorInput

S519a
showParsed_ S519f
snd S263d
type tyex S456a
tyex S519h
TYNAME S456a
usageParsersS519c
VAL S462b
VAR S462a
VCONX S462a

Supporting code
for MoleculeT

S524

S524a. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S522b S524b ▷

val tyex : tyex parser = tyex

Value variables and value constructors.
S524b. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S524a S524c ▷

fun wantedVcon (loc, x) = errorAt ("expected value constructor, but got name " ^ x) loc
fun wantedVvar (loc, x) = errorAt ("expected variable name, but got value constructor " ^ x) loc

val vvar = sat isVvar name
val vcon =
let fun isEmptyList (left, right) = notCurly left andalso snd left = snd right

val boolcon = (fn p => if p then "#t" else "#f") <$> booltok
in boolcon <|> sat isVcon name <|>

"'()" <$ quote <* sat isEmptyList (pair <$> left <*> right)
end

val (vcon, vvar) = (vcon <|> wantedVcon <$>! @@ vvar
, vvar <|> wantedVvar <$>! @@ vcon
)

Goal for definitions:

1. Extended definitions

2. Definition keywords (which cover the binding statements)

3. Statement keywords

4. Expressions of which function application turns into a call statement

S524c.

def : def parser
〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S524b S525 ▷

val defFwd = ref (forward "def" : def parser)
fun def arg = !defFwd arg

fun def tokens =
let val returnTypes = bracket("[ty ...]", many tyex) <|> pure []
in showErrorInput (!defFwd)
end tokens

val def = wrap_ "def" def : def parser

val defbasic : baredef parser =
let (* parser for binding to names *)

val formals = lformals : (name * tyex) list parser
(* val formals = vvarFormalsIn "define" *)

(* parsers for clausal definitions, a.k.a. define* *)
(*

val lhs = bracket ("(f p1 p2 ...)", pair <$> vvar <*> many pattern)
val clause =
bracket ("[(f p1 p2 ...) e]",

(fn (f, ps) => fn e => (f, (ps, e))) <$> lhs <*> exp)
*)

(* definition builders used in all parsers *)
fun flipPair tx c = (c, tx)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.8. Parsing

S525

(* definition builders that expect to bind names *)
fun define tau f formals body =
nodupsty ("formal parameter", "definition of function " ^ f) formals >>=+
(fn xts => DEFINE (f, tau, (xts, body)))

fun definestar _ = ERROR "define* is left as an exercise"
val tyname = name

fun valrec (x, tau) e = VALREC (x, tau, e)

fun sealedWith f (m : name, mt : modtyex) rhs = (m, f (mt, rhs))

val conTy = typedFormalOf vcon (kw ":") tyex

val body = smartBegin <$> many1 exp

in usageParsers
[("(define type f (args) body)",

define <$> tyex <*> name <*> @@ lformals <*>! body)
, ("(val x e)", curry VAL <$> vvar <*> exp)
, ("(val-rec [x : type] e)", valrec <$> formal <*> exp)

, ("(data t [vcon : ty] ...)",
wrap_ "data definition" (curry DATA <$> tyname <*> many conTy))

, ("(type t ty)", curry TYPE <$> name <*> tyex)
, ("(module-type T modty)", curry MODULETYPE <$> name <*> modtype)
, ("(module M path) or (module [M : T] path/defs)",

MODULE <$> ((pair <$> name <*> MPATH <$> path : (name * moddef) parser)
<|> (sealedWith MPATHSEALED <$> modformal <*> path : (name * moddef) parser)
<|> (sealedWith MSEALED <$> modformal <*> many def : (name * moddef) parser)
))

, ("(generic-module [M : T] defs)",
let fun strip ((_, m), (_, t)) = (m, t)

fun gen ((loc, M), (loc', T)) defs =
case T
of MTARROWX (formals, result) =>

OK (GMODULE (M, map strip formals, MSEALED (snd result, defs)))
| _ => ERROR ("at " ^ srclocString loc' ^ ", generic module " ^

M ^ " does not have an arrow type")
in gen <$> locmodformal <*>! many def
end)

, ("(unsealed-module M defs)",
MODULE <$> (crightmap MUNSEALED <$> name <*> many def))

, ("(record-module M t ([x : ty] ...))",
recordModule <$> @@ name <*> name <*> formals)

, ("(overload qname ...)", OVERLOAD <$> many path)
]
<|> QNAME <$> path
<|> EXP <$> exp : baredef parser

end

val _ = defFwd := @@ defbasic

S525. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S524c S526a ▷
val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<$>! S268a
<*> S263a
<*>! S268a
<|> S264a
>>=+ S244b
type baredef S462b
booltok S517c
bracket S276b
CHECK_ASSERTS393a
CHECK_ERROR S393a
CHECK_EXPECTS393a
CHECK_MTYPE S500b
CHECK_TYPE S393a
CHECK_TYPE_ERROR

S393a
crightmap S522b
curry S263d
DATA S462b
DEFINE S462b
ERROR S243b
errorAt S256a
EXP S462b
exp S522a
formal S522b
forward S243a
GMODULE S462b
isVcon S437e
isVvar S437e
kw S519c
left S274
lformals S521b
locmodformalS522b
many S267b
many1 S267c
type moddef S462b
modformal S522b
type modtyex S462b
modtype S522b
MODULE S462b
MODULETYPE S462b
MPATH S462b
MPATHSEALED S462b
MSEALED S462b
MTARROWX S456b
MUNSEALED S462b
type name 310a
name S519a
nodupsty S521b
notCurly S274
OK S243b
OVERLOAD S462b
pair S263d
type parser S519a
path S519h
pure S261b
QNAME S462b
quote S519a
recordModuleS522b
right S274
sat S266a
showErrorInput

S519a
smartBegin S521b
snd S263d
srclocStringS254d
type tyex S456a
tyex S519h
TYPE S462b
typedFormalOf

S387a
usageParsersS519c
VAL S462b
VALREC S462b
wrap_ S519e

Supporting code
for MoleculeT

S526

, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
, ("(check-type e tau)", curry CHECK_TYPE <$> exp <*> tyex)
, ("(check-type-error e)", CHECK_TYPE_ERROR <$> def)
, ("(check-module-type M T)", curry CHECK_MTYPE <$> path <*> modtype)
]

S526a. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S525 S526b ▷

fun filenameOfDotted (x, xs) = separate ("", ".") (x :: xs)
val xdeftable = usageParsers
[("(use filename)", (USE o filenameOfDotted) <$> dotted)
]

S526b. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S526a S526c ▷
val xdef = TEST <$> testtable

<|> xdeftable
<|> DEF <$> def
<|> badRight "unexpected right bracket"
<?> "definition"

S526c. 〈parsers and xdef streams for Molecule S519c〉+≡ (S517c) ◁ S526b
val xdefstream =
interactiveParsedStream (mclToken, xdef)

T.9 UNIT TESTING

S526d. 〈definition of testIsGood for Molecule S526d〉≡ (S501b) S526e ▷
fun comparisonIndex env tau =
let val wanted = FUNTY ([tau, tau], booltype)

val index =
case find ("=", env)
of ENVOVLN taus =>

(case resolveOverloaded ("=", tau, taus)
of OK (compty, i) =>

if eqType (compty, wanted) then OK i
else (ERROR o String.concat)

["on type ", typeString tau, " operation = has type ",
typeString compty]

| ERROR msg => ERROR msg)
| _ => ERROR "operator = is not overloaded, so I can't check-expect"

in index
end

S526e. 〈definition of testIsGood for Molecule S526d〉+≡ (S501b) ◁ S526d
fun noTypeError f x k =
(f x; true) handle TypeError msg => failtest (k msg)

fun testIsGood (test, (E, rho)) =
let fun ty e = typeof (e, E)

handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")
〈shared check{Expect,Assert,Error,Type{Checks, which call ty S384d〉
fun checks (CHECK_EXPECT (e1, e2)) =

checkExpectChecks (e1, e2) andalso
(case comparisonIndex E (ty e1)

of OK i => true
| ERROR msg =>

failtest ["cannot check-expect ", expString e1, ": ", msg])
| checks (CHECK_ASSERT e) = checkAssertChecks e
| checks (CHECK_ERROR e) = checkErrorChecks e

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.9. Unit testing

S527

| checks (CHECK_TYPE (e, t)) =
noTypeError elabty (t, E)
(fn msg => ["In (check-type ", expString e, " " ^ tyexString t, "), ", msg])

| checks (CHECK_TYPE_ERROR e) = true
| checks (CHECK_MTYPE (pathx, mt)) =

let val path = elabpath (pathx, E)
val _ = elabmt ((mt, path), E)

in true
end handle TypeError msg =>
failtest ["In (check-module-type ", pathexString pathx, " ",

mtxString mt, "), ", msg]

fun deftystring d =
let val comps = List.mapPartial asComponent (elabd (d, TOPLEVEL, E))
in if null comps then

(case d of OVERLOAD _ => "an overloaded name"
| GMODULE _ => "a generic module"
| MODULETYPE _ => "a module type"
| _ => raise InternalError "unrecognized definition")

else
commaSep (map (whatcomp o snd) comps)

end handle NotFound x => raise TypeError ("name " ^ x ^ " is not defined")

fun outcome e = withHandlers (fn () => OK (eval (e, rho))) () (ERROR o stripAtLoc)
〈definition of asSyntacticValue for Molecule S528a〉
〈shared whatWasExpected S245b〉
〈shared checkExpectPassesWith, which calls outcome S245c〉
〈shared checkAssertPasses and checkErrorPasses, which call outcome S246a〉

fun checkExpectPasses (c, e) =
let val i = case comparisonIndex E (ty c)

of OK i => i
| ERROR _ => raise InternalError "overloaded = in check-expect"

val eqfun =
case !(find ("=", rho))
of ARRAY vs => (Array.sub (vs, i)

handle _ => raise InternalError "overloaded subscript")
| _ => raise InternalError "overloaded = not array"

fun testEqual (v1, v2) =
case eval (APPLY (LITERAL eqfun, [LITERAL v1, LITERAL v2], ref notOverloadedIndex), rho)
of CONVAL (PNAME "#t", []) => true
| _ => false

in checkExpectPassesWith testEqual (c, e)
end

fun checkMtypePasses (pathx, mtx) =
let val path = txpath (pathx, E)

val principal = strengthen (findModule (pathx, E), path)
val mt = elabmt ((mtx, path), E)

val () = if true then () else
(app print ["principal MT = ", mtString principal, "\n"]
; app print ["supertype = ", mtString mt, "\n"]
; app print ["supertype path = ", pathString path, "\n"]
)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<?> S273c
<|> S264a
APPLY S462a
ARRAY S499d
asComponent S470a
atLoc S255d
badRight S274
booltype S491b
CHECK_ASSERTS393a
CHECK_ERROR S393a
CHECK_EXPECTS393a
CHECK_MTYPE S500b
CHECK_TYPE S393a
CHECK_TYPE_ERROR

S393a
checkAssertChecks

S385a
checkAssertPasses

S246a
checkErrorChecks

S385a
checkErrorPasses

S246b
checkExpectChecks

S384d
checkExpectPasses-

With
S245c

checkTypeError-
Passes

S384c
checkTypePasses

S384b
commaSep S239a
CONVAL S499d
DEF S365b
def S524c
dotted S519a
elabd S467b
elabmt S499b
elabpath S497f
elabty S498a
ENVOVLN S456b
eqType S494e
ERROR S243b
eval S502b
expString S532d
failtest S246d
find 311b
findModule S467a
FUNTY S456a
GMODULE S462b
implements S459c
interactiveParsed-

Stream
S280b

InternalError
S366f

LITERAL S462a
mclToken S518b
MODULETYPE S462b
mtString S532a
mtxString S532b
NotFound 311b
notOverloadedIndex

S500d
OK S243b
OVERLOAD S462b
pathexStringS531b
pathString S531b
PNAME S455
resolveOverloaded

S463b
separate S239a
snd S263d
strengthen S465a
stripAtLoc S255g
TEST S365b
testtable S525
TOPLEVEL S465b
txpath S497f
tyexString S531c
TypeError S237b
typeof S463c
typeString S531c
usageParsersS519c
USE S365b
whatcomp S507c
withHandlersS371a

Supporting code
for MoleculeT

S528

in case implements (path, principal, mt)
of OK () => true
| ERROR msg => raise TypeError msg

end handle TypeError msg =>
failtest ["In (check-module-type ", pathexString pathx, " ",

mtxString mtx, "), ", msg]

〈shared checkTypePasses and checkTypeErrorPasses, which call ty S384b〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_TYPE (c, t)) = checkTypePasses (c, elabty (t, E))
| passes (CHECK_TYPE_ERROR (loc, c)) = atLoc loc checkTypeErrorPasses c
| passes (CHECK_MTYPE c) = checkMtypePasses c

in checks test andalso passes test
end

S528a.

asSyntacticValue : exp -> value option
〈definition of asSyntacticValue for Molecule S528a〉≡ (S526e)

fun asSyntacticValue (LITERAL v) = SOME v
| asSyntacticValue (VCONX c) = SOME (CONVAL (c, []))
| asSyntacticValue (APPLY (e, es, _)) =

(case (asSyntacticValue e, optionList (map asSyntacticValue es))
of (SOME (CONVAL (c, [])), SOME vs) => SOME (CONVAL (c, map ref vs))
| _ => NONE)

| asSyntacticValue _ = NONE

T.10 MISCELLANEOUS ERROR MESSAGES

S528b. 〈legacy test cases S512b〉+≡ ◁ S513a S530b ▷

-> (define multiple-tags ([x : bad-tags-type] ->)
(tag-case x

(a (return))
(b (return))
(b (return))))

type error: tag b used multiple times in tag-case
-> (define redundant-others ([x : bad-tags-type] ->)

(tag-case x
(a (return))
(b (return))
(others (return))))

type error: 'others' case in tag-case can never match

S528c. 〈utility functions fieldsmap and fieldsort, which operate on labeled values S528c〉≡
fun fieldsmap f = map (fn (x, a) => (x, f a))

S528d. 〈complain that unmatched tags are unmatched S528d〉≡
raise TypeError ("tag-case " ^ expString e ^ " does not match " ^

"these tags: " ^ spaceSep unmatched)

S528e. 〈complain that e doesn’t have a sum type S528e〉≡
raise TypeError ("type of " ^ expString e ^ " passed to " ^ "tag-case is " ^

typeString (ty e) ^ ", which is not a one-of")

S528f. 〈fail unless x'_i is in both all_variants and unmatched S528f〉≡ S529a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.10
Miscellaneous
error messages

S529

S529a. 〈fail unless x'_i is in both all_variants and unmatched S528f〉+≡ ◁ S528f
if not (isbound (x'_i, all_variants)) then
raise TypeError ("type " ^ typeString (ty e) ^ " has no tag named " ^ x'_i)

else if not (member x'_i unmatched) then
raise TypeError ("tag " ^ x'_i ^ " used " ^ "multiple times in tag-case")

else
()

S529b. 〈number of results doesn’t match xs S529b〉≡
raise TypeError ("assignment has " ^ countString xs "variable" ^

" but call on the right produces " ^ countString results "result")

S529c. 〈y_i should have type tau_i S529c〉≡
raise TypeError ("tag " ^ x'_i ^ " declares " ^ y_i ^ " with type " ^ typeString tau'_i ^

", but that tag carries type " ^ typeString tau_i)

S529d. 〈iterator’s args don’t match formals S529d〉≡
raise TypeError ("Iterator is expecting " ^ plural "parameter" formals ^

" of " ^ plural "type" formals ^ " " ^ typesString formals ^
", but got actual " ^ plural "parameter" args ^ " of " ^
plural "type" args ^ typesString args)

S529e. 〈iterator’s xs don’t match results S529e〉≡
raise TypeError ("Iterator returns " ^ plural "result" results ^

" of " ^ plural "type" results ^ " " ^ typesString results ^
", but assigns to " ^ plural "variable" xs ^
" of " ^ plural "type" xs ^ " " ^ typesString (map vartype xs))

S529f. 〈SETRESULTS bug S529f〉≡
raise BugInTypeChecking
(expString (APPLY the_call) ^ " assigned to " ^ countString xs "argument" ^
" but got " ^ countString vs "result")

S529g. 〈raise TypeError, showing unsatisfied constraints S529g〉≡
let fun single [_] = true

| single _ = false
fun unsatString (HASN'T (tau, opname, optype)) =
typeString tau ^ " has " ^ "[" ^ opname ^ " : " ^ typeString optype ^ "]"

in raise TypeError ("in " ^ typeString (CONAPP (TYPART T, taus)) ^
", unsatisfied " ^ plural "constraint" unsatisfied ^
(if single unsatisfied then " " else ": ") ^

commaSep (map unsatString unsatisfied))
end

S529h. 〈type error: taus different length from alphas S529h〉≡
raise TypeError (T ^ " expects " ^ countString alphas "type parameter" ^

", but got " ^ intString (length taus))

S529i. 〈type error: taus different length from formals S529i〉≡
raise TypeError (what ^ " expects " ^ countString formals "type parameter" ^

", but got " ^ intString (length taus))

S529j. 〈desugaring was somehow inconsistent; fail S529j〉≡
raise InternalError ("in definition of " ^ x ^ ", expected type " ^

typeString tau ^ ", but got " ^ typeString tau' ^
" (should detect elsewhere)")

S529k. 〈complain that x is redefined S529k〉≡
let val asBound = find (x, E)

val new = mkStatic a
val asWhat = case asBound

of STATIC_VAL (FORALL (_, EXISTS _), CONSTANT) => "as a cluster"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY S462a
CONVAL S499d
LITERAL S462a
optionList S242a
VCONX S462a

Supporting code
for MoleculeT

S530

| STATIC_VAL (_, CLUSTER_INTERFACE) => "as a cluster interface"
| STATIC_VAL (_, CONSTANT) => "as a routine"
| STATIC_VAL (_, VARIABLE) => "as a variable"
| STATIC_TYABBREV _ => "as a type abbreviation"
| STATIC_TYVAR _ => "as a type variable"

in raise TypeError
("redefinition of " ^ what ^ " " ^ x ^ ", which is already in scope " ^ asWhat)

end

S530a. 〈if wheres constrains a non-αi or constrains any operation multiple times, fail S530a〉≡
let fun dieOnMultiplesOrStrays [] = ()

| dieOnMultiplesOrStrays (WHERE (a, l, t) :: ws) =
if List.exists (fn WHERE (a', l', _) => a = a' andalso l = l') ws then
raise TypeError ("operation " ^ l ^ " on type parameter " ^

a ^ " is multiply constrained")
else if not (member a alphas) then
raise LeftAsExercise "where clause constrains outer type variable"

else
dieOnMultiplesOrStrays ws

in dieOnMultiplesOrStrays wheres
end

S530b. 〈legacy test cases S512b〉+≡ ◁ S528b S530c ▷
-> 3
3 : int
-> 'hello
hello : sym
-> (= 'hello 'daring)
#f : bool
-> (= #t #t)
#t : bool
-> 1
1 : int

S530c. 〈legacy test cases S512b〉+≡ ◁ S530b S531a ▷
-> (type ai1 (mutable array int))
-> (val a1 (make-array-at 1 (mutable array int) 1 2 3 4 5))
(mutable array [at 1] 1 2 3 4 5) : (mutable array int)
-> (ai1$top a1)
5 : int
-> (ai1$reml a1)
1 : int
-> a1
(mutable array [at 2] 2 3 4 5) : (mutable array int)
-> (ai1$addl a1 99)
-> a1
(mutable array [at 1] 99 2 3 4 5) : (mutable array int)
-> a1
(mutable array [at 1] 99 2 3 4 5) : (mutable array int)
-> (ai1$addh a1 33)
-> a1
(mutable array [at 1] 99 2 3 4 5 33) : (mutable array int)
-> (ai1$addl a1 33)
-> a1
(mutable array [at 0] 33 99 2 3 4 5 33) : (mutable array int)
-> (at a1 3)
3 : int

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.11
Printing stuff

S531

S531a. 〈legacy test cases S512b〉+≡ ◁ S530c S533b ▷

-> (cluster ['a where ['a has [new : [-> 'a]]]]
wrap

[exports [new : (-> (wrap 'a))]]
(type rep 'a)
(define new (-> (wrap 'a))

(return (seal ('a$new)))))
cluster (wrap 'a)
-> (cluster void [exports] (type rep null))
cluster void
-> (type burble (mutable array void))
burble = (mutable array void)
-> (type clean (wrap (immutable array bool)))
clean = (wrap (immutable array bool))
-> burble$copy
type error: burble has no component named copy
-> (mutable array bool)$copy
<routine> : ((mutable array bool) -> (mutable array bool))
-> (type mab (mutable array bool))
mab = (mutable array bool)
-> mab$copy
<routine> : ((mutable array bool) -> (mutable array bool))
-> (type zorched (wrap void))
type error: in (wrap void), unsatisfied constraint void has [new : (-> void)]

T.11 PRINTING STUFF

S531b. 〈definition of typeString for Molecule types S531b〉≡ (S500b) S531c ▷
fun modidentString (MODCON { printName = m, serial = 0 }) = m
| modidentString (MODCON { printName = m, serial = k }) = m ^ "@{" ^ intString k ^ "}"
| modidentString (MODTYPLACEHOLDER s) = "<signature: " ^ s ^ ">"

fun pathString' base =
let fun s (PNAME a) = base a

| s (PDOT (p, x)) = s p ^ "." ^ x
| s (PAPPLY (f, args)) =

String.concat ("(@m " :: s f ::
foldr (fn (a, tail) => " " :: s a :: tail) [")"] args)

in s
end

fun pathString (PNAME a) = modidentString a
| pathString (PDOT (PNAME (MODTYPLACEHOLDER _), x)) = x
| pathString (PDOT (p, x)) = pathString p ^ "." ^ x
| pathString (PAPPLY (f, args)) =

String.concat ("(@m " :: pathString f ::
foldr (fn (a, tail) => " " :: pathString a :: tail) [")"] args)

(*val pathString = pathString' modidentString*)
val pathexString : pathex -> string = pathString' snd

S531c. 〈definition of typeString for Molecule types S531b〉+≡ (S500b) ◁ S531b S532a ▷
fun typeString' ps (TYNAME p) = ps p
| typeString' ps (FUNTY (args, res)) =

"(" ^ spaceSep (map (typeString' ps) args) ^ " -> " ^ (typeString' ps) res ^ ")"
| typeString' ps ANYTYPE = "<any type>"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ANYTYPE S456a
FUNTY S456a
intString S238f
MODCON S455
MODTYPLACEHOLDER

S455
PAPPLY S455
type pathex S455
PDOT S455
PNAME S455
snd S263d
spaceSep S239a
type tyex S456a
TYNAME S456a

Supporting code
for MoleculeT

S532

val typeString = typeString' pathString

fun substString pairs =
"{ " ^ String.concatWith ", " (map (fn (p, tau) => pathString p ^ " |--> " ^ typeString tau) pairs) ^ " } "

val tyexString : tyex -> string = typeString' (pathString' snd)

S532a. 〈definition of typeString for Molecule types S531b〉+≡ (S500b) ◁ S531c S532b ▷

fun mtString (MTEXPORTS []) = "(exports)"
| mtString (MTEXPORTS comps) =

"(exports " ^ spaceSep (map ncompString comps) ^ ")"
| mtString (MTALLOF mts) = "(allof " ^ spaceSep (map mtString mts) ^ ")"
| mtString (MTARROW (args, res)) =

"(" ^ spaceSep (map modformalString args) ^ " --m-> " ^ mtString res ^ ")"
and modformalString (m, t) = "[" ^ modidentString m ^ " : " ^ mtString t ^ "]"
and ncompString (x, c) =
case c
of COMPVAL tau => "[" ^ x ^ " : " ^ typeString tau ^ "]"
| COMPABSTY _ => "(abstype " ^ x ^ ")"
| COMPMANTY tau => "(type " ^ x ^ " " ^ typeString tau ^ ")"
| COMPMOD mt => "(module [" ^ x ^ " : " ^ mtString mt ^ "])"

fun ndecString (x, c) =
case c
of ENVVAL tau => "[" ^ x ^ " : " ^ typeString tau ^ "]"
| ENVMANTY tau => "(type " ^ x ^ " " ^ typeString tau ^ ")"
| ENVMOD (mt, _) => "(module [" ^ x ^ " : " ^ mtString mt ^ "])"
| ENVOVLN _ => "<overloaded name " ^ x ^ " ...>"
| ENVMODTY mt => "(module-type " ^ x ^ " " ^ mtString mt ^ ")"

S532b. 〈definition of typeString for Molecule types S531b〉+≡ (S500b) ◁ S532a S532c ▷
fun mtxString (MTNAMEDX m) = m
| mtxString (MTEXPORTSX []) = "(exports)"
| mtxString (MTEXPORTSX lcomps) =

"(exports " ^ spaceSep (map ncompxString lcomps) ^ ")"
| mtxString (MTALLOFX mts) = "(allof " ^ spaceSep (map (mtxString o snd) mts) ^ ")"
| mtxString (MTARROWX (args, res)) =

"(" ^ spaceSep (map modformalString args) ^ " --m-> " ^ mtxString (snd res) ^ ")"
and modformalString (m, t) = "[" ^ snd m ^ " : " ^ mtxString (snd t) ^ "]"
and ncompxString (loc, (x, c)) =
case c
of DECVAL tau => "[" ^ x ^ " : " ^ tyexString tau ^ "]"
| DECABSTY => "(abstype " ^ x ^ ")"
| DECMANTY tau => "(type " ^ x ^ " " ^ tyexString tau ^ ")"
| DECMOD mt => "(module [" ^ x ^ " : " ^ mtxString mt ^ "])"
| DECMODTY mt => "(module-type " ^ x ^ " " ^ mtxString mt ^ ")"

S532c. 〈definition of typeString for Molecule types S531b〉+≡ (S500b) ◁ S532b
fun boolString b = if b then "#t" else "#f"

S532d. 〈definition of expString for Molecule S532d〉≡ (S500b) S533a ▷
fun stripExpAt (EXP_AT (_, e)) = stripExpAt e
| stripExpAt e = e

fun expString e =
let fun bracket s = "(" ^ s ^ ")"

fun sqbracket s = "[" ^ s ^ "]"
val bracketSpace = bracket o spaceSep
fun exps es = map expString es

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.11
Printing stuff

S533

fun withBindings (keyword, bs, e) =
bracket (spaceSep [keyword, bindings bs, expString e])

and bindings bs = bracket (spaceSep (map binding bs))
and binding (x, e) = sqbracket (x ^ " " ^ expString e)
fun formal (x, ty) = sqbracket (x ^ " : " ^ tyexString ty)
fun tbindings bs = bracket (spaceSep (map tbinding bs))
and tbinding ((x, tyex), e) = bracket (formal (x, tyex) ^ " " ^ expString e)
val letkind = fn LET => "let" | LETSTAR => "let*"

in case e
of LITERAL v => valueString v
| VAR name => pathexString name
| IFX (e1, e2, e3) => bracketSpace ("if" :: exps [e1, e2, e3])
| SET (x, e) => bracketSpace ["set", x, expString e]
| WHILEX (c, b) => bracketSpace ["while", expString c, expString b]
| BEGIN es => bracketSpace ("begin" :: exps es)
| APPLY (e, es, _) => bracketSpace (exps (e::es))
| LETX (lk, bs, e) => bracketSpace [letkind lk, bindings bs, expString e]
| LETRECX (bs, e) => bracketSpace ["letrec", tbindings bs, expString e]
| LAMBDA (xs, body) => bracketSpace ("lambda" :: map formal xs @ [expString body])
| VCONX vcon => vconString vcon
| CASE (e, matches) =>

let fun matchString (pat, e) = sqbracket (spaceSep [patString pat, expString e])
in bracketSpace ("case" :: expString e :: map matchString matches)
end

| MODEXP components => bracketSpace ("modexp" :: map binding components)
| ERRORX es => bracketSpace ("error" :: exps es)
| EXP_AT (_, e) => expString e

end

S533a. 〈definition of expString for Molecule S532d〉+≡ (S500b) ◁ S532d
fun defString d =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun sq s = "[" ^ s ^ "]"
val sqSpace = sq o spaceSep
fun formal (x, t) = "[" ^ x ^ " : " ^ tyexString t ^ "]"

in case d
of EXP e => expString e
| VAL (x, e) => bracketSpace ["val", x, expString e]
| VALREC (x, t, e) =>

bracketSpace ["val-rec", sqSpace [x, ":", tyexString t], expString e]
| DEFINE (f, ty, (formals, body)) =>

bracketSpace ["define", tyexString ty, f,
bracketSpace (map formal formals), expString body]

| QNAME p => pathexString p
| TYPE (t, tau) => bracketSpace ["type", t, tyexString tau]
| DATA (t, _) => bracketSpace ["data", t, "..."]
| OVERLOAD paths => bracketSpace ("overload" :: map pathexString paths)
| MODULE (m, _) => bracketSpace ["module", m, "..."]
| GMODULE (m, _, _) => bracketSpace ["generic-module", m, "..."]
| MODULETYPE (t, mt) => bracketSpace ["module-type", t, "..."]

end

S533b. 〈legacy test cases S512b〉+≡ ◁ S531a
-> (val ah (mutable array int)$addh)
<routine> : ((mutable array int) int ->)
-> 1
1 : int

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

APPLY S462a
BEGIN S462a
CASE S462a
COMPABSTY S456b
COMPMANTY S456b
COMPMOD S456b
COMPVAL S456b
DATA S462b
DECABSTY S456b
DECMANTY S456b
DECMOD S456b
DECMODTY S456b
DECVAL S456b
DEFINE S462b
ENVMANTY S456b
ENVMOD S456b
ENVMODTY S456b
ENVOVLN S456b
ENVVAL S456b
ERRORX S462a
EXP S462b
EXP_AT S462a
GMODULE S462b
IFX S462a
LAMBDA S462a
LET S462a
LETRECX S462a
LETSTAR S462a
LETX S462a
LITERAL S462a
MODEXP S462a
modidentString

S531b
MODULE S462b
MODULETYPE S462b
MTALLOF S456b
MTALLOFX S456b
MTARROW S456b
MTARROWX S456b
MTEXPORTS S456b
MTEXPORTSX S456b
MTNAMEDX S456b
OVERLOAD S462b
pathexStringS531b
patString S449b
QNAME S462b
SET S462a
snd S263d
spaceSep S239a
tyexString S531c
TYPE S462b
typeString S531c
VAL S462b
VALREC S462b
valueString S507a
VAR S462a
vconString S507a
VCONX S462a
WHILEX S462a

Supporting code
for MoleculeT

S534

-> (+ 3 3)
6 : int
-> int
type error: int names a type, but a variable is expected
-> 1
1 : int
-> 'hello
hello : sym
-> (int$+ 2 2)
4 : int
-> int$+
<routine> : (int int -> int)
-> (type A (mutable array int))
A = (mutable array int)
-> A$remh
<routine> : ((mutable array int) -> int)
-> A$addl
<routine> : ((mutable array int) int ->)
-> (var [arr : A])
arr : A
-> (var [test-int : int] [test-sym : sym] [test-null : null] [test-bool : bool])
test-int : int
test-sym : sym
test-null : null
test-bool : bool
-> arr
Run-time error: uninitialized variable arr

S534a. 〈result type of K should be tau but is result S534a〉≡ (S469b)
raise TypeError ("value constructor " ^ K ^ " should return " ^ typeString tau ^

", but it returns type " ^ typeString result)

S534b. 〈type of K should be tau but is tau' S534b〉≡ (S469b)
raise TypeError ("value constructor " ^ K ^ " should have " ^ typeString tau ^

", but it has type " ^ typeString tau')

T.12 PRIMITIVES

S534c. 〈primitives for Molecule Int module :: S534c〉≡ S535 ▷
("+", arithop op +, arithtype) ::
("-", arithop op -, arithtype) ::
("*", arithop op * , arithtype) ::
("/", arithop op div, arithtype) ::

We have two kinds of predicates: ordinary predicates take one argument, and
comparisons take two. Some comparisons apply only to integers. (From here on,
you can figure out the types for yourself—or get the ML compiler to tell you.) DU-
PLICATES ADT.
S534d.

inject_bool : bool -> value
project_bool : value -> bool

〈primitives [[mcl]] S492a〉+≡ (S491b) ◁ S493
fun inject_bool x =

CONVAL (PNAME (if x then "#t" else "#f"), [])
fun project_bool (CONVAL (PNAME "#t", [])) = true
| project_bool (CONVAL (PNAME "#f", [])) = false
| project_bool _ = raise RuntimeError "projected non-boolean"

fun inject_predicate f = fn x => inject_bool (f x)
fun predop f = unaryOp (inject_predicate f)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§T.12. Primitives

S535

fun comparison f = binaryOp (inject_predicate f)
fun intcompare f = comparison (

fn (NUM n1, NUM n2) => f (n1, n2)
| _ => raise BugInTypeChecking "integers expected")

And here come the predicates. Equality comparison succeeds only on symbols and
numbers. The empty list is dealt with through case expressions.
S535. 〈primitives for Molecule Int module :: S534c〉+≡ ◁ S534c

("<", intcompare op <, comptype inttype) ::
(">", intcompare op >, comptype inttype) ::
("=", intcompare op =, comptype inttype) ::

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

binaryOp S389d
BugInTypeChecking

S237b
CONVAL S499d
NUM S499d
PNAME S455
result S469b
RuntimeErrorS366c
tau S469b
tau' S469b
TypeError S237b
typeString S531c
unaryOp S389d

CHAPTER CONTENTS
U.1 IMPLEMENTATIONS

OF SOME PREDEFINED
CLASSES S537

U.1.1 Methods of primitive
classes S537

U.1.2 Class Boolean S538
U.1.3 Implementation of Uni-

code characters S539
U.1.4 Collection things S539
U.1.5 Class Number, plus pow-

ers and roots S542
U.1.6 Integers S542
U.1.7 Floating-point numbers S543
U.1.8 Implementation of Set S545

U.2 INTERPRETER THINGS S547

U.2.1 Stack frames S551
U.2.2 Bootstrapping S551
U.2.3 Primitives S552
U.2.4 Evaluation tracing S558
U.2.5 Evaluating extended

definitions S558
U.2.6 Initializing, bootstrap-

ping, and running the
interpreter S559

U.3 LEXING AND PARSING S560
U.3.1 Lexical analysis S560
U.3.2 Parsing S561

U.4 SUPPORT FOR TRACING S565
U.5 UNIT TESTING S568

USupporting code for µSmalltalk

U.1 IMPLEMENTATIONS OF SOME PREDEFINED CLASSES

Classes whose implementations arenʼt shown in the chapter.

U.1.1 Methods of primitive classes

S537a. 〈methods of class Object S537a〉≡
(method print () ('< print) (((self class) name) print) ('> print) self)
(method println () (self print) (newline print) self)
(method class () (primitive class self))
(method isKindOf: (aClass) (primitive isKindOf self aClass))
(method isMemberOf: (aClass) (primitive isMemberOf self aClass))
(method error: (msg) (primitive error self msg))
(method subclassResponsibility () (primitive subclassResponsibility self))
(method leftAsExercise () (primitive leftAsExercise self))

S537b. 〈primitives for µSmalltalk :: S537b〉≡ (S552a) S537e ▷
("sameObject", binaryPrim (mkBoolean o eqRep)) ::
("class", classPrimitive) ::
("isKindOf", binaryPrim kindOf) ::
("isMemberOf", binaryPrim memberOf) ::
("error", binaryPrim error) ::
("subclassResponsibility",

errorPrim "subclass failed to implement a method it was responsible for") ::
("leftAsExercise", errorPrim "method was meant to be implemented as an exercise") ::

S537c. 〈ML functions for Object’s and UndefinedObject’s primitives S537c〉≡ (S548b) S550d ▷

fun errorPrim msg = fn _ => raise RuntimeError msg

S537d. 〈methods of class Class S537d〉≡
(method superclass () (primitive superclass self))
(method name () (primitive className self))
(method printProtocol () (primitive protocol self))
(method printLocalProtocol () (primitive localProtocol self))
(method compiledMethodAt: (aSymbol) (primitive getMethod self aSymbol))
(method addSelector:withMethod: (aSymbol aMethod) (primitive setMethod self aSymbol aMethod)
self)

(method methodNames () (primitive methodNames self))
(method removeSelector: (aSymbol) (primitive removeMethod self aSymbol)
self)

S537e. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S537b S538c ▷
("newUserObject", classPrim (fn (meta, c) => newUserObject c)) ::
("superclass", classPrim superclassObject) ::
("className", classPrim (fn (_, c) => mkSymbol (className c))) ::
("protocol", classPrim (protocols true)) ::
("localProtocol", classPrim (protocols false)) ::

S537
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µSmalltalkU

S538

("getMethod", binaryPrim getMethod) ::
("setMethod", setMethod o fst) ::
("removeMethod", binaryPrim removeMethod) ::
("methodNames", classPrim methodNames) ::

S538a. 〈methods of class UndefinedObject S538a〉≡
(method print () ('nil print) self)

Implementation of blocks

A block is an abstraction of a function, and its representation is primitive. The
valuemethod is also primitive, but the while, whileTrue:, and whileFalse:meth-
ods are easily defined in ordinary µSmalltalk.
S538b. 〈predefined µSmalltalk classes and values S538b〉≡ S555e ▷

(class Block
[subclass-of Object] ; internal representation
(class-method new () {})
(method value () (primitive value self))
(method value: (a1) (primitive value self a1))
(method value:value: (a1 a2) (primitive value self a1 a2))
(method value:value:value: (a1 a2 a3) (primitive value self a1 a2 a3))
(method value:value:value:value: (a1 a2 a3 a4) (primitive value self a1 a2 a3 a4))
(method whileTrue: (body)

((self value) ifTrue:ifFalse:
{(body value)
(self whileTrue: body)}
{nil}))

(method whileFalse: (body)
((self value) ifTrue:ifFalse:

{nil}
{(body value)
(self whileFalse: body)}))

〈tracing methods on class Block S538d〉
)

S538c. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S537e S553b ▷

("value", valuePrim) ::

S538d. 〈tracing methods on class Block S538d〉≡ (S538b)
(method traceFor: (n) [locals answer]

(set &trace n)
(set answer (self value))
(set &trace 0)
answer)

(method trace () (self traceFor: -1))

S538e. 〈predefined µSmalltalk classes and values that use numeric literals S538e〉≡ (S560c) S539a ▷
(val &trace 0)

U.1.2 Class Boolean

S538f. 〈definition of class Boolean S538f〉≡
(class Boolean

[subclass-of Object]
(method ifTrue:ifFalse: (trueBlock falseBlock)

(self subclassResponsibility))
(method ifFalse:ifTrue: (falseBlock trueBlock)

(self subclassResponsibility))
(method ifTrue: (trueBlock) (self subclassResponsibility))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.1
Implementations
of some predefined

classes

S539

(method ifFalse: (falseBlock) (self subclassResponsibility))

(method not () (self subclassResponsibility))
(method eqv: (aBoolean) (self subclassResponsibility))
(method xor: (aBoolean) (self subclassResponsibility))
(method & (aBoolean) (self subclassResponsibility))
(method | (aBoolean) (self subclassResponsibility))

(method and: (alternativeBlock) (self subclassResponsibility))
(method or: (alternativeBlock) (self subclassResponsibility))

)

U.1.3 Implementation of Unicode characters

As in the other bridge languages, a Unicode character prints using the UTF-8 encod-
ing. The Char class defines a representation, initialization methods, and a print
method. It must also redefine =, because two objects that represent the same Uni-
code character should be considered equal, even if they are not the same object.
The representation invariant is that code-point is an integer between 0 and hex-
adecimal 1fffff.
S539a. 〈predefined µSmalltalk classes and values that use numeric literals S538e〉+≡ (S560c) ◁ S538e S539b ▷

(class Char
[subclass-of Object]
[ivars code-point]
(class-method new: (n) ((self new) init: n))
(method init: (n) (set code-point n) self) ;; private
(method print () (primitive printu code-point))
(method = (c) (code-point = (c code-point)))
(method code-point () code-point) ;; private

)

The predefined characters are defined using their code points, which coincide
with 7-bit ASCII codes.
S539b. 〈predefined µSmalltalk classes and values that use numeric literals S538e〉+≡ (S560c) ◁ S539a

(val newline (Char new: 10)) (val left-round (Char new: 40))
(val space (Char new: 32)) (val right-round (Char new: 41))
(val semicolon (Char new: 59)) (val left-curly (Char new: 123))
(val quotemark (Char new: 39)) (val right-curly (Char new: 125))

(val left-square (Char new: 91))
(val right-square (Char new: 93))

U.1.4 Collection things

Class Association

Method associationsDo: visits all the key-value pairs in a keyed collection. A key-
value pair is represented by an object of class Association.
S539c. 〈collection classes S539c〉≡ (S560c) S540a ▷

(class Association
[subclass-of Object]
[ivars key value]
(class-method withKey:value: (x y) ((self new) setKey:value: x y))
(method setKey:value: (x y) (set key x) (set value y) self) ; private
(method key () key)
(method value () value)
(method setKey: (x) (set key x))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

valuePrim 699b

Supporting code
for µSmalltalkU

S540

(method setValue: (y) (set value y))
(method = (a) ((key = (a key)) & (value = (a value))))

)

Associations are mutable.

Implementation of Dictionary

A Dictionary is the simplest and least specialized of the keyed collections. If all
µSmalltalk objects could be hashed, we would want to represent a Dictionary as
a hash table. Because not every µSmalltalk object can be hashed, we use a list of
Associations instead. The abstraction is a finite map, which is to say, a function
with a finite domain. The representation is a list of Associations stored in instance
variable table. The representation invariant is that in table, no single key appears
in more than one Association. The abstraction function takes the representation
to the function that is undefined on all keys not in table and that maps each key in
table to the corresponding value.
S540a. 〈collection classes S539c〉+≡ (S560c) ◁ S539c S541c ▷

(class Dictionary
[subclass-of KeyedCollection]
[ivars table] ; list of Associations
(class-method new () ((super new) initDictionary))
(method initDictionary () (set table (List new)) self) ; private
〈other methods of class Dictionary S540b〉

)

The operations thatDictionarymust implement areassociationsDo:, at:put,
and removeKey:ifAbsent. Iteration over associations can be delegated to the list of
associations. To implement at:put:, we search for the association containing the
given key. If we find such an association, we mutate its value. If we find no such
association, we add one.

S540b. 〈other methods of class Dictionary S540b〉≡ (S540a) S540c ▷
(method associationsDo: (aBlock) (table do: aBlock))
(method at:put: (key value) [locals tempassoc]

(set tempassoc (self associationAt:ifAbsent: key {}))
((tempassoc isNil) ifTrue:ifFalse:

{(table add: (Association withKey:value: key value))}
{(tempassoc setValue: value)})

self)

Removing a key requires that we first save the removed value, so we can an-
swer it. The actual removal is done by sending the reject: message to the repre-
sentation.
S540c. 〈other methods of class Dictionary S540b〉+≡ (S540a) ◁ S540b S540d ▷

(method removeKey:ifAbsent: (key exnBlock)
[locals value-removed] ; value found if not absent
(set value-removed (self at:ifAbsent: key {(return (exnBlock value))}))
(set table (table reject: [block (assn) (key = (assn key))])) ; remove assoc
value-removed)

Because more than one association might have the same value, it makes no
sense to implement remove:ifAbsent:.
S540d. 〈other methods of class Dictionary S540b〉+≡ (S540a) ◁ S540c S541a ▷

(method remove:ifAbsent: (value exnBlock)
(self error: 'Dictionary-uses-remove:key:-not-remove:))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.1
Implementations
of some predefined

classes

S541

And because a dictionary requires not just a value but also a key, the only sen-
sible thing to add is an Association.
S541a. 〈other methods of class Dictionary S540b〉+≡ (S540a) ◁ S540d S541b ▷

(method add: (anAssociation)
(self at:put: (anAssociation key) (anAssociation value)))

A dictionary s̓ print method uses associationsDo:.
S541b. 〈other methods of class Dictionary S540b〉+≡ (S540a) ◁ S541a

(method print () [locals print-comma]
(set print-comma false)
(self printName)
(left-round print)
(self associationsDo:

[block (x) (space print)
(print-comma ifTrue: {(', print) (space print)})
(set print-comma true)
((x key) print) (space print)
('|--> print) (space print)
((x value) print)])

(space print)
(right-round print)
self)

Implementation of Array

In Smalltalk, arrays are one-dimensional and have a fixed size. The abstraction is a
mutable sequence indexed with integer keys, starting from 0. The representation is
primitive—an ML array. There is no representation invariant, and the abstraction
function is essentially the identity function.

Many of Array s̓ methods are primitive, including array creation and the at:,
at:put:, and size methods. These methods are defined in the interpreter, in
chunks S555f–S556b in Section U.2.3.
S541c. 〈collection classes S539c〉+≡ (S560c) ◁ S540a S546 ▷

(class Array
[subclass-of SequenceableCollection] ; representation is primitive
(class-method new: (size) (primitive arrayNew self size))
(class-method new () (self error: 'size-of-Array-must-be-specified))
(method size () (primitive arraySize self))
(method at: (key) (primitive arrayAt self key))
(method at:put: (key value) (primitive arrayUpdate self key value) self)
(method printName () nil) ; names of arrays aren't printed
〈other methods of class Array 670b〉

)

Since it s̓ not useful to create an array without specifying a size, I redefine class
method new so that it reports an error.

An array is mutable, but it has a fixed size, so trying to add or remove an ele-
ment is senseless. Because add: doesnʼt work, the inherited implementations of
select: and collect: donʼt work either. Writing implementations that do work is
Exercise 21 on page 728.
S541d. 〈other methods of class Array [[prototype]] S541d〉≡

(method select: (_) (self error: 'select-on-arrays-left-as-exercise))
(method collect: (_) (self error: 'collect-on-arrays-left-as-exercise))

Like lists, arrays have keys from 0 to size− 1. I iterate over the keys.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µSmalltalkU

S542

U.1.5 Class Number, plus powers and roots

Method squared is easy. Method raisedToInteger: computes xn using a stan-
dard algorithm that requires O(log n) multiplications. The algorithm has two base
cases, for x0 and x1.
S542a. 〈other methods of class Number S542a〉≡ (672a) S542b ▷

(method squared () (self * self))
(method raisedToInteger: (anInteger)

((anInteger = 0) ifTrue:ifFalse:
{(self coerce: 1)}
{((anInteger = 1) ifTrue:ifFalse: {self}

{(((self raisedToInteger: (anInteger div: 2)) squared) *
(self raisedToInteger: (anInteger mod: 2)))})}))

Our implementation of square root uses Newton-Raphson iteration. Given
input n, this algorithm uses an initial approximation x0 = 1 and improves it
stepwise. At step i, the improved approximation is xi = (xi−1 + n/xi−1)/2.
To know when to stop improving, we need a convergence condition, which exam-
ines xi and xi−1 and says when they are close enough to accept xi as the answer.1

Our convergence condition is |xi − xi−1| < ϵ. The default ϵ used in sqrt is 1/100
Using coerce: ensures we can use the same sqrt method for both fractions and
floats.
S542b. 〈other methods of class Number S542a〉+≡ (672a) ◁ S542a

(method sqrt () (self sqrtWithin: (self coerce: (1 / 100))))
(method sqrtWithin: (epsilon) [locals two x<i-1> x<i>]

; find square root of receiver within epsilon
(set two (self coerce: 2))
(set x<i-1> (self coerce: 1))
(set x<i> ((x<i-1> + (self / x<i-1>)) / two))
({(((x<i-1> - x<i>) abs) > epsilon)} whileTrue:

{(set x<i-1> x<i>)
(set x<i> ((x<i-1> + (self / x<i-1>)) / two))})

x<i>)

U.1.6 Implementation of integers

PERHAPS ALL WE REALLY NEED TO SEE HERE ARE THE THREE COERCIONS,
PLUS TAKE NOTE OF div: AND /.

S542c. 〈other methods of class Integer S542c〉≡ (672c) S542d ▷

When integers are divided, the result isnʼt an integer; it s̓ a fraction.
The integer method timesRepeat: executes a loop a finite number of times.

S542d. 〈other methods of class Integer S542c〉+≡ (672c) ◁ S542c
(method timesRepeat: (aBlock) [locals count]

((self isNegative) ifTrue: {(self error: 'negative-repeat-count)})
(set count self)
({(count != 0)} whileTrue:

{(aBlock value)
(set count (count - 1))}))

1The idea is that if xi ≈ xi−1, xi = (xi−1 + n/xi−1)/2 ≈ (xi + n/xi)/2, and solving yields
xi ≈

√
n.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.1
Implementations
of some predefined

classes

S543

The only concrete integer class built into µSmalltalk is SmallInteger. Almost
all its methods are primitive. They are defined in chunks S554c–S555a.
S543a. 〈numeric classes S543a〉≡ (S560c) S543b ▷

(class SmallInteger
[subclass-of Integer] ; primitive representation
(class-method new: (n) (primitive newSmallInteger self n))
(class-method new () (self new: 0))
(method negated () (0 - self))
(method print () (primitive printSmallInteger self))
(method + (n) (primitive + self n))
(method - (n) (primitive - self n))
(method * (n) (primitive * self n))
(method div: (n) (primitive div self n))
(method = (n) (primitive sameObject self n))
(method < (n) (primitive < self n))
(method > (n) (primitive > self n))

)

The primitives donʼt support mixed arithmetic, e.g., comparison of integers and
fractions. Writing better methods is a task you can do in Exercise 36 on page 731.

U.1.7 Implementation of floating-point numbers

The original Smalltalk systems were built on the Xerox Alto, the world s̓ first per-
sonal computer. Because the Alto had no hardware support for floating-point com-
putation, floating-point computations were done in software. The implementation
I present here would be suitable for such a machine (although more bits of preci-
sion in the mantissa would be welcome).

An object of class Float is an abstraction of a rational number. The representa-
tion is an integerm (the mantissa) combined with an integer e (the exponent), stored
in instance variables mant and exp. The abstraction function maps this represen-
tation to the number m · 10e. Both m and e can be negative. The representation
invariant guarantees that the absolute value of the mantissa is at most 215−1. The
invariant ensures that we can multiply two mantissas without overflow, even on an
implementation that provides only 31-bit small integers.2 The invariant is main-
tained with the help of a private normalize method: when a mantissas̓ magnitude
exceeds 215−1, the normalize method divides the mantissa by 10 and increments
the exponent until the mantissa is small enough. This operation loses precision; it
is the source of so-called “floating-point rounding error.” The possibility of round-
ing error implies that the answers obtained from floating-point arithmetic are ap-
proximate. This possibility is part of the specification of class Float, but specifying
exactly what “approximate” means is beyond the scope of this book.
S543b. 〈numeric classes S543a〉+≡ (S560c) ◁ S543a

(class Float
[subclass-of Number]
[ivars mant exp]
(class-method mant:exp: (m e) ((self new) initMant:exp: m e))
(method initMant:exp: (m e) ; private

(set mant m) (set exp e) (self normalize))
(method normalize () ; private

({((mant abs) > 32767)} whileTrue:
{(set mant (mant div: 10))
(set exp (exp + 1))})

2Some implementations of ML reserve one bit as a dynamic-type tag or as a tag for the garbage col-
lector.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µSmalltalkU

S544

self)
〈other methods of class Float S544a〉

)

Like the other numeric classes, Float must provide methods that give a binary
operation access to the representation of its argument.
S544a. 〈other methods of class Float S544a〉≡ (S543b) S544b ▷

(method mant () mant) ; private
(method exp () exp) ; private

Comparing two floats with different exponents is awkward, so instead I com-
pute their difference and compare it with zero. For this purpose, I add a private
method isZero.
S544b. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544a S544c ▷

(method < (x) ((self - x) isNegative))
(method = (x) ((self - x) isZero))
(method isZero () (mant = 0)) ; private

Negation is easy: answer a new float with a negated mantissa.
S544c. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544b S544d ▷

(method negated () (Float mant:exp: (mant negated) exp))

Method negated, together with the + method, also supports subtraction and
comparison. Because of the way methods are inherited and work with one another,
all the knowledge and effort required to add, subtract, or compare floating-point
numbers with different exponents is captured in the + method. It s̓ another victory
for inheritance.

The + method adds x′ = m′ ·10e′ to self, which is m ·10e. Its implementation
is based on the algebraic law m · 10e = (m · 10e−e′) · 10e′ . This law implies

m · 10e +m′ · 10e
′
= (m · 10e−e′ +m′) · 10e

′
.

I provide a naïve implementation which enforces e− e′ ≥ 0. This implementation
risks overflow, but at least overflow can be detected. A naïve implementation using
e − e′ ≤ 0 might well lose valuable bits of precision from m. A better implemen-
tation can be constructed using the ideas in Exercise 35.
S544d. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544c S544e ▷

(method + (x-prime)
((exp >= (x-prime exp)) ifTrue:ifFalse:

{(Float mant:exp: ((mant * (10 raisedToInteger: (exp - (x-prime exp)))) +
(x-prime mant))

(x-prime exp))}
{(x-prime + self)}))

Multiplication is much simpler: (m · 10e) · (m′ · 10e′) = (m ·m′) · 10e+e′ . The
product s̓ mantissa m ·m′ may be large, but the class method mant:exp: normal-
izes it.
S544e. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544d S544f ▷

(method * (x-prime)
(Float mant:exp: (mant * (x-prime mant)) (exp + (x-prime exp))))

We compute the reciprocal using the algebraic law

1

m · 10e
=

109

m · 109 · 10e
=

109

m
· 10−e−9.

Dividing 109 by m ensures we donʼt lose too much precision from m.
S544f. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544e S545a ▷

(method reciprocal ()
(Float mant:exp: (1000000000 div: mant) (-9 - exp)))

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.1
Implementations
of some predefined

classes

S545

Coercing converts to Float, and converting Float to Float is the identity.
S545a. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S544f S545b ▷

(method coerce: (aNumber) (aNumber asFloat))
(method asFloat () self)

When converting a float to another class of number, a negative exponent means
divide, and a nonnegative exponent means multiply.
S545b. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S545a S545c ▷

(method asInteger ()
((exp isNegative) ifTrue:ifFalse:

{(mant div: (10 raisedToInteger: (exp negated)))}
{(mant * (10 raisedToInteger: exp))}))

To get a fraction, we either put a power of 10 in the denominator, or we make a
product with 1 in the denominator.
S545c. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S545b S545d ▷

(method asFraction ()
((exp < 0) ifTrue:ifFalse:

{(Fraction num:den: mant (10 raisedToInteger: (exp negated)))}
{(Fraction num:den: (mant * (10 raisedToInteger: exp)) 1)}))

Unlike the sign tests in Fraction, the sign tests in Float arenʼt just an optimiza-
tion: the < method sends negative to a floating-point number, so the superclass
implementation of negative, which sends </ to self, would lead to infinite recur-
sion. Fortunately, the sign of a floating-point number is the sign of its mantissa, so
all three methods can be delegated to Integer.
S545d. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S545c S545e ▷

(method isNegative () (mant isNegative))
(method isNonnegative () (mant isNonnegative))
(method isStrictlyPositive () (mant isStrictlyPositive))

A floating-point number is printed as mx10^e. But we want to avoid printing a
number like 77 as 770x10^-1. So if the printmethod sees a number with a negative
exponent and a mantissa that is a multiple of 10,

it divides the mantissa by 10 and increases the exponent, continuing until the
exponent reaches zero or the mantissa is no longer a multiple of 10. As a result,
a whole number always prints as a whole number times 100, no matter what its
internal representation is.
S545e. 〈other methods of class Float S544a〉+≡ (S543b) ◁ S545d

(method print ()
(self print-normalize)
(mant print) ('x10^ print) (exp print)
(self normalize))

(method print-normalize ()
({((exp < 0) and: {((mant mod: 10) = 0)})} whileTrue:

{(set exp (exp + 1)) (set mant (mant div: 10))}))

U.1.8 Implementation of Set

Set is a concrete class: it has instances. And an instance of Set is an abstraction,
so all the technology from Chapter 9 comes into play: we need to know what is the
abstraction, what is the representation, what is the abstraction function, what is
the representation invariant, and what operations need to be implemented.

The abstraction is a set of objects. Like most other Smalltalk collections, a Set
is mutable; for example, sending add: to a set changes the set. The representation

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µSmalltalkU

S546

is a list containing the members of the set; that list is stored in a single instance vari-
able, members. The list is represented by a List object; this structure makes Set a
client of List, not a subclass or superclass. The abstraction function takes the list
of members and returns the set containing exactly those members. The represen-
tation invariant is that members contains no repeated elements.

The abstraction, representation, abstraction function, and invariant are as they
would be in a language with abstract data types. But the operations that need
to be implemented are different. It is true that a Set object needs to implement
everything in its interface, which means the entire Collection protocol. But it
doesnʼt do all the work itself: almost all of the protocol is implemented in class
Collection, and Set inherits those implementations. The only methods that
must be implemented in Set are the “subclass responsibility” methods do:, add:,
remove:ifAbsent:, =, and species, plus the private method printName.
S546. 〈collection classes S539c〉+≡ (S560c) ◁ S541c

(class Set
[subclass-of Collection]
[ivars members] ; list of elements [invariant: no repeats]
(class-method new () ((super new) initSet))
(method initSet () (set members (List new)) self) ; private
(method do: (aBlock) (members do: aBlock))
(method add: (item)

((members includes: item) ifFalse: {(members add: item)})
self)

(method remove:ifAbsent: (item exnBlock)
(members remove:ifAbsent: item exnBlock)
self)

(method = (s) [locals looks-similar]
(set looks-similar ((self size) = (s size)))
(looks-similar ifTrue:

{(self do: [block (x) ((s includes: x) ifFalse:
{(set looks-similar false)})])})

looks-similar)
)

To better understand how a concrete Collection class is implemented, let s̓ look
at each method.

• The class method new initializes the representation (to the empty list) by
means of private instance method initSet.

• Two of the five methods required of a subclass, do: and remove:ifAbsent:,
are implemented by sending the same message to members. We say these
messages are delegated to class List.

• The required add: method cannot be delegated to List, because a set must
avoid duplicates in members. To avoid duplicates, the add:method first sends
the includes: message to members; item is added members only if includes:
answers false. It would also work if add: sent the includes: message to
self, but because List might have an includes: method that is more effi-
cient than the default version that self inherits from Collection, Set sends
includes: to members instead.

• The required = method cannot be delegated, because two sets can be equiv-
alent even if their representations are not. Equivalence is independent of
order; two sets are equivalent if they contain the same elements. It is suf-
ficient to know that both sets are of the same size, and one contains all the
elements found in the other.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S547

In addition to the methods shown in the class definition, class Set inherits size,
isEmpty, includes:, print, and other methods from Collection.

U.2 INTERPRETER THINGS

Support for abstract syntax and values is pulled together in the same way as in the
other interpreters. But in µSmalltalk, both valueString and expString use the
className utility function, which I define here.
S547a. 〈abstract syntax and values for µSmalltalk S547a〉≡ (S547c)

〈support for µSmalltalk stack frames S551b〉
〈definitions of exp, rep, and class for µSmalltalk 694a〉
〈definitions of value and method for µSmalltalk 693〉
〈definition of def for µSmalltalk 695b〉
〈definition of unit_test for µSmalltalk S547b〉
〈definition of xdef (shared) generated automatically〉
fun className (CLASS {name, ...}) = name
〈definition of valueString for µSmalltalk S567c〉
〈definition of expString for µSmalltalk S569d〉

S547b. 〈definition of unit_test for µSmalltalk S547b〉≡ (S547a)
〈definition of unit_test for untyped languages (shared) generated automatically〉

| CHECK_PRINT of exp * string

And overall structure…
The evaluator is built on top of everything else, and finally 〈implementations

of µSmalltalk primitives and definition of initialBasis S559b〉 reads the initial ba-
sis, then closes the cycles by calling the functions from 〈support for bootstrapping
classes/values used during parsing S551d〉.

The code in the interpreter is organized so that the 〈support for bootstrapping
classes/values used during parsing S551d〉 is as early as possible, immediately following
the definition of 〈abstract syntax and values for µSmalltalk S547a〉 and the associated
utility functions. Afterward come parsing, primitives, and evaluation. The code
for 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉
comes almost at the end, just before the execution of the command line. The full
structure of the interpreter resembles the structure of the µScheme interpreter
shown in chunk S373a, with the addition of chunks for bootstrapping and for stack
tracing.

S547c. 〈usm.sml S547c〉≡
〈shared: names, environments, strings, errors, printing, interaction, streams, & initialization S237a〉

〈abstract syntax and values for µSmalltalk S547a〉
〈support for logging (for coverage analysis) S548a〉
〈utility functions on µSmalltalk classes, methods, and values S549c〉

〈support for bootstrapping classes/values used during parsing S551d〉

〈lexical analysis and parsing for µSmalltalk, providing filexdefs and stringsxdefs S560e〉

〈evaluation, testing, and the read-eval-print loop for µSmalltalk S559a〉

〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉
〈function runAs for µSmalltalk, which prints stack traces S568a〉
〈code that looks at command-line arguments and calls runAs to run the interpreter generated automatically〉
〈type assertions for µSmalltalk generated automatically〉

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CLASS 694c
type exp 696a

Supporting code
for µSmalltalkU

S548

S548a. 〈support for logging (for coverage analysis) S548a〉≡ (S547c)
val logging =
String.isSubstring ":log:" (":" ^ getOpt (OS.Process.getEnv "BPCOPTIONS", "") ^ ":")

fun q s = "\"" ^ s ^ "\""
val _ = if logging then println "val ops = ...\n" else ()

fun logSend srcloc msgname =
app print ["\nops.SEND { loc = ", q (srclocString srcloc)

, ", selector = ", q msgname, " }\n"]
fun logFind name candidate =
app print ["\nops.findMethod { selector = ", q name

, ", on = ", q (className candidate), "}\n"]

fun logClass name (ms : method list) =
let fun subclassExp (SEND (_, _, "subclassResponsibility", _)) = true

| subclassExp (BEGIN [e]) = subclassExp e
| subclassExp _ = false

val subclassM = subclassExp o #body
val methodNames = commaSep o map (q o #name)

in app print ["\nops.class { name = ", q name, ", methods = { " , methodNames ms
, " }, subclass_responsibilities = { "
, methodNames (List.filter subclassM ms), " } }\n"
]

end

fun logGetMethod class m =
app print ["\nops.getMethod { class = ", q class, ", method = ", q m, " }\n"]

fun logSetMethod class m =
app print ["\nops.setMethod { class = ", q class, ", method = ", q m, " }\n"]

The interpreter has one more circularity to manage. Before we can define val-
ues of the built-in classes, we have to define the classes themselves. And before
we can define the built-in classes, we have to define the primitives that are used
in those classes. But there are primitives that depend on nil, which is a value of
a built-in class! For example, when we create a new array, its contents are ini-
tially nil. To arrange for the right definitions to appear in the right order, I orga-
nize code for primitives and built-in classes in two layers.

The first layer includes chunks 〈MLfunctions forObject’s andUndefinedObject’s
primitives S537c〉 and 〈built-in classes Object and UndefinedObject generated automat-
ically〉. This code defines Object, which enables us to define UndefinedObject,
which enables us to define nilValue (the internal representation of nil). The sec-
ond layer includes chunks 〈ML code for remaining classes’ primitives S552d〉 and
〈remaining built-in classes generated automatically〉. They define all the other primitives
and built-in classes, some of which use nilValue.

S548b. 〈support for primitives and built-in classes S548b〉≡ (S559a)
〈utility functions for building primitives in µSmalltalk S552b〉
〈metaclass utilities S550c〉
〈ML functions for Object’s and UndefinedObject’s primitives S537c〉
〈utility functions for parsing internal method definitions S549a〉
〈built-in class Object 704a〉
〈built-in class UndefinedObject and value nilValue 704b〉
〈ML code for remaining classes’ primitives S552d〉
〈built-in classes Class and Metaclass 704d〉
〈metaclasses for built-in classes 703c〉

Order of definition:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S549

(object undef nilValue class metaclass
object-meta undef-meta class-meta meta-meta)

Utility functions for parsing internal method definitions

S549a. 〈utility functions for parsing internal method definitions S549a〉≡ (S548b)
val bogusSuperclass =
CLASS { name = "bogus superclass", super = NONE

, ivars = [], methods = ref [], class = ref PENDING
}

val internalMethodDefns = methodDefns (bogusSuperclass, bogusSuperclass)
fun internalMethods strings =
case (internalMethodDefns o internalParse parseMethods) strings
of ([], imethods) => imethods
| (_ :: _, _) => raise InternalError "primitive class has class methods"

Utilities

Function optimizedBind is an optimized version of bind, just like the one used in
Chapter 1. If a previous binding exists, it overwrites the previous binding and does
not change the environment. The optimization is safe only because no operation
in µSmalltalk makes a copy of the global environment.
S549b. 〈helper functions for evaluation S549b〉≡ (S559a)

fun optimizedBind (x, v, xi) =
let val loc = find (x, xi)
in (loc := v; xi)
end handle NotFound _ => bind (x, ref v, xi)

S549c. 〈utility functions on µSmalltalk classes, methods, and values S549c〉≡ (S547c) S549d ▷

fun valueSelector [] = "value"
| valueSelector args = concat (map (fn _ => "value:") args)

Utilities for manipulating classes

Because a class can point to its superclass, the type class has to be a recursive type
implemented as an ML datatype. To get access to information about a class, we
have to write a pattern match. When all we want is a class s̓ name or its unique
identifier, pattern matching is fairly heavy notation, so I provide two convenience
functions. The “...” notation in each pattern match tells the Standard ML compiler
that not all fields of the record in curly braces are mentioned, and the ones not
mentioned should be ignored.
S549d.

className : class -> name
classId : class -> metaclass ref

〈utility functions on µSmalltalk classes, methods, and values S549c〉+≡ (S547c) ◁ S549c S549e ▷

fun className (CLASS {name, ...}) = name
fun classId (CLASS {class, ...}) = class

We extract a methods̓ name using another convenience function, methodName.
Other manipulations of methods include renameMethod, which is used when a user
class wants to use a primitive method with a name other than the one I built in, and
methods, which builds an environment suitable for use in a class.
S549e.

methodName : method -> name
methodsEnv : method list -> method env

〈utility functions on µSmalltalk classes, methods, and values S549c〉+≡ (S547c) ◁ S549d S550a ▷

fun methodName ({ name, ... } : method) = name
fun methodsEnv ms = foldl (fn (m, rho) => bind (methodName m, m, rho)) emptyEnv ms

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

BEGIN 696a
bind 312b
CLASS 694c
className S547a
commaSep S239a
emptyEnv 311a
find 311b
InternalError

S366f
internalParse

S552c
type method 694d
methodDefns S550d
NotFound 311b
parseMethodsS563d
PENDING 694c
println S238a
SEND 696a
srclocStringS254d

Supporting code
for µSmalltalkU

S550

In general, I make a new class by calling mkClass, which checks to be sure that
no instance variable is repeated. Each class is uniquely identified by its class field,
which points to a unique mutable location.
S550a.

mkClass : name -> metaclass -> class -> name list -> method list -> class
〈utility functions on µSmalltalk classes, methods, and values S549c〉+≡ (S547c) ◁ S549e

fun mkClass name meta super ivars ms =
(〈if any name in ivars repeats a name declared in a superclass, raise RuntimeError S550b〉
; CLASS { name = name, super = SOME super, ivars = ivars

, methods = ref (methodsEnv ms), class = ref meta }
)

S550b. 〈if any name in ivars repeats a name declared in a superclass, raise RuntimeError S550b〉≡ (S550a)
let fun checkDuplicateIvar (SOME (CLASS { name = c', ivars, super, ... })) x =

if member x ivars then
raise RuntimeError ("Instance variable " ^ x ^ " of class " ^ name ^

" duplicates a variable of superclass " ^ c')
else
checkDuplicateIvar super x

| checkDuplicateIvar NONE x = ()
in app (checkDuplicateIvar (SOME super)) ivars
end

S550c. 〈metaclass utilities S550c〉≡ (S548b)
fun setMeta (CLASS { class = m as ref PENDING, ... }, meta) = m := META meta
| setMeta (CLASS { class = ref (META _), ... }, _) =

raise InternalError "double patch"

• Value super is the superclass from which the new class inherits; superMeta
is super s̓ metaclass. Class super is bound into user-defined instance meth-
ods, and class superMeta is bound into user-defined class methods. These
bindings guarantee that every message sent to SUPER arrives at the proper
destination.

• Function method builds the representation of a method from its syntax.

• Function addMethodDefn processes each method definition, adding it either
to the list of class methods or to the list of instance methods for the new
class. To accumulate these lists and place them in imethods and cmethods,
I apply foldr to addMethodDefn, a pair of empty lists, and the list of method
definitions ms.

S550d.

methodDefns : class * class -> method_def list -> method list * method list
method : method_def -> method

〈ML functions for Object’s and UndefinedObject’s primitives S537c〉+≡ (S548b) ◁ S537c S551a ▷

fun methodDefns (superMeta, super) ms =
let fun method { flavor, name, formals, locals, body } =

{ name = name, formals = formals, body = body, locals = locals
, superclass = case flavor of IMETHOD => super

| CMETHOD => superMeta
}

fun addMethodDefn (m as { flavor = CMETHOD, ... }, (c's, i's)) = (method m :: c's, i's)
| addMethodDefn (m as { flavor = IMETHOD, ... }, (c's, i's)) = (c's, method m :: i's)

in foldr addMethodDefn ([], []) ms
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S551

The object named as a superclass must in fact represent a class, so its repre-
sentation must be CLASSREP c, where c is the class it represents. That object is an
instance of its metaclass. Function findClass returns the metaclass and the class.
S551a.

findClass : name * value ref env -> class * class
〈ML functions for Object’s and UndefinedObject’s primitives S537c〉+≡ (S548b) ◁ S550d S553d ▷

fun findClass (supername, xi) =
case !(find (supername, xi))
of (meta, CLASSREP c) => (meta, c)
| v => raise RuntimeError ("object " ^ supername ^ " = " ^ valueString v ^

" is not a class")

U.2.1 Stack frames

S551b. 〈support for µSmalltalk stack frames S551b〉≡ (S547a)
datatype frame = FN of int
local
val next_f = ref 0

in
fun newFrame () = FN (!next_f) before next_f := !next_f + 1

end

type active_send = { method : name, class : name, loc : srcloc }

val noFrame = newFrame () (* top level, unit tests, etc... *)

fun activeSendString { method, class, loc = (file, line) } =
let val obj = if String.isPrefix "class " class then class

else "an object of class " ^ class
in concat [file, ", line ", intString line, ": ", "sent '", method, "' to ", obj]
end

fun raString (FN n) = "F@-" ^ intString n

S551c. 〈reraise Return, adding msgname, class, and loc to unwound S551c〉≡ (697b)
let val this = { method = msgname, class = className class, loc = srcloc }
in raise Return { value = v, to = F', unwound = this :: unwound }
end

U.2.2 Bootstrapping

Blocks I use the technique again for blocks. I could actually get away with-
out bootstrapping the Block class, but by defining Block and Boolean together,
I clarify their relationship, especially the implementations of the whileTrue: and
whileFalse: methods.
S551d.

mkBlock : name list * exp list * value ref env * class * frame -> value
〈support for bootstrapping classes/values used during parsing S551d〉≡ (S547c) S557a ▷

local
val blockClass = ref NONE : class option ref

in
fun mkBlock c = (valOf (!blockClass), CLOSURE c)
handle Option =>

raise InternalError
"Bad blockClass; evaluated block expression in predefined classes?"

fun saveBlockClass xi =
blockClass := SOME (findClass ("Block", xi))

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

CLASS 694c
type class 694c
class 697b
className S549d
CLASSREP 694a
CLOSURE 694a
CMETHOD 695b
find 311b
findClass 706b
IMETHOD 695b
InternalError

S366f
intString S238f
logClass S548a
logging S548a
member S240b
META 694c
methodsEnv S549e
msgname 697b
type name 310a
PENDING 694c
Return 695a
RuntimeErrorS366c
srcloc 697b
unwound 697b
valueString S567c

Supporting code
for µSmalltalkU

S552

U.2.3 Primitives

To find a primitive by name, I look it up in the association list primitives.
S552a. 〈definition of primitives S552a〉≡ (S559a)

val primitives = 〈primitives for µSmalltalk :: S537b〉 nil

Utilities for creating primitives

Most primitives are created directly from ML functions. As in the interpreter for
µScheme (Chapter 5), I build what I need in stages. Here I first turn unary and
binary functions into primitives, then turn primitives into methods.
S552b.

unaryPrim : (value -> value) -> primitive
binaryPrim : (value * value -> value) -> primitive

〈utility functions for building primitives in µSmalltalk S552b〉≡ (S548b) S552c ▷

type primitive = value list * value ref env -> value
fun arityError n args =
raise RuntimeError ("primitive expected " ^ intString n ^

" arguments; got " ^ intString (length args))
fun unaryPrim f = (fn ([a], _) => f a | (vs, _) => arityError 0 vs) : primitive
fun binaryPrim f = (fn ([a, b], _) => f (a, b) | (vs, _) => arityError 1 vs) : primitive

A few primitives are more easily created as user methods. To make it easy to
create user methods I define function userMethod. There is one dodgy bit: the
superclass field of the user method. Because this class is used only to define the
meaning of messages to super, and because none of my predefined user methods
sends messages to super, I can get away with a bogus superclass that understands
no messages. The bogus superclass is not the actual superclass of the class where
the method will be used, but no program can tell the difference.

Function internalExp is an auxiliary function used to parse a string into ab-
stract syntax; it calls parser exp from Section U.3.2.
S552c.

internalParse : 'a parser -> string list -> 'a
〈utility functions for building primitives in µSmalltalk S552b〉+≡ (S548b) ◁ S552b

fun internalParse parser ss =
let val synopsis = case ss of [s] => s

| ["(begin ", s, ")"] => s
| s :: ss => s ^ "..."
| [] => ""

val name = "internal syntax"
val input = interactiveParsedStream (smalltalkToken, parser)

(name, streamOfList ss, noPrompts)
exception BadUserMethodInInterpreter of string (* can't be caught *)

in case streamGet input
of SOME (e, _) => e
| NONE => (app eprintln ("Failure to parse:" :: ss)

; raise BadUserMethodInInterpreter (concat ss))
end

The class primitives take both the metaclass and the class as arguments.
S552d.

classPrim : (class * class -> value) -> primitive
〈ML code for remaining classes’ primitives S552d〉≡ (S548b) S552e ▷

fun classPrim f =
unaryPrim (fn (meta, CLASSREP c) => f (meta, c)

| _ => raise RuntimeError "class primitive sent to non-class")

S552e. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S552d S553a ▷
fun superclassObject (_, CLASS { super = NONE, ... }) = nilValue
| superclassObject (_, CLASS { super = SOME c, ... }) = classObject c

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S553

Arithmetic with overflow

The implementations of the primitives are easy; we try to build a block containing
the result, but if the computation overflows, we answer the overflow block instead.
S553a. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S552e S554c ▷

fun withOverflow binop ([(_, NUM n), (_, NUM m), ovflw], xi) =
(mkBlock ([], [VALUE (mkInteger (binop (n, m)))], emptyEnv, objectClass, noFrame)
handle Overflow => ovflw)

| withOverflow _ ([_, _, _], _) =
raise RuntimeError "numeric primitive with overflow expects numbers"

| withOverflow _ _ =
raise RuntimeError "numeric primitive with overflow expects 3 arguments"

S553b. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S538c S553c ▷
("addWithOverflow", withOverflow op +) ::
("subWithOverflow", withOverflow op -) ::
("mulWithOverflow", withOverflow op *) ::

Hashing

S553c. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S553b S555a ▷
("hash", unaryPrim (fn (_, SYM s) => mkInteger (fnvHash s)

| v => raise RuntimeError "hash primitive expects a symbol")) ::

Object primitives

Object identity My primitive method decides whether objects are identical by com-
paring their representations. Here s̓ how I justify the cases:

• ML equality on arrays is object identity.

• Because numbers and symbols are immutable in both Smalltalk and ML,
I can use ML equality on numbers and symbols, and it appears to the
µSmalltalk programmer that I am using object identity.

• The USER representation is an environment containing mutable reference
cells. MLs̓ ref function is also generative, so ML equality on ref cells is object
identity. Comparing the representation of two USER objects compares their
instance-variable environments, which are equal only if they contain the
same ref cells, which is possible only if they represent the same µSmalltalk
object.

• Blocks, which are represented as closures, canʼt easily be compared, because
the body of a block may contain a literal primitive function, and ML equality
canʼt compare functions. A block is therefore not equal to anything, not even
itself.

• Two classes are the same object if and only if they have the same unique
identifier.

S553d.

eqRep : value * value -> bool
〈ML functions for Object’s and UndefinedObject’s primitives S537c〉+≡ (S548b) ◁ S551a S554a ▷

fun eqRep ((cx, x), (cy, y)) =
classId cx = classId cy andalso
case (x, y)
of (ARRAY x, ARRAY y) => x = y
| (NUM x, NUM y) => x = y
| (SYM x, SYM y) => x = y

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

ARRAY 694a
CLASS 694c
classId S549d
classObject 703b
CLASSREP 694a
CLOSURE 694a
emptyEnv 311a
type env 310b
eprintln S238a
fnvHash S239c
fst S263d
interactiveParsed-

Stream
S280b

intString S238f
mkBlock S551d
mkInteger 706a
nilValue 704c
noFrame S551b
noPrompts S280a
NUM 694a
objectClass 704a
println S238a
RuntimeErrorS366c
smalltalkToken

S561c
streamGet S250b
streamOfListS250c
SYM 694a
USER 694a
VALUE 696a
type value 693

Supporting code
for µSmalltalkU

S554

| (USER x, USER y) => x = y
| (CLOSURE x, CLOSURE y) => false
| (CLASSREP x, CLASSREP y) => classId x = classId y
| _ => false

Printing By default, an object prints as its class name in angle brackets.

Class membership For memberOf, the class c of self has to be the same as the
class c' of the argument. For kindOf, it just has to be a subclass.
S554a. 〈ML functions for Object’s and UndefinedObject’s primitives S537c〉+≡ (S548b) ◁ S553d S554b ▷

fun memberOf ((c, _), (_, CLASSREP c')) = mkBoolean (classId c = classId c')
| memberOf _ = raise RuntimeError "argument of isMemberOf: must be a class"

fun kindOf ((c, _), (_, CLASSREP (CLASS {class=u', ...}))) =
let fun subclassOfClassU' (CLASS {super, class=u, ... }) =

u = u' orelse (case super of NONE => false | SOME c => subclassOfClassU' c)
in mkBoolean (subclassOfClassU' c)
end

| kindOf _ = raise RuntimeError "argument of isKindOf: must be a class"

The error: primitive raises RuntimeError.
S554b. 〈ML functions for Object’s and UndefinedObject’s primitives S537c〉+≡ (S548b) ◁ S554a

fun error (_, (_, SYM s)) = raise RuntimeError s
| error (_, (c, _)) =

raise RuntimeError ("error: got class " ^ className c ^ "; expected Symbol")

Integer primitives

Integers print using the intString function defined in Appendix I.
S554c. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S553a S554d ▷

fun printInt (self as (_, NUM n)) = (xprint (intString n); self)
| printInt _ = raise RuntimeError ("cannot print when object inherits from Int")

The also support UTF-8 printing.
S554d. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S554c S554e ▷

fun printu (self as (_, NUM n)) = (printUTF8 n; self)
| printu _ = raise RuntimeError ("receiver of printu is not a small integer")

A binary integer operation created with arith expects as arguments two in-
tegers m and n; it applies an operator to them and uses a creator function mk to
convert the result to a value. I use binaryInt to build arithmetic and comparison.
S554e.

binaryInt : ('a -> value) -> (int * int -> 'a) -> value * value -> value
arithop : (int * int -> int) -> primitive
intcompare : (int * int -> bool) -> primitive

〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S554d S554f ▷

fun binaryInt mk operator ((_, NUM n), (_, NUM m)) = mk (operator (n, m))
| binaryInt _ _ ((_, NUM n), (c, _)) =

raise RuntimeError ("numeric primitive expected numeric argument, got <"
^ className c ^ ">")

| binaryInt _ _ ((c, _), _) =
raise RuntimeError ("numeric primitive method defined on <" ^ className c ^ ">")

fun arithop operator = binaryPrim (binaryInt mkInteger operator)
fun intcompare operator = binaryPrim (binaryInt mkBoolean operator)

To create a new integer, you must pass the integer class, plus an argument that
is represented by an integer.
S554f. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S554e S555b ▷

fun newInteger ((_, CLASSREP c), (_, NUM n)) = (c, NUM n)
| newInteger _ = raise RuntimeError ("made new integer with non-int or non-class")

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S555

Here are the primitive operations on small integers.
S555a. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S553c S555d ▷

("newSmallInteger", binaryPrim newInteger) ::
("+", arithop op +) ::
("-", arithop op -) ::
("*", arithop op *) ::
("div", arithop op div) ::
("<", intcompare op <) ::
(">", intcompare op >) ::
("printSmallInteger", unaryPrim printInt) ::
("printu", unaryPrim printu) ::

In chunk S543a, these primitives are used to define class SmallInteger.

Symbol primitives

A symbol prints as its name, with no leading '.
S555b. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S554f S555c ▷

fun printSymbol (self as (_, SYM s)) = (xprint s; self)
| printSymbol _ = raise RuntimeError "cannot print when object inherits from Symbol"

To create a new symbol, you must pass an argument that is represented by a
symbol.
S555c. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S555b S555f ▷

fun newSymbol ((_, CLASSREP c), (_, SYM s)) = (c, SYM s)
| newSymbol _ = raise RuntimeError ("made new symbol with non-symbol or non-class")

S555d. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S555a S556b ▷

("printSymbol", unaryPrim printSymbol) ::
("newSymbol", binaryPrim newSymbol) ::

There is no need to create Symbol internally, so we put it in the initial basis.
S555e. 〈predefined µSmalltalk classes and values S538b〉+≡ ◁ S538b S557f ▷

(class Symbol
[subclass-of Object] ; internal representation
(class-method new () (self error: 'can't-send-new-to-Symbol))
(class-method new: (aSymbol) (primitive newSymbol self aSymbol))
(method print () (primitive printSymbol self))
(method hash () (primitive hash self))

)

Array primitives

The primitive operations on arrays are creation, subscript, update, and size.
A new array contains all nil.

S555f. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S555c S555g ▷
fun newArray ((_, CLASSREP c), (_, NUM n)) = (c, ARRAY (Array.array (n, nilValue)))
| newArray _ = raise RuntimeError "Array new sent to non-class or got non-integer"

To create primitives that expect self to be an array, we define arrayPrimitive.
S555g.

arrayPrimitive : (value array * value list -> value) -> primitive
〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S555f S556a ▷

fun arrayPrimitive f ((c, ARRAY a) :: vs, _) = f (a, vs)
| arrayPrimitive f _ = raise RuntimeError "Array primitive used on non-array"

fun arraySize (a, []) = mkInteger (Array.length a)
| arraySize (a, vs) = arityError 0 vs

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arityError S552b
ARRAY 694a
binaryPrim S552b
CLASS 694c
classId S549d
className S549d
CLASSREP 694a
intString S238f
mkBoolean 706c
mkInteger 706a
nilValue 704c
NUM 694a
printUTF8 S239b
RuntimeErrorS366c
SYM 694a
unaryPrim S552b
xprint S238b

Supporting code
for µSmalltalkU

S556

The array primitives for at: and at:put: use Standard MLs̓ Array module.
S556a. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S555g S556c ▷

fun arrayAt (a, [(_, NUM n)]) = Array.sub (a, n)
| arrayAt (_, [_]) = raise RuntimeError "Non-integer used as array subscript"
| arrayAt (_, vs) = arityError 1 vs

fun arrayUpdate (a, [(_, NUM n), x]) = (Array.update (a, n, x); nilValue)
| arrayUpdate (_, [_, _]) = raise RuntimeError "Non-integer used as array subscript"
| arrayUpdate (_, vs) = arityError 2 vs

Here are all the primitive array methods.
S556b. 〈primitives for µSmalltalk :: S537b〉+≡ (S552a) ◁ S555d

("arrayNew", binaryPrim newArray) ::
("arraySize", arrayPrimitive arraySize) ::
("arrayAt", arrayPrimitive arrayAt) ::
("arrayUpdate", arrayPrimitive arrayUpdate) ::

In chunk S541c, these primitive methods are used to define class Array.

Block primitives

Class primitives

Showing protocols The showProtocol function helps implement the protocol and
localProtocol primitives, which are defined on class Class. Its implementation
is not very interesting. Function insert helps implement an insertion sort, which
we use to present methods in alphabetical order.
S556c. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S556a S557b ▷

local
fun showProtocol doSuper kind c =
let fun member x l = List.exists (fn x' : string => x' = x) l

fun insert (x, []) = [x]
| insert (x, (h::t)) =

case compare x h
of LESS => x :: h :: t
| EQUAL => x :: t (* replace *)
| GREATER => h :: insert (x, t)

and compare (name, _) (name', _) = String.compare (name, name')
fun methods (CLASS { super, methods = ref ms, name, ... }) =

if not doSuper orelse (kind = "class-method" andalso name = "Class") then
foldl insert [] ms

else
foldl insert (case super of NONE => [] | SOME c => methods c) ms

fun show (name, { formals, ... } : method) =
app xprint ["(", kind, " ", name,

" (", spaceSep formals, ") ...)\n"]
in app show (methods c)
end

in
fun protocols all (meta, c) =
(showProtocol all "class-method" meta
; showProtocol all "method" c
; (meta, CLASSREP c)
)

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S557

S557a. 〈support for bootstrapping classes/values used during parsing S551d〉+≡ (S547c) ◁ S551d
local
val compiledMethodClass = ref NONE : class option ref

in
fun mkCompiledMethod m = (valOf (!compiledMethodClass), METHODV m)
handle Option =>
raise InternalError "Bad compiledMethodClass"

fun saveCompiledMethodClass xi =
compiledMethodClass := SOME (findClass ("CompiledMethod", xi))

end

S557b. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S556c S557c ▷
fun methodNames (_, CLASS { methods, ... }) = mkArray (map (mkSymbol o fst) (!methods))

S557c. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S557b S557d ▷

fun getMethod ((_, CLASSREP (c as CLASS { methods, name, ... })), (_, SYM s)) =
(mkCompiledMethod (find (s, !methods))
handle NotFound _ =>
raise RuntimeError ("class " ^ className c ^ " has no method " ^ s))

before (if logging then logGetMethod name s else ())
| getMethod ((_, CLASSREP _), _) =

raise RuntimeError "getMethod primitive given non-name"
| getMethod _ =

raise RuntimeError "getMethod primitive given non-class"

S557d. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S557c S557e ▷
fun removeMethod ((_, CLASSREP (c as CLASS { methods, ... })), (_, SYM s)) =

(methods := List.filter (fn (m, _) => m <> s) (!methods); nilValue)
| removeMethod ((_, CLASSREP _), _) =

raise RuntimeError "removeMethod primitive given non-name"
| removeMethod _ =

raise RuntimeError "removeMethod primitive given non-class"

S557e. 〈ML code for remaining classes’ primitives S552d〉+≡ (S548b) ◁ S557d
fun setMethod [(_, CLASSREP c), (_, SYM s), (_, METHODV m)] =

let val CLASS { methods, super, name = cname, ... } = c
val superclass = case super of SOME s => s | NONE => c (* bogus *)
val { name = _, formals = xs, locals = ys, body = e, superclass = _ } = m
val m' = { name = s, formals = xs, locals = ys, body = e

, superclass = superclass }
val _ = if arity s = length xs then ()

else raise RuntimeError ("compiled method with " ^
countString xs "argument" ^
" cannot have name `" ^ s ^ "`")

val _ = if logging then logSetMethod cname s else ()
in (methods := bind (s, m', !methods); nilValue)
end

| setMethod [(_, CLASSREP _), (_, SYM s), m] =
raise RuntimeError ("setMethod primitive given non-method " ^ valueString m)

| setMethod [(_, CLASSREP _), s, _] =
raise RuntimeError ("setMethod primitive given non-symbol " ^ valueString s)

| setMethod [c, _, _] =
raise RuntimeError ("setMethod primitive given non-class " ^ valueString c)

| setMethod _ =
raise RuntimeError "setMethod primitive given wrong number of arguments"

S557f. 〈predefined µSmalltalk classes and values S538b〉+≡ ◁ S555e S560c ▷
(class CompiledMethod
[subclass-of Object]

)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

arity S561d
arityError S552b
arrayPrimitive

S555g
arraySize S555g
binaryPrim S552b
bind 312b
CLASS 694c
type class 694c
className S549d
CLASSREP 694a
countString S238g
find 311b
findClass 706b
fst S263d
InternalError

S366f
logGetMethodS548a
logging S548a
logSetMethodS548a
type method 694d
METHODV 694a
mkArray 706a
mkSymbol 706a
newArray S555f
nilValue 704c
NotFound 311b
NUM 694a
RuntimeErrorS366c
spaceSep S239a
SYM 694a
valueString S567c
xprint S238b

Supporting code
for µSmalltalkU

S558

U.2.4 Evaluation tracing

The trace function is given an action with which to perform the send; action is
run by applying to the empty tuple. If tracing is enabled, trace emits two trac-
ing messages: one before and one after running the action. The job of knowing
whether tracing is enabled, and of emitting messages if so, is delegated to func-
tions traceIndent and traceOutdent, each of which takes a tracing action of the
form fn () => …, which is executed only if tracing is enabled.
S558a. 〈definition of function trace S558a〉≡ (697b)

fun trace action =
let val (file, line) = srcloc

val () =
traceIndent (msgname, (file, line)) xi (fn () =>
let val c = className startingClass

val obj = if String.isPrefix "class " c then c
else "an object of class " ^ c

in [file, ", line ", intString line, ": ",
"Sending message (", spaceSep (msgname :: map valueString vs), ")",
" to ", obj]

end)
fun traceOut answer =
answer before
outdentTrace xi (fn () =>

[file, ", line ", intString line, ": ",
"(", spaceSep (valueString obj :: msgname :: map valueString vs), ")",
" = ", valueString answer])

fun traceReturn r =
(outdentTrace xi (fn () =>

[file, ", line ", intString line, ": ",
"(", spaceSep (valueString obj :: msgname :: map valueString vs), ")",
" terminated by return"])

; raise Return r
)

in traceOut (action ()) handle Return r => traceReturn r
end

Functions traceIndent and outdentTrace, are defined in 〈exposed tracing func-
tions S566b〉. This chunk also defines function eprintlnTrace, which is called from
chunks S559c and S568a to show the stack of active message sends after a run-time
error.

U.2.5 Evaluating extended definitions

Extended definitions are evaluated using the reusable code presented in Chapter 5.
Like µScheme, µSmalltalk works with a single top-level environment, which maps
each name to a mutable location holding a value. “Processing” a definition means
evaluating it, then showing the result by sending println to the defined value. The
default println method calls the object s̓ print method, which you can redefine.
S558b. 〈evaluation, basis, and processDef for µSmalltalk S558b〉≡ (S559a)

type basis = value ref env
fun processDef (d, xi, interactivity) =
let val (xi', v) = evaldef (d, xi)

val _ = if prints interactivity then
ignore (eval (SEND (nullsrc, VALUE v, "println", []),

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.2
Interpreter things

S559

emptyEnv, objectClass, noFrame, xi'))
else
()

in xi'
end

The source location nullsrc identifies the SEND as something generated internally,
rather than read from a file or a list of strings.

Extended definitions are evaluated by the shared read-eval-print loop. And be-
cause of the way primitives are used in the evaluator, it needs more supporting
code than in other bridge languages.
S559a. 〈evaluation, testing, and the read-eval-print loop for µSmalltalk S559a〉≡ (S547c)

〈shared definition of withHandlers generated automatically〉
〈support for primitives and built-in classes S548b〉
〈definition of newClassObject and supporting functions 703a〉
〈functions for managing and printing a µSmalltalk stack trace S565b〉
〈definition of primitives S552a〉
〈helper functions for evaluation S549b〉
〈definition of the Return exception 695a〉
〈evaluation, basis, and processDef for µSmalltalk S558b〉
〈shared unit-testing utilities S246d〉
〈definition of testIsGood for µSmalltalk S568b〉
〈shared definition of processTests S247b〉
〈shared read-eval-print loop and processPredefined generated automatically〉

U.2.6 Initializing, bootstrapping, and running the interpreter

The first entries in the initial basis are the primitive classes. Each one needs a
metaclass to be an instance of. To be faithful to Smalltalk, the subclass relation-
ships of the metaclasses should be isomorphic to the subclass relationships of the
classes. This is true for user-defined classes created with newClassObject, but on
the primitive classes, I cheat: the metaclasses for UndefinedObject and Class in-
herit directly from Class, not from Object s̓ metaclass.
S559b. 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉≡ (S547c) S559c ▷

val initialXi = emptyEnv

fun addClass (c, xi) = bind (className c, ref (classObject c), xi)
val initialXi =
foldl addClass initialXi [objectClass, nilClass, classClass, metaclassClass]

The next entries are the predefined classes. To help debugging, I define func-
tion errmsg to identify an error as originating in a predefined class and to use
eprintlnTrace instead of eprintln, so that if an error occurs, a stack trace is
printed.
S559c. 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉+≡ (S547c) ◁ S559b S560a ▷

val initialXi =
let val xdefs =

stringsxdefs ("predefined classes",
〈predefined µSmalltalk classes and values, as strings (from chunk 664)〉)

fun errmsg s = eprintlnTrace ("error in predefined class: " ^ s)
in readEvalPrintWith errmsg (xdefs, initialXi, noninteractive)

before (if logging then print "\nops.predefined_ends ()\n" else ())
end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

bind 312b
classClass 704d
className S549d
classObject 703b
emptyEnv 311a
type env 310b
eprintlnTrace

S566b
eval 696b
evaldef 701c
fst S263d
intString S238f
logging S548a
metaclassClass

704d
msgname 697b
nilClass 704b
noFrame S551b
noninteractive

S368c
nullsrc S560f
obj 697b
objectClass 704a
outdentTraceS566b
println S238a
prints S368c
readEvalPrintWith

S369c
Return 695a
SEND 696a
spaceSep S239a
srcloc 697b
startingClass

697b
stringsxdefsS254c
traceIndent S566b
VALUE 696a
type value 693
valueString S567c
xi 696b

Supporting code
for µSmalltalkU

S560

Before we can close the cycles, we have to create VAL bindings for true and
false. Because the parser prevents user code from binding true and false,
we canʼt do this in µSmalltalk; the val bindings are written in ML.
S560a. 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉+≡ (S547c) ◁ S559c S560b ▷

local
fun newInstance classname = SEND (nullsrc, VAR classname, "new", [])

in
val initialXi = processPredefined (VAL ("true", newInstance "True"), initialXi)
val initialXi = processPredefined (VAL ("false", newInstance "False"), initialXi)

end

Once weʼve read the class definitions, we can close the cycles, update the ref
cells, and weʼre almost ready to go. By this time, all the necessary classes should
be defined, so if any cycle fails to close, we halt the interpreter with a fatal error.
S560b. 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉+≡ (S547c) ◁ S560a S560d ▷

val _ =
(saveLiteralClasses initialXi
; saveTrueAndFalse initialXi
; saveBlockClass initialXi
; saveCompiledMethodClass initialXi
) handle NotFound n =>

(app eprint ["Fatal error: ", n, " is not predefined\n"]
; raise InternalError "this can't happen"
)

| e => (eprintln "Error binding predefined classes into interpreter"; raise e)

The numeric and collection classes are in the initial basis.
S560c. 〈predefined µSmalltalk classes and values S538b〉+≡ ◁ S557f

〈numeric classes S543a〉
〈predefined µSmalltalk classes and values that use numeric literals S538e〉
〈collection classes S539c〉

The last step of initialization is to bind the predefined value nil. Like bindings
for true and false, a val binding for nil canʼt be parsed, so the binding is written
in ML.
S560d. 〈implementations of µSmalltalk primitives and definition of initialBasis S559b〉+≡ (S547c) ◁ S560b

val initialXi = processPredefined (VAL ("nil", VALUE nilValue), initialXi)
val initialBasis = initialXi

U.3 LEXING AND PARSING

S560e. 〈lexical analysis and parsing for µSmalltalk, providing filexdefs and stringsxdefs S560e〉≡ (S547c)
〈lexical analysis for µSmalltalk S560f〉
〈parsers for single µSmalltalk tokens S562a〉
〈parsers and parser builders for formal parameters and bindings generated automatically〉
〈parsers and xdef streams for µSmalltalk S561d〉
〈shared definitions of filexdefs and stringsxdefs S254c〉

U.3.1 Lexical analysis

There are two reasons we canʼt reuse µScheme s̓ lexer for µSmalltalk: µSmalltalk
treats curly braces as syntactic sugar for parameterless blocks, and µSmalltalk
keeps track of source-code locations. Aside from these details, the lexers are the
same.

A source-code location includes a name for the source, plus line number.
S560f. 〈lexical analysis for µSmalltalk S560f〉≡ (S560e) S561a ▷

val nullsrc : srcloc = ("internally generated SEND node", 1)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.3
Lexing and parsing

S561

The representation of a token is almost the same as in µScheme. The differ-
ences are that there are two kinds of brackets, and that a # character does not in-
troduce a Boolean.
S561a. 〈lexical analysis for µSmalltalk S560f〉+≡ (S560e) ◁ S560f S561b ▷

datatype pretoken = INTCHARS of char list
| NAME of name
| QUOTE of string option (* symbol or array *)

type token = pretoken plus_brackets

To produce error messages, we must be able to convert a token back to a string.
S561b. 〈lexical analysis for µSmalltalk S560f〉+≡ (S560e) ◁ S561a S561c ▷

fun pretokenString (INTCHARS ds) = implode ds
| pretokenString (NAME x) = x
| pretokenString (QUOTE NONE) = "'"
| pretokenString (QUOTE (SOME s)) = "'" ^ s

S561c.

smalltalkToken : token lexer
〈lexical analysis for µSmalltalk S560f〉+≡ (S560e) ◁ S561b

local
val nondelims = many1 (sat (not o isDelim) one)

fun validate NONE = NONE (* end of line *)
| validate (SOME (#";", cs)) = NONE (* comment *)
| validate (SOME (c, cs)) =

let val msg = "invalid initial character in `" ^
implode (c::listOfStream cs) ^ "'"

in SOME (ERROR msg, EOS) : (pretoken error * char stream) option
end

in
val smalltalkToken =
whitespace *> bracketLexer (

(QUOTE o SOME o implode) <$> (eqx #"'" one *> nondelims)
<|> QUOTE NONE <$ eqx #"'" one
<|> INTCHARS <$> intChars isDelim
<|> (NAME o implode) <$> nondelims
<|> (validate o streamGet)
)

end

U.3.2 Parsing

Smalltalk has simple rules for computing the arity of a message based on the mes-
sage s̓ name: if the name is symbolic, the message is binary (one receiver, one ar-
gument); if the name is alphanumeric, the number of arguments is the number of
colons. Unfortunately, in µSmalltalk a name can mix alphanumerics and symbols.
To decide the issue, we use the first character of a message s̓ name.
S561d. 〈parsers and xdef streams for µSmalltalk S561d〉≡ (S560e) S562b ▷

fun arity name =
let val cs = explode name
in if Char.isAlpha (hd cs) then

length (List.filter (fn c => c = #":") cs)
else
1

end

fun arityOk name args = arity name = length args

fun arityErrorAt loc what msgname args =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<$> S263b
<|> S264a
bracketLexerS271b
EOS S250a
eprint S238a
eprintln S238a
eqx S266b
ERROR S243b
type error S243b
errorAt S256a
initialXi S559c
intChars S270b
InternalError

S366f
intString S238f
isDelim S268c
listOfStreamS250d
many1 S267c
type name 310a
nilValue 704c
NotFound 311b
one S265a
processPredefined

S369a
sat S266a
saveBlockClass

S551d
saveCompiled-

MethodClass
S557a

saveLiteralClasses
706b

saveTrueAndFalse
706c

SEND 696a
type stream S250a
streamGet S250b
VAL 695b
VALUE 696a
VAR 696a
whitespace S270a

Supporting code
for µSmalltalkU

S562

let fun argn n = if n = 1 then "1 argument" else intString n ^ " arguments"
in errorAt ("in " ^ what ^ ", message " ^ msgname ^ " expects " ^

argn (arity msgname) ^ ", but gets " ^
argn (length args)) loc

end

Here s̓ the parser.
S562a.

name : string parser
int : int parser

〈parsers for single µSmalltalk tokens S562a〉≡ (S560e)

type 'a parser = (token, 'a) polyparser
val token : token parser = token (* make it monomorphic *)
val pretoken = (fn (PRETOKEN t)=> SOME t | _ => NONE) <$>? token
val name = (fn (NAME s) => SOME s | _ => NONE) <$>? pretoken
val intchars = (fn (INTCHARS ds)=> SOME ds | _ => NONE) <$>? pretoken
val sym = (fn (QUOTE (SOME s)) => SOME s | _ => NONE) <$>? pretoken
val quote= (fn (QUOTE NONE) => SOME () | _ => NONE) <$>? pretoken
val any_name = name

val int = intFromChars <$>! intchars

S562b. 〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S561d S562c ▷
fun isImmutable x =
List.exists (fn x' => x' = x) ["true", "false", "nil", "self", "super"]

val immutable = sat isImmutable name

val mutable =
let fun can'tMutate (loc, x) =

ERROR (srclocString loc ^
": you cannot set or val-bind pseudovariable " ^ x)

in can'tMutate <$>! @@ immutable <|> OK <$>! name
end

S562c. 〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S562b S562d ▷

val atomicExp = LITERAL <$> NUM <$> int
<|> LITERAL <$> SYM <$> (sym <|> (quote *> name)

<|> (quote *> (intString <$> int)))
<|> SUPER <$ eqx "super" name
<|> VAR <$> name

S562d. 〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S562c S563a ▷
〈parsers and parser builders for formal parameters and bindings generated automatically〉
fun formalsIn context = formalsOf "(x1 x2 ...)" name context
fun sendClass (loc, e) = SEND (loc, e, "class", [])
val locals = usageParsers [("[locals y ...]", many name)] <|> pure []
fun method_body exp kind = (curry3 id <$> @@ (formalsIn kind) <*> locals <*> many exp)
fun withoutArity f ((_, xs), ys, es) = f (xs, ys, es)

fun exptable exp = usageParsers
[("(set x e)", curry SET <$> mutable <*> exp)
, ("(begin e ...)", BEGIN <$> many exp)
, ("(primitive p e ...)", curry PRIMITIVE <$> name <*> many exp)
, ("(return e)", RETURN <$> exp)
, ("(block (x ...) e ...)", curry BLOCK <$> formalsIn "block" <*> many exp)
, ("(compiled-method (x ...) [locals ...] e ...)",

withoutArity METHOD <$> method_body exp "compiled method")
, ("(class e)", sendClass <$> @@ exp)
, ("(locals x ...)",

pure () <!> "found '(locals ...)' where an expression was expected")
]

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.3
Lexing and parsing

S563

If parser exp sees something it doesnʼt recognize, it canʼt result in an error—
because it is used in many exp, it must simply fail.
S563a.

exp : exp parser
quotelit : value parser

〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S562d S563b ▷

fun exp tokens = (
atomicExp

<|> quote *> (VALUE <$> quotelit) (* not while reading predefined classes *)
<|> curlyBracket ("{exp ...}", curry BLOCK [] <$> many exp)
<|> exptable exp
<|> liberalBracket ("(exp selector ...)",

messageSend <$> exp <*> @@ name <*>! many exp)
<|> liberalBracket ("(exp selector ...)", noMsg <$>! @@ exp)
<|> left *> right <!> "empty message send ()"
)
tokens

and noReceiver (loc, m) = errorAt ("sent message " ^ m ^ " to no object") loc
and noMsg (loc, e) = errorAt ("found receiver " ^ expString e ^ " with no message") loc
and messageSend receiver (loc, msgname) args =

if arityOk msgname args then
OK (SEND (loc, receiver, msgname, args))

else
arityErrorAt loc "message send" msgname args

If any µSmalltalk code tries to change any of the predefined “pseudovariables,” the
settable parser causes an error.

The remaining parser functions are mostly straightforward. The quotelit
function may call mkSymbol, mkInteger, or mkArray, which must not be called until
after the initial basis is read in. Function quotelit is recursive and is called by exp,
so I define it as if it were mutually recursive with exp.
S563b.

quotelit : value parser
〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S563a S563c ▷

and quotelit tokens = (
mkSymbol <$> name

<|> mkInteger <$> int
<|> shaped ROUND left <&> mkArray <$> bracket("(literal ...)", many quotelit)
<|> shaped SQUARE left <&> mkArray <$> bracket("(literal ...)", many quotelit)
<|> quote <!> "' within ' is not legal"
<|> shaped CURLY left <!> "{ within ' is not legal"
<|> shaped CURLY right <!> "} within ' is not legal"
) tokens

and shaped shape delim = sat (fn (_, s) => s = shape) delim

Function unit_test parses a unit test.
S563c.

testtable : unit_test parser
〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S563b S563d ▷

val printable = name <|> implode <$> intchars

val testtable = usageParsers
[("(check-expect e1 e2)", curry CHECK_EXPECT <$> exp <*> exp)
, ("(check-assert e)", CHECK_ASSERT <$> exp)
, ("(check-error e)", CHECK_ERROR <$> exp)
, ("(check-print e chars)", curry CHECK_PRINT <$> exp <*> printable)
]

The parser for definitions recognizes method and class-method, because if a
class definition has an extra right parenthesis, a method or class-method keyword
might show up at top level.
S563d.

method : method_def parser
〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S563c S564a ▷

val method =
let fun method kind name impl =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<$>? S266c
<&> S266d
<*> S263a
<*>! S268a
<|> S264a
>>=+ S244b
arityErrorAtS561d
arityOk S561d
BEGIN 696a
BLOCK 696a
bracket S276b
CHECK_ASSERTS365a
CHECK_ERROR S365a
CHECK_EXPECTS365a
CHECK_PRINT S547b
CMETHOD 695b
CURLY S271a
curlyBracketS276b
curry S263d
curry3 S263d
eol S272b
eos S265b
eqx S266b
ERROR S243b
errorAt S256a
expString S569d
formalsOf S375a
id S263d
IMETHOD 695b
INTCHARS S561a
intFromCharsS270c
intString S238f
left S274
liberalBracket

S276b
LITERAL 696a
many S267b
METHOD 696a
mkArray 706a
mkInteger 706a
mkSymbol 706a
NAME S561a
NUM 694a
OK S243b
type polyparser

S272c
PRETOKEN S271b
PRIMITIVE 696a
pure S261b
QUOTE S561a
RETURN 696a
right S274
ROUND S271a
sat S266a
SEND 696a
SET 696a
SQUARE S271a
srclocStringS254d
SUPER 696a
SYM 694a
type token S561a
token S273a
usageParsersS375c
VALUE 696a
VAR 696a

Supporting code
for µSmalltalkU

S564

check (kname kind, name, impl) >>=+
(fn (formals, locals, body) =>

{ flavor = kind, name = name, formals = formals, locals = locals
, body = body })

and kname IMETHOD = "method"
| kname CMETHOD = "class-method"

and check (kind, name, (formals as (loc, xs), locals, body)) =
if arityOk name xs then
OK (xs, locals, BEGIN body)

else
arityErrorAt loc (kind ^ " definition") name xs

val mb = method_body exp
in usageParsers

[("(method f (args) body)", method IMETHOD <$> name <*>! mb "method")
, ("(class-method f (args) body)",

method CMETHOD <$> name <*>! mb "class method")
]

end
val parseMethods = many method <* many eol <* eos

True definitions.
S564a.

deftable : def parser
〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S563d S564b ▷

fun classDef name super ivars methods =
CLASSD { name = name, super = super, ivars = ivars, methods = methods }

val ivars = nodups ("instance variable", "class definition") <$>! @@ (many name)

val subclass_of = usageParsers [("[subclass-of className]", name)]
val ivars = (fn xs => getOpt (xs, [])) <$>

optional (usageParsers [("[ivars name...]", ivars)])

val deftable = usageParsers
[("(val x e)", curry VAL <$> mutable <*> exp)
, ("(define f (args) body)",

curry3 DEFINE <$> name <*> formalsIn "define" <*> exp)
, ("(class name [subclass-of ...] [ivars ...] methods)",

classDef <$> name <*> subclass_of <*> ivars <*> many method
<|> (EXP o sendClass) <$> @@ exp)

]

Extended definitions.
S564b.

xdeftable : xdef parser
xdef : xdef parser

〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S564a S565a ▷

val xdeftable =
let fun bad what =

"unexpected `(" ^ what ^ "...'; " ^
"did a class definition end prematurely?"

in usageParsers
[("(use filename)", USE <$> name)
, ("(method ...)", pzero <!> bad "method")
, ("(class-method ...)", pzero <!> bad "class-method")
]

end

val xdef = DEF <$> deftable
<|> TEST <$> testtable
<|> xdeftable
<|> badRight "unexpected right bracket"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.4
Support for tracing

S565

<|> DEF <$> EXP <$> exp
<?> "definition"

S565a. 〈parsers and xdef streams for µSmalltalk S561d〉+≡ (S560e) ◁ S564b
val xdefstream = interactiveParsedStream (smalltalkToken, xdef)

U.4 SUPPORT FOR TRACING

Tracing support is divided into three parts: support for printing indented mes-
sages, which is conditioned on the value of the variable &trace; support for main-
taining a stack of source-code locations, which is used to provide information when
an error occurs; and exposed tracing functions, which are used in the main part of
the interpreter. To keep the details hidden from the rest of the interpreter, the first
two parts are made local.
S565b. 〈functions for managing and printing a µSmalltalk stack trace S565b〉≡ (S559a)

local
〈private state and functions for printing indented traces S565c〉
〈private state and functions for maintaining a stack of source-code locations S566a〉

in
〈exposed tracing functions S566b〉

end

The traceMe function is used internally to decide whether to trace; it not only
returns a Boolean but also decrements &trace if needed.
S565c.

traceMe : value ref env -> bool
〈private state and functions for printing indented traces S565c〉≡ (S565b) S565d ▷

fun traceMe xi =
let val count = find("&trace", xi)
in case !count

of (c, NUM n) =>
if n = 0 then false
else (count := (c, NUM (n - 1))

; if n = 1 then (xprint "<trace ends>\n"; false) else true
)

| _ => false
end handle NotFound _ => false

The local variable tindent maintains the current trace state; indent uses it to
print an indentation string.
S565d. 〈private state and functions for printing indented traces S565c〉+≡ (S565b) ◁ S565c S565e ▷

val tindent = ref 0
fun indent 0 = ()
| indent n = (xprint " "; indent (n-1))

Any actual printing is done by tracePrint, conditional on traceMe returning
true. The argument direction of type indentation controls the adjustment of
indent. For consistency, we outdent from the previous level before printing a mes-
sage; we indent from the current level after printing a message.
S565e. 〈private state and functions for printing indented traces S565c〉+≡ (S565b) ◁ S565d

datatype indentation = INDENT_AFTER | OUTDENT_BEFORE

fun tracePrint direction xi f =
if traceMe xi then
let val msg = f () (* could change tindent *)
in (if direction = OUTDENT_BEFORE then tindent := !tindent - 1 else ()

; indent (!tindent)
; app xprint msg
; xprint "\n"

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

<!> S273d
<$> S263b
<$>! S268a
<*> S263a
<?> S273c
<|> S264a
badRight S274
CLASSD 695b
curry S263d
curry3 S263d
DEF S365b
DEFINE 695b
EXP 695b
exp S563a
find 311b
formalsIn S562d
interactiveParsed-

Stream
S280b

many S267b
method S563d
mutable S562b
name S562a
nodups S277c
NotFound 311b
NUM 694a
optional S267d
pzero S264b
sendClass S562d
smalltalkToken

S561c
TEST S365b
testtable S563c
usageParsersS375c
USE S365b
VAL 695b
xprint S238b

Supporting code
for µSmalltalkU

S566

; if direction = INDENT_AFTER then tindent := !tindent + 1 else ()
)

end
else

()

Printing of trace messages is conditional, but we always maintain a stack of
source-code locations. The stack is displayed when an error occurs.
S566a. 〈private state and functions for maintaining a stack of source-code locations S566a〉≡ (S565b)

val locationStack = ref [] : (string * srcloc) list ref
fun push srcloc = locationStack := srcloc :: !locationStack
fun pop () = case !locationStack

of [] => raise InternalError "tracing stack underflows"
| h :: t => locationStack := t

Here are the tracing-related functions that are exposed to the rest of the inter-
preter. The interpreter uses traceIndent to trace sends, outdentTrace to trace
answers, and resetTrace to reset indentation. And it uses eprintlnTrace to print
an error message, show the stack trace, and reset the trace.
S566b.

resetTrace : unit -> unit
traceIndent : string * srcloc -> value ref env -> (unit -> string list) -> unit
outdentTrace : value ref env -> (unit -> string list) -> unit
showStackTrace : bool -> unit
eprintlnTrace : string -> unit

〈exposed tracing functions S566b〉≡ (S565b)

fun resetTrace () = (locationStack := []; tindent := 0)
fun traceIndent what xi = (push what; tracePrint INDENT_AFTER xi)
fun outdentTrace xi = (pop (); tracePrint OUTDENT_BEFORE xi)

fun removeRepeat 0 xs = (0, [], xs)
| removeRepeat n xs =

let val header = List.take (xs, n)
fun count k xs =
if (header = List.take (xs, n)) handle Subscript => false then
count (k + 1) (List.drop (xs, n))

else
(k, header, xs)

in count 0 xs
end handle Subscript => (0, [], xs)

fun findRepeat xs k =
if k > 20 then
(0, [], xs)

else
let val repeat as (n, _, _) = removeRepeat k xs
in if n >= 3 then

repeat
else
findRepeat xs (k + 1)

end

fun findRepeatAfter xs 10 = ([], (0, [], xs))
| findRepeatAfter xs k =

let val (n, header, ys) = findRepeat (List.drop (xs, k)) 1
in if n > 0 then

(List.take(xs, k), (n, header, ys))
else
findRepeatAfter xs (k + 1)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.4
Support for tracing

S567

end handle Subscript => ([], (0, [], xs))

fun showStackTrace condense =
if null (!locationStack) then
()

else
let fun show (msg, (file, n)) =

app xprint [" Sent '", msg, "' in ", file, ", line ", intString n, "\n"]
val preRepeat =
if condense then findRepeatAfter (!locationStack) 0
else ([], (0, [], !locationStack))

val _ = xprint "Method-stack traceback:\n"
in case preRepeat

of ([], (0, _, locs)) => app show locs
| (_, (0, _, _)) => let exception Invariant in raise Invariant end
| (prefix, (k, header, locs)) =>

(app show prefix
; if null prefix then ()
else app xprint [" ... loop of size "

, Int.toString (length header) , " begins ...\n"
]

; app show header
; app xprint [" ... loop of size ", Int.toString (length header)

, " repeated ", Int.toString k, " times ...\n"
]

; app show locs
)

end
fun eprintlnTrace s = (eprintln s

; showStackTrace (String.isSubstring "recursion too deep" s
orelse String.isSubstring "CPU time exhausted" s)

; resetTrace ()
)

S567a. 〈report (return e) escapes frames S567a〉≡
if null frames then
raise RuntimeError
("tried to (return " ^ expString e ^ ") from an activation that has died")

else
raise RuntimeError
("tried to (return " ^ expString e ^ ") from an activation that has died " ^
"[stack trace would have " ^ countString frames "frame" ^ "]")

S567b. 〈report return escapes frames S567b〉≡ (701c)
if null frames then
raise RuntimeError
("tried to (return " ^ valueString v ^ ") from an activation that has died")

else
raise RuntimeError ("tried to return from an activation that has died:\n " ^

separate ("", "\n ") (map activeSendString frames))

To avoid confusion, tracing code typically avoids print methods; instead, it
uses valueString to give information about a value.
S567c. 〈definition of valueString for µSmalltalk S567c〉≡ (S547a)

fun valueString (c, NUM n) = intString n ^ valueString(c, USER [])
| valueString (_, SYM v) = v
| valueString (c, _) = "<" ^ className c ^ ">"

To trace method calls, µSmalltalk uses a custom runAs function; instead of
eprintln, it calls eprintlnTrace.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

activeSendString
S551b

className S547a
eprintln S238a
frames 701c
INDENT_AFTERS565e
InternalError

S366f
intString S238f
NUM 694a
OUTDENT_BEFORE

S565e
RuntimeErrorS366c
separate S239a
SYM 694a
tindent S565d
tracePrint S565e
USER 694a
xprint S238b

Supporting code
for µSmalltalkU

S568

S568a.

runAs : interactivity -> unit
〈function runAs for µSmalltalk, which prints stack traces S568a〉≡ (S547c)

fun runAs interactivity =
let val _ = setup_error_format interactivity

val prompts = if prompts interactivity then stdPrompts else noPrompts
val xdefs = filexdefs ("standard input", TextIO.stdIn, prompts)

in ignore (readEvalPrintWith eprintlnTrace (xdefs, initialBasis, interactivity))
end

U.5 UNIT TESTING

Unit testing in µSmalltalk looks a little different from unit testing in µScheme or
µML, but a little more like unit testing in Molecule: testing for equality requires a
call to eval, and if something is wrong with a value, we canʼt convert the value to a
string—all we can do with a value is print it.
S568b. 〈definition of testIsGood for µSmalltalk S568b〉≡ (S559a)

fun testIsGood (test, xi) =
let fun ev e = eval (e, emptyEnv, objectClass, noFrame, xi)

fun outcome e = withHandlers (OK o ev) e (ERROR o stripAtLoc)
before resetTrace ()

fun testSimilar (v1, v2) =
let val areSimilar = ev (SEND (nullsrc, VALUE v1, "=", [VALUE v2]))
in eqRep (areSimilar, mkBoolean true)
end

fun printsAs v =
let val (bprint, contents) = bprinter ()

val _ = withXprinter bprint ev (SEND (nullsrc, VALUE v, "print", []))
in contents ()
end

fun valueString _ =
raise RuntimeError "internal error: called the wrong ValueString"

〈definitions of check{Expect,Assert,Error{Passes that call printsAs S568c〉
〈definition of checkPrintPasses S569c〉
fun passes (CHECK_EXPECT (c, e)) = checkExpectPasses (c, e)
| passes (CHECK_ASSERT c) = checkAssertPasses c
| passes (CHECK_ERROR c) = checkErrorPasses c
| passes (CHECK_PRINT (c, s)) = checkPrintPasses (c, s)

in passes test
end

This thing is not like the others, because printing values must go to standard
output.
S568c. 〈definitions of check{Expect,Assert,Error{Passes that call printsAs S568c〉≡ (S568b) S568d ▷

fun whatWasExpected (LITERAL (NUM n), _) = printsAs (mkInteger n)
| whatWasExpected (LITERAL (SYM x), _) = printsAs (mkSymbol x)
| whatWasExpected (e, OK v) =

concat [printsAs v, " (from evaluating ", expString e, ")"]
| whatWasExpected (e, ERROR _) =

concat ["the result of evaluating ", expString e]

S568d. 〈definitions of check{Expect,Assert,Error{Passes that call printsAs S568c〉+≡ (S568b) ◁ S568c S569a ▷
val cxfailed = "check-expect failed: "
fun checkExpectPasses (checkx, expectx) =
case (outcome checkx, outcome expectx)
of (OK check, OK expect) =>

(case withHandlers (OK o testSimilar) (check, expect) (ERROR o stripAtLoc)
of OK true => true
| OK false =>

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§U.5. Unit testing

S569

failtest [cxfailed, "expected ", expString checkx,
" to be similar to ", whatWasExpected (expectx, OK expect),
", but it's ", printsAs check]

| ERROR msg =>
failtest [cxfailed, "testing similarity of ", expString checkx, " to ",

expString expectx, " caused error ", msg])
| (ERROR msg, tried) =>

failtest [cxfailed, "evaluating ", expString checkx, " caused error ", msg]
| (_, ERROR msg) =>

failtest [cxfailed, "evaluating ", expString expectx, " caused error ", msg]

S569a. 〈definitions of check{Expect,Assert,Error{Passes that call printsAs S568c〉+≡ (S568b) ◁ S568d S569b ▷

val cafailed = "check-assert failed: "
fun checkAssertPasses checkx =
case outcome checkx
of OK check =>

eqRep (check, mkBoolean true) orelse
failtest [cafailed, "expected assertion ", expString checkx,

" to hold, but it doesn't"]
| ERROR msg =>

failtest [cafailed, "evaluating ", expString checkx, " caused error ", msg]

S569b. 〈definitions of check{Expect,Assert,Error{Passes that call printsAs S568c〉+≡ (S568b) ◁ S569a
val cefailed = "check-error failed: "
fun checkErrorPasses checkx =

case outcome checkx
of ERROR _ => true
| OK check =>

failtest [cefailed, "expected evaluating ", expString checkx,
" to cause an error, but evaluation produced ",
printsAs check]

S569c. 〈definition of checkPrintPasses S569c〉≡ (S568b)

val cpfailed = "check-print failed: "
fun checkPrintPasses (checkx, s) =
case outcome checkx
of OK check =>

(case withHandlers (OK o printsAs) check (ERROR o stripAtLoc)
of OK s' =>

s = s' orelse
failtest [cpfailed, "expected \"", s, "\" but got \"", s', "\""]

| ERROR msg =>
failtest [cpfailed, "calling print method on ",

expString checkx, " caused error ", msg])
| ERROR msg =>

failtest [cpfailed, "evaluating ", expString checkx, " caused error ", msg]

S569d. 〈definition of expString for µSmalltalk S569d〉≡ (S547a)
fun expString e =
let fun bracket s = "(" ^ s ^ ")"

val bracketSpace = bracket o spaceSep
fun exps es = map expString es
fun symString x = x
fun valueString (_, NUM n) = intString n
| valueString (_, SYM x) = "'" ^ symString x
| valueString (c, _) = "<" ^ className c ^ ">"

in case e
of LITERAL (NUM n) => intString n
| LITERAL (SYM n) => "'" ^ symString n

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

BEGIN 696a
BLOCK 696a
bprinter S238d
CHECK_ASSERTS365a
CHECK_ERROR S365a
CHECK_EXPECTS365a
CHECK_PRINT S547b
className S547a
emptyEnv 311a
eprintlnTrace

S566b
eqRep S553d
ERROR S243b
eval 696b
failtest S246d
filexdefs S254c
fst S263d
initialBasisS560d
intString S238f
LITERAL 696a
METHOD 696a
mkBoolean 706c
mkInteger 706a
mkSymbol 706a
noFrame S551b
noPrompts S280a
nullsrc S560f
NUM 694a
objectClass 704a
OK S243b
PRIMITIVE 696a
println S238a
prompts S368c
readEvalPrintWith

S369c
resetTrace S566b
RETURN 696a
RuntimeErrorS366c
SEND 696a
SET 696a
setup_error_format

S372b
spaceSep S239a
stdPrompts S280a
stripAtLoc S255g
SUPER 696a
SYM 694a
VALUE 696a
VAR 696a
withHandlersS371a
withXprinterS238c

Supporting code
for µSmalltalkU

S570

| LITERAL _ => "<wildly unexpected literal>"
| VAR name => name
| SET (x, e) => bracketSpace ["set", x, expString e]
| RETURN e => bracketSpace ["return", expString e]
| SEND (_, e, msg, es) => bracketSpace (expString e :: msg :: exps es)
| BEGIN es => bracketSpace ("begin" :: exps es)
| PRIMITIVE (p, es) => bracketSpace ("primitive" :: p :: exps es)
| BLOCK ([], es) => "[" ^ spaceSep (exps es) ^ "]"
| BLOCK (xs, es) => bracketSpace ["block", bracketSpace xs,

spaceSep (exps es)]
| METHOD (xs, [], es) => bracketSpace ["compiled-method", bracketSpace xs,

spaceSep (exps es)]
| METHOD (xs, ys, es) => bracketSpace ["compiled-method", bracketSpace xs,

bracketSpace ("locals" :: ys),
spaceSep (exps es)]

| VALUE v => valueString v
| SUPER => "super"

end

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

VSupporting code for µProlog

This Appendix is longer than many others:

• Even Prolog s̓ simple syntax requires more code to parse than prefix-parenthesized
syntax.

• In µProlog, as in C, a comment can span multiple lines, which means its
lexical analyzer has to track source-code locations. This tracking needs extra
code.

• A µProlog interpreter has two modes: rule mode and query mode. Tracking
modes introduces additional complexity.

V.1 SUBSTITUTION

A substitution θ is a structure-preserving mapping from terms to terms. As in Chap-
ter 7, we represent a substitution as an environment. The environment maps log-
ical variables to terms. All the substitution functions resemble the functions used
to substitute types for type varibles in Chapter 7.
S571a.

type subst
idsubst : subst

〈substitutions for µProlog S571a〉≡ (S82b) S571b ▷

type subst = term env
val idsubst = emptyEnv

S571b.

varsubst : subst -> (name -> term)
〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S571a S571c ▷

fun varsubst theta =
(fn x => find (x, theta) handle NotFound _ => VAR x)

S571c.

termsubst : subst -> (term -> term)
〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S571b S571d ▷

fun termsubst theta =
let fun subst (VAR x) = varsubst theta x

| subst (LITERAL n) = LITERAL n
| subst (APPLY (f, ts)) = APPLY (f, map subst ts)

in subst
end

Given the ability to substitute in a term, we may also want to substitute in goals
and clauses.
S571d.

goalsubst : subst -> (goal -> goal)
clausesubst : subst -> (clause -> clause)

〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S571c S572a ▷

fun goalsubst theta (f, ts) = (f, map (termsubst theta) ts)
fun clausesubst theta (c :- ps) = (goalsubst theta c :- map (goalsubst theta) ps)

S571
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S572

And we can substitute in constraints.
S572a.

consubst : subst -> (con -> con)
〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S571d S572b ▷

fun consubst theta =
let fun subst (t1 ~ t2) = termsubst theta t1 ~ termsubst theta t2

| subst (c1 /\ c2) = subst c1 /\ subst c2
| subst TRIVIAL = TRIVIAL

in subst
end

We create substitutions using the same infix operator as in Chapter 7.
S572b.

|--> : name * term -> subst
〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S572a S572c ▷

infix 7 |-->
fun x |--> (VAR x') = if x = x' then idsubst else bind (x, VAR x', emptyEnv)
| x |--> t = if member x (termFreevars t) then

raise InternalError "non-idempotent substitution"
else
bind (x, t, emptyEnv)

Substitutions compose just as in Chapter 7.
S572c.

compose : subst * subst -> subst
〈substitutions for µProlog S571a〉+≡ (S82b) ◁ S572b

fun dom theta = map (fn (a, _) => a) theta
fun compose (theta2, theta1) =
let val domain = union (dom theta2, dom theta1)

val replace = termsubst theta2 o varsubst theta1
in map (fn a => (a, replace a)) domain
end

V.2 UNIT TESTING

Unit testing in µProlog is different from any other unit testing: we check for sat-
isfiability, or when given an explicit substitution, we check that the substitution
satisfies the given query.
S572d.

testIsGood : unit_test * basis -> bool
〈definition of testIsGood for µProlog S572d〉≡ (S87b)

fun testIsGood (test, database) =
let 〈definitions of checkSatisfiedPasses and checkUnsatisfiablePasses S572e〉

fun passes (CHECK_UNSATISFIABLE gs) = checkUnsatisfiablePasses gs
| passes (CHECK_SATISFIABLE gs) = checkSatisfiablePasses gs
| passes (CHECK_SATISFIED (gs, theta)) = checkSatisfiedPasses (gs, theta)

in passes test
end

If a query fails a test, we print it using function qstring.
S572e.

type query
qstring : query -> string

〈definitions of checkSatisfiedPasses and checkUnsatisfiablePasses S572e〉≡ (S572d) S572f ▷
type query = goal list
val qstring = separate ("?", ", ") o map goalString

All three unit tests work by passing appropriate success and failure continua-
tions to query. To pass the check-unsatisfiable test, the query must be unsatisfi-
able. If the test fails, the satisfying substitution is shown without logical variables
that are introduced by renaming clauses. Such variables begin with underscores,
and they are removed by function stripSubst.
S572f. 〈definitions of checkSatisfiedPasses and checkUnsatisfiablePasses S572e〉+≡ (S572d) ◁ S572e S573a ▷

fun stripSubst theta = List.filter (fn (x, _) => String.sub (x, 0) <> #"_") theta
fun checkUnsatisfiablePasses (gs) =
let fun succ theta' _ =

failtest ["check_unsatisfiable failed: ", qstring gs,

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.3
String conversions

S573

" is satisfiable with ", substString theta']
fun fail () = true

in query database gs (succ o stripSubst) fail
end

To pass the check-satisfiable test, the query must be satisfiable.
S573a. 〈definitions of checkSatisfiedPasses and checkUnsatisfiablePasses S572e〉+≡ (S572d) ◁ S572f S573b ▷

fun checkSatisfiablePasses (gs) =
let fun succ _ _ = true

fun fail () = failtest ["check_unsatisfiable failed: ", qstring gs,
" is not satisfiable"]

in query database gs succ fail
end

The check-satisfied test has an explicit substitution θ, and if that substitution
has no logical variables, the test passes only if the query θ(gs) is satisfied by the
identity substitution. (Logical variables introduced by renaming donʼt count.) If θ
includes logical variables, θ(gs) merely has to be satisfiable.
S573b. 〈definitions of checkSatisfiedPasses and checkUnsatisfiablePasses S572e〉+≡ (S572d) ◁ S573a

fun checkSatisfiedPasses (gs, theta) =
let val thetaVars =

foldl (fn ((_, t), fv) => union (termFreevars t, fv)) emptyset theta
val ground = null thetaVars
val gs' = map (goalsubst theta) gs
fun succ theta' _ =
if ground andalso not (null theta') then
failtest ["check_satisfied failed: ", qstring gs,

" required additional substitution ", substString theta']
else
true

fun fail () =
failtest ["check_satisfied failed: could not prove ", qstring gs']

in query database gs' (succ o stripSubst) fail
end

V.3 STRING CONVERSIONS

This code converts terms, goals, and clauses to strings.
S573c. 〈definitions of termString, goalString, and clauseString S573c〉≡ (S58f) S574a ▷

fun termString (APPLY ("cons", [car, cdr])) =
let fun tail (APPLY ("cons", [car, cdr])) = ", " ^ termString car ^ tail cdr

| tail (APPLY ("nil", [])) = "]"
| tail x = "|" ^ termString x ^ "]"

in "[" ^ termString car ^ tail cdr
end

| termString (APPLY ("nil", [])) = "[]"
| termString (APPLY (f, [])) = f
| termString (APPLY (f, [x, y])) =

if Char.isAlpha (hd (explode f)) then appString f x [y]
else String.concat ["(", termString x, " ", f, " ", termString y, ")"]

| termString (APPLY (f, h::t)) = appString f h t
| termString (VAR v) = v
| termString (LITERAL n) = intString n

and appString f h t =
String.concat (f :: "(" :: termString h ::

foldr (fn (t, tail) => ", " :: termString t :: tail) [")"] t)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S574

S574a. 〈definitions of termString, goalString, and clauseString S573c〉+≡ (S58f) ◁ S573c S574b ▷

fun goalString g = termString (APPLY g)
fun clauseString (g :- []) = goalString g
| clauseString (g :- (h :: t)) =

String.concat (goalString g :: " :- " :: goalString h ::
(foldr (fn (g, tail) => ", " :: goalString g :: tail)) [] t)

S574b. 〈definitions of termString, goalString, and clauseString S573c〉+≡ (S58f) ◁ S574a
fun substString pairs =

separate ("no substitution", ", ")
(map (fn (x, t) => x ^ " = " ^ termString t) pairs)

V.4 LEXICAL ANALYSIS

S574c. 〈lexical analysis and parsing for µProlog, providing cqstream S574c〉≡ (S87a)
〈lexical analysis for µProlog S574d〉
〈parsers and streams for µProlog S577b〉
val xdefstream = xdefsInMode RMODE
〈shared definitions of filexdefs and stringsxdefs S254c〉

V.4.1 Tokens

µProlog has a more complex lexical structure than other languages. We have up-
percase, lowercase, and symbolic tokens, as well as integers. It simplifies the
parser if we distinguish reserved words and symbols using RESERVED. Finally, be-
cause a C-style µProlog comment can span multiple lines, we have to be prepared
for the lexical analyzer to encounter end-of-file. Reading end of file needs to be
distinguishable from failing to read a token, so I represent end of file by its own
special token EOF.
S574d.

type token
〈lexical analysis for µProlog S574d〉≡ (S574c) S574e ▷

datatype token
= UPPER of string
| LOWER of string
| SYMBOLIC of string
| INT_TOKEN of int
| RESERVED of string
| EOF

We need to print tokens in error messages.
S574e. 〈lexical analysis for µProlog S574d〉+≡ (S574c) ◁ S574d S575b ▷

fun tokenString (UPPER s) = s
| tokenString (LOWER s) = s
| tokenString (INT_TOKEN n) = intString n
| tokenString (SYMBOLIC s) = s
| tokenString (RESERVED s) = s
| tokenString EOF = "<end-of-file>"

V.4.2 Classification of characters

The other languages in this book treat only parentheses, digits, and semicolons
specially. But in Prolog, we distinguish two kinds of names: symbolic and alphanu-
meric. A symbolic name like + is used differently from an alphanumeric name
like add1. This difference is founded on a different classification of characters.

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.4
Lexical analysis

S575

In µProlog, every character is either a symbol, an alphanumeric, a space, or a de-
limiter.
S575a. 〈character-classification functions for µProlog S575a〉≡ (S575d)

val symbols = explode "!%^&*-+:=|~<>/?`$\\"
fun isSymbol c = List.exists (fn c' => c' = c) symbols
fun isIdent c = Char.isAlphaNum c orelse c = #"_"
fun isDelim c = not (isIdent c orelse isSymbol c)

V.4.3 Reserved words and anonymous variables

Tokens formed from symbols or from lower-case letters are usually symbolic, but
sometimes they are reserved words. And because the cut is nullary, not binary, it
is treated as an ordinary symbol, just like any other nullary predicate.
S575b. 〈lexical analysis for µProlog S574d〉+≡ (S574c) ◁ S574e S575c ▷

fun symbolic ":-" = RESERVED ":-"
| symbolic "." = RESERVED "."
| symbolic "|" = RESERVED "|"
| symbolic "!" = LOWER "!"
| symbolic s = SYMBOLIC s

fun lower "is" = RESERVED "is"
| lower "check_satisfiable" = RESERVED "check_satisfiable"
| lower "check_unsatisfiable" = RESERVED "check_unsatisfiable"
| lower "check_satisfied" = RESERVED "check_satisfied"
| lower s = LOWER s

A variable consisting of a single underscore gets converted to a unique “anony-
mous” variable.
S575c. 〈lexical analysis for µProlog S574d〉+≡ (S574c) ◁ S575b S575d ▷

fun anonymousVar () =
case freshVar ""
of VAR v => UPPER v
| _ => let exception ThisCan'tHappen in raise ThisCan'tHappen end

V.4.4 Converting characters to tokens

We consume a stream of characters, intersperse with EOL (end-of-line) markers.
We must product a stream of tokens. And unlike our other lexers, the µProlog
lexer must produce located tokens, i.e., tokens that are tagged with source-code lo-
cations. The location corresponding to the start of the character stream is passed
as a parameter to tokenAt.
S575d. 〈lexical analysis for µProlog S574d〉+≡ (S574c) ◁ S575c

local
〈character-classification functions for µProlog S575a〉
〈lexical utility functions for µProlog S575e〉

in
〈lexical analyzers for for µProlog S576c〉

end

Utility functions underscore and int make sure that an underscore or a se-
quence of digits, respectively, is never followed by any character that might be part
of an alphanumeric identifier. When either of these functions succeeds, it returns
an appropriate token.
S575e.

underscore : char -> char list -> token error
int : char list -> char list -> token error

〈lexical utility functions for µProlog S575e〉≡ (S575d) S576a ▷

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S576

fun underscore _ [] = OK (anonymousVar ())
| underscore c cs = ERROR ("name may not begin with underscore at " ^

implode (c::cs))

fun int cs [] = intFromChars cs >>=+ INT_TOKEN
| int cs ids =

ERROR ("integer literal " ^ implode cs ^
" may not be followed by '" ^ implode ids ^ "'")

Utility function unrecognized is called when the lexical analyzer cannot recog-
nize a sequence of characters. If the sequence is empty, it means there s̓ no token.
If anything else happens, an error has occurred.
S576a.

unrecognized : char list error -> ('a error * 'a error stream) option
〈lexical utility functions for µProlog S575e〉+≡ (S575d) ◁ S575e S576b ▷

fun unrecognized (ERROR _) = let exception Can'tHappen in raise Can'tHappen end
| unrecognized (OK cs) =

case cs
of [] => NONE
| #";" :: _ => let exception Can'tHappen in raise Can'tHappen end
| _ =>

SOME (ERROR ("invalid initial character in `" ^ implode cs ^ "'"), EOS)

When a lexical analyzer runs out of characters on a line, it calls nextline to
compute the location of the next line.
S576b.

nextline : srcloc -> srcloc
〈lexical utility functions for µProlog S575e〉+≡ (S575d) ◁ S576a

fun nextline (file, line) = (file, line+1)

µProlog must be aware of the end of an input line. Lexical analyzers char and
eol recognize a character and the end-of-line marker, respectively.
S576c.

type 'a prolog_lexer
char : char prolog_lexer
eol : unit prolog_lexer

〈lexical analyzers for for µProlog S576c〉≡ (S575d) S576d ▷

type 'a prolog_lexer = (char eol_marked, 'a) xformer
fun char chars =
case streamGet chars
of SOME (INLINE c, chars) => SOME (OK c, chars)
| _ => NONE

fun eol chars =
case streamGet chars
of SOME (EOL _, chars) => SOME (OK (), chars)
| _ => NONE

Function manySat provides a general tool for sequences of characters. Lexers
whitespace and intChars handle two common cases.
S576d.

manySat : (char -> bool) -> char list prolog_lexer
whitespace : char list prolog_lexer
intChars : char list prolog_lexer

〈lexical analyzers for for µProlog S576c〉+≡ (S575d) ◁ S576c S576e ▷
fun manySat p =
many (sat p char)

val whitespace =
manySat Char.isSpace

val intChars =
(curry op :: <$> eqx #"-" char <|> pure id) <*> many1 (sat Char.isDigit char)

An ordinary token is an underscore, delimiter, integer literal, symbolic name,
or alphanumeric name. Uppercase and lowercase names produce different tokens.
S576e.

ordinaryToken : token prolog_lexer
〈lexical analyzers for for µProlog S576c〉+≡ (S575d) ◁ S576d S577a ▷

val ordinaryToken =
underscore <$> eqx #"_" char <*>! manySat isIdent

<|> (RESERVED o str) <$> sat isDelim char
<|> int <$> intChars <*>! manySat isIdent

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.5. Parsing

S577

<|> (symbolic o implode) <$> many1 (sat isSymbol char)
<|> curry (lower o implode o op ::) <$> sat Char.isLower char <*> manySat isIdent
<|> curry (UPPER o implode o op ::) <$> sat Char.isUpper char <*> manySat isIdent
<|> unrecognized o fst o valOf o many char

We need two main lexical analyzers that keep track of source locations: tokenAt
produces tokens, and skipComment skips comments. They are mutually recursive,
and in order to delay the recursive calls until a stream is supplied, each definition
has an explicit cs argument, which contains a stream of inline characters.
S577a.

tokenAt : srcloc -> token located prolog_lexer
skipComment : srcloc -> srcloc -> token located prolog_lexer

〈lexical analyzers for for µProlog S576c〉+≡ (S575d) ◁ S576e

local
fun the c = eqx c char

in
fun tokenAt loc cs = (* eta-expanded to avoid infinite regress *)
(whitespace *> (the #"/" *> the #"*" *> skipComment loc loc

<|> the #";" *> many char *> eol *> tokenAt (nextline loc)
<|> eol *> tokenAt (nextline loc)
<|> (loc, EOF) <$ eos
<|> pair loc <$> ordinaryToken
)) cs

and skipComment start loc cs =
(the #"*" *> the #"/" *> tokenAt loc
<|> char *> skipComment start loc
<|> eol *> skipComment start (nextline loc)
<|> id <$>! pure (ERROR ("end of file looking for */ to close comment in " ^

srclocString start))
) cs

end

V.5 PARSING

V.5.1 Utilities for parsing µProlog

S577b.

symbol : string parser
upper : string parser
lower : string parser
int : int parser

〈parsers and streams for µProlog S577b〉≡ (S574c) S577c ▷

type 'a parser = (token, 'a) polyparser
val token = token : token parser (* make it monomorphic *)
val symbol = (fn SYMBOLIC s => SOME s | _ => NONE) <$>? token
val upper = (fn UPPER s => SOME s | _ => NONE) <$>? token
val lower = (fn LOWER s => SOME s | _ => NONE) <$>? token
val int = (fn INT_TOKEN n => SOME n | _ => NONE) <$>? token
fun reserved s = eqx s ((fn RESERVED s => SOME s | _ => NONE) <$>? token)

We use these combinators to define the grammar from Figure D.2. We use
notSymbol to ensure that a term like 3 + X is not followed by another symbol. This
means we donʼt parse such terms as 3 + X + Y.
S577c.

notSymbol : unit parser
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S577b S578a ▷

val notSymbol =
symbol <!> "arithmetic expressions must be parenthesized" <|>
pure ()

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S578

Parser nilt uses the empty list of tokens to represent the empty list of terms.
It needs an explicit type constraint to avoid falling afoul of the value restriction on
polymorphism. Function cons combines two terms, which is useful for parsing
lists.
S578a.

nilt : term parser
cons : term * term -> term

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S577c S578b ▷

fun nilt tokens = pure (APPLY ("nil", [])) tokens
fun cons (x, xs) = APPLY ("cons", [x, xs])

Here is one utility function commas, plus renamings of three other functions.
S578b.

variable : string parser
binaryPredicate : string parser
functr : string parser
commas : 'a parser -> 'a list parser

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S578a S578c ▷

val variable = upper
val binaryPredicate = symbol
val functr = lower
fun commas p =
curry op :: <$> p <*> many (reserved "," *> p)

I spell “functor” without the “o” because in Standard ML, functor is a reserved
word.

V.5.2 Parsing terms, atoms, and goals

Weʼre now ready to parse µProlog. The grammar is based on the grammar from
Figure D.2 on page S55, except that Iʼm using named function to parse atoms, and
I use some specialized tricks to organize the grammar. Concrete syntax is not for
the faint of heart.
S578c.

term : term parser
atom : term parser
commas : 'a parser -> 'a list parser

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S578b S579a ▷

fun closing bracket = reserved bracket <?> bracket
fun wrap left right p = reserved left *> p <* closing right
local
fun consElems terms tail = foldr cons tail terms
fun applyIs a t = APPLY ("is", [a, t])
fun applyBinary x operator y = APPLY (operator, [x, y])
fun maybeClause t NONE = t
| maybeClause t (SOME ts) = APPLY (":-", t :: ts)

in
fun term tokens =
(applyIs <$> atom <* reserved "is" <*> (term <?> "term")
<|> applyBinary <$> atom <*> binaryPredicate <*> (atom <?> "atom") <* notSymbol
<|> atom
)
tokens

and atom tokens =
(curry APPLY <$> functr <*> (wrap "(" ")" (commas (term <?> "term"))

<|> pure []
)

<|> VAR <$> variable
<|> LITERAL <$> int
<|> wrap "(" ")" (maybeClause <$> term <*> optional (reserved ":-" *> commas term))
<|> wrap "[" "]"

(consElems <$> commas term <*> (reserved "|" *> (term <?> "list element")
<|> nilt
)

<|> nilt

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.5. Parsing

S579

)
)
tokens

end

Terms and goals shared the same concrete syntax but different abstract syntax.
Every goal can be interpreted as a term, but not every term can be interpreted as a
goal.

S579a.

asGoal : srcloc -> term -> goal error
goal : goal parser

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S578c S579b ▷

fun asGoal _ (APPLY g) = OK g
| asGoal loc (VAR v) =

errorAt ("Variable " ^ v ^ " cannot be a predicate") loc
| asGoal loc (LITERAL n) =

errorAt ("Integer " ^ intString n ^ " cannot be a predicate") loc

val goal = asGoal <$> srcloc <*>! term

V.5.3 Recognizing concrete syntax using modes

I put together the µProlog parser in three layers. The bottom layer is the concrete
syntax itself. For a moment let s̓ ignore the meaning of µProlog s̓ syntax and look
only at what can appear. At top level, we might see

• A string in brackets

• A clause containing a :- symbol

• A list of one or more goals separated by commas

• A unit test

The meanings of some of these things can be depend on which mode the inter-
preter is in. So I parse them first into a value of type concrete, and I worry about
the interpretation later.
S579b.

type concrete
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S579a S579c ▷

datatype concrete
= BRACKET of string
| CLAUSE of goal * goal list option
| GOALS of goal list
| CTEST of unit_test

Among the unit tests, parsing check-satisfied is a bit tricky: we get a list
of goals, which must be split into “real” goals gs' and “substitution” goals rest.
A “substitution” goal is an application of the = functor.
S579c.

checkSatisfied : goal list -> unit_test error
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S579b S580a ▷

fun checkSatisfied goals =
let fun split (gs', []) = OK (CHECK_SATISFIED (reverse gs', []))

| split (gs', rest as ("=", _) :: _) =
validate ([], rest) >>=+
(fn subst => CHECK_SATISFIED (reverse gs', subst))

| split (gs', g :: gs) = split (g :: gs', gs)
and validate (theta', ("=", [VAR x, t]) :: gs) =

validate ((x, t) :: theta', gs)
| validate (theta', ("=", [t1, t2]) :: gs) =

ERROR ("in check_satisfied, " ^ termString t1 ^ " is set to " ^
termString t2 ^ ", but " ^ termString t1 ^ " is not a variable")

| validate (theta', g :: gs) =

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S580

ERROR ("in check_satisfied, expected a substitution but got " ^
goalString g)

| validate (theta', []) = OK (reverse theta')
in split ([] , goals)
end

The three unit tests are recognized and treated specially.
S580a.

unit_test : unit_test parser
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S579c S580b ▷

val unit_test =
reserved "check_satisfiable" *>

(wrap "(" ")" (CHECK_SATISFIABLE <$> commas goal)
<?> "check_satisfiable(goal, ...)")

<|> reserved "check_unsatisfiable" *>
(wrap "(" ")" (CHECK_UNSATISFIABLE <$> commas goal)
<?> "check_unsatisfiable(goal, ...)")

<|> reserved "check_satisfied" *>
(wrap "(" ")" (checkSatisfied <$>! commas goal)
<?> "check_satisfied(goal, ... [, X1 = t1, ...])")

Compared with unit tests, concrete values are easy to parse.
S580b.

concrete : concrete parser
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S580a S580c ▷

val notClosing =
sat (fn RESERVED "]" => false | _ => true) token

val concrete =
(BRACKET o concat o map tokenString) <$> wrap "[" "]" (many notClosing)

<|> CTEST <$> unit_test
<|> curry CLAUSE <$> goal <*> reserved ":-" *> (SOME <$> commas goal)
<|> GOALS <$> commas goal

In most cases, we know what a concrete value is supposed to mean, but there s̓
one case in which we donʼt: a phrase like “color(yellow).” could be either a clause
or a query. To know which is meant, we have to know the mode. In other words,
the mode distinguishes CLAUSE(g, NONE) from GOALS [g]. A parser may be in ei-
ther query mode or rule (clause) mode. Each mode has its own prompt.
S580c.

type mode
mprompt : mode -> string

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S580b S580d ▷

datatype mode = QMODE | RMODE
fun mprompt RMODE = "-> "
| mprompt QMODE = "?- "

The concrete syntax normally means a clause or query, which is denoted by
the syntactic nonterminal symbol clause-or-query and represented by an ML value
of type cq (see chunk S58d in Chapter D). But particular concrete syntax, such as
“[rule].” or “[query].,” can be an instruction to change to a new mode. The mid-
dle layer of µProlog s̓ parser produces a value of type xdef_or_mode, which is de-
fined as follows:
S580d.

type xdef_or_mode
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S580c S580e ▷

datatype xdef_or_mode
= XDEF of xdef
| NEW_MODE of mode

The next level ofµProlog s̓ parser interpreters a concrete value according to the
mode. BRACKET values and unite tests are interpreted in the same way regardless
of mode, but clauses and especially GOALS are interpreted differently in rule mode
and in query mode.
S580e.

interpretConcrete : mode -> concrete -> xdef_or_mode error
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S580d S581a ▷

fun interpretConcrete mode =
let val (newMode, cq, xdef) = (OK o NEW_MODE, OK o XDEF o DEF, OK o XDEF)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.5. Parsing

S581

in fn c =>
case (mode, c)
of (_, BRACKET "rule") => newMode RMODE
| (_, BRACKET "fact") => newMode RMODE
| (_, BRACKET "user") => newMode RMODE
| (_, BRACKET "clause") => newMode RMODE
| (_, BRACKET "query") => newMode QMODE
| (_, BRACKET s) => xdef (USE s)
| (_, CTEST t) => xdef (TEST t)
| (RMODE, CLAUSE (g, ps)) => cq (ADD_CLAUSE (g :- getOpt (ps, [])))
| (RMODE, GOALS [g]) => cq (ADD_CLAUSE (g :- []))
| (RMODE, GOALS _) =>

ERROR ("You cannot enter a query in clause mode; " ^
"to change modes, type `[query].'")

| (QMODE, GOALS gs) => cq (QUERY gs)
| (QMODE, CLAUSE (g, NONE)) => cq (QUERY [g])
| (QMODE, CLAUSE (_, SOME _)) =>

ERROR ("You cannot enter a new clause in query mode; " ^
"to change modes, type `[rule].'")

end

Parser xdef_or_mode m parses a concrete according to mode m. If it sees
something it doesnʼt recognize, it emits an error message and skips ahead until it
sees a dot or the end of the input. Importantly, this parser never fails: it always
returns either a xdef_or_mode value or an error message.
S581a.

xdef_or_mode : mode -> xdef_or_mode parser
〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S580e S581b ▷

val skippable =
(fn SYMBOLIC "." => NONE | EOF => NONE | t => SOME t) <$>? token

fun badConcrete (loc, skipped) last =
ERROR (srclocString loc ^ ": expected clause or query; skipping" ^

concat (map (fn t => " " ^ tokenString t) (skipped @ last)))

fun xdef_or_mode mode = interpretConcrete mode <$>!
(concrete <* reserved "."
<|> badConcrete <$> @@ (many skippable) <*>! ([RESERVED "."] <$ reserved ".")
<|> badConcrete <$> @@ (many1 skippable) <*>! pure [] (* skip to EOF *)
)

V.5.4 Reading clauses and queries while tracking locations and modes

To produce a stream of definitions, every other language in this book uses the func-
tioninteractiveParsedStream from page S280b. µProlog canʼt: interactiveParsedStream
doesnʼt tag tokens with locations, and it doesnʼt keep track of modes. As a replace-
ment, I define a somewhat more complex function, cqstream, below. At the core
of cqstream is function getXdef.
S581b.

xdefsInMode : mode -> string * line stream * prompts -> xdef stream
type read_state = string * mode * token located eol_marked stream
getXdef : read_state -> (xdef * read_state) option

〈parsers and streams for µProlog S577b〉+≡ (S574c) ◁ S581a

fun xdefsInMode initialMode (name, lines, prompts) =
let val { ps1, ps2 } = prompts

val thePrompt = ref (if ps1 = "" then "" else mprompt initialMode)
val setPrompt = if ps1 = "" then (fn _ => ()) else (fn s => thePrompt := s)

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S582

type read_state = string * mode * token located eol_marked stream
〈utility functions for cqstream S582a〉

val lines = preStream (fn () => print (!thePrompt), echoTagStream lines)

val chars =
streamConcatMap
(fn (loc, s) => streamOfList (map INLINE (explode s) @ [EOL (snd loc)]))
(locatedStream (name, lines))

fun getLocatedToken (loc, chars) =
(case tokenAt loc chars

of SOME (OK (loc, t), chars) => SOME (OK (loc, t), (loc, chars))
| SOME (ERROR msg, chars) => SOME (ERROR msg, (loc, chars))
| NONE => NONE

) before setPrompt ps2

val tokens =
stripAndReportErrors (streamOfUnfold getLocatedToken ((name, 1), chars))

in streamOfUnfold getXdef (!thePrompt, initialMode, streamMap INLINE tokens)
end

Using INLINE may look strange, but many of the utility functions from Appendix J
expect a stream of tokens tagged with INLINE. Even though we donʼt need INLINE
for µProlog, it is easier to use a meaningless INLINE than it is to rewrite big chunks
of Appendix J.

Function getXdef uses startsWithEOF to check if the input stream has no more
tokens.
S582a.

startsWithEOF : token located eol_marked stream -> bool
〈utility functions for cqstream S582a〉≡ (S581b) S582b ▷

fun startsWithEOF tokens =
case streamGet tokens
of SOME (INLINE (_, EOF), _) => true
| _ => false

If getXdef detects an error, it skips tokens in the input up to and including the
next dot.
S582b.

skipPastDot : token located eol_marked stream -> token located eol_marked stream
〈utility functions for cqstream S582a〉+≡ (S581b) ◁ S582a S582c ▷

fun skipPastDot tokens =
case streamGet tokens
of SOME (INLINE (_, RESERVED "."), tokens) => tokens
| SOME (INLINE (_, EOF), tokens) => tokens
| SOME (_, tokens) => skipPastDot tokens
| NONE => tokens

Function getXdef tracks the prompt, the mode, and the remaining unread to-
kens, which together form the read_state. It also, when called, sets the prompt.
S582c.

getXdef : read_state -> (xdef * read_state) option
〈utility functions for cqstream S582a〉+≡ (S581b) ◁ S582b

fun getXdef (ps1, mode, tokens) =
(setPrompt ps1
; if startsWithEOF tokens then

NONE
else
case xdef_or_mode mode tokens

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

§V.6
Command line

S583

of SOME (OK (XDEF d), tokens) => SOME (d, (ps1, mode, tokens))
| SOME (OK (NEW_MODE mode), tokens) => getXdef (mprompt mode, mode, tokens)
| SOME (ERROR msg, tokens) =>

(eprintln ("syntax error: " ^ msg)
; getXdef (ps1, mode, skipPastDot tokens)
)

| NONE => 〈fail epically with a diagnostic about tokens S583a〉
)

Parser xdef_or_mode is always supposed to return something. If it doesnʼt, I issue
an epic error message.
S583a. 〈fail epically with a diagnostic about tokens S583a〉≡ (S582c)

let exception ThisCan'tHappenCqParserFailed
val tokensStrings =
map (fn t => " " ^ tokenString t) o valOf o peek (many token)

val _ = app print (tokensStrings tokens)
in raise ThisCan'tHappenCqParserFailed
end

V.6 COMMAND LINE

µProlog s̓ command-line processor differs from our other interpreters, because
it has to deal with modes. When prompting, it starts in query mode; when not
prompting, it starts in rule mode.
S583b.

runAs : interactivity -> unit
〈function runAs for µProlog S583b〉≡ (S87a)

fun runAs interactivity =
let val _ = setup_error_format interactivity

val (prompts, prologMode) =
if prompts interactivity then (stdPrompts, QMODE) else (noPrompts, RMODE)

val xdefs =
xdefsInMode prologMode ("standard input", filelines TextIO.stdIn, prompts)

in ignore (readEvalPrintWith eprintln (xdefs, emptyDatabase, interactivity))
end

The -q option is as in other interpreters, and the -trace option turns on tracing.
S583c. 〈code that looks at µProlog’s command-line arguments and calls runAs S583c〉≡ (S87a)

fun runmain ["-q"] = runAs (NOT_PROMPTING, PRINTING)
| runmain [] = runAs (PROMPTING, PRINTING)
| runmain ("-trace" :: t) = (tracer := app eprint; runmain t)
| runmain _ =

TextIO.output (TextIO.stdErr,
"Usage: " ^ CommandLine.name() ^ " [trace] [-q]\n")

val _ = runmain (CommandLine.arguments())

Tracing code is helpful for debugging.
S583d. 〈support for tracing µProlog computation S583d〉≡ (S87a)

val tracer = ref (app print)
val _ = tracer := (fn _ => ())
fun trace l = !tracer l

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Supporting code
for µPrologV

S584

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

IX. CODE INDEX

Code index

!=
Impcore function, 27b

*
Impcore primitive, 53a
primitive in the µScheme inter-

preter written in ML, 320d
µScheme primitive, 163b

*
in the protocol for CoordPair, 623
in the protocol for Natural, 662
in the protocol for Number, 659

+
Impcore function, 61
Impcore primitive, 53a
primitive in the µScheme inter-

preter written in ML, 320d
µScheme primitive, 163b

+
in the protocol for CoordPair, 623
in the protocol for Natural, 662
in the protocol for Number, 659

-
Impcore primitive, 53a
primitive in the µScheme inter-

preter written in ML, 320d
µScheme primitive, 163b

-
in the protocol for CoordPair, 623
in the protocol for Natural, 662
in the protocol for Number, 659

/
Impcore primitive, 53a
primitive in the µScheme inter-

preter written in ML, 320d
µScheme primitive, 163b

/
in the protocol for Number, 659

/
in the extended µML interpreter,

446e
in the µHaskell interpreter, 446e
in the µML interpreter, 446e

<
in interpreters written in ML, 321c

<
in the protocol for Magnitude, 659

<=
in the protocol for Magnitude, 659

=
primitive in the µScheme inter-

preter written in ML, 321c
=

in the protocol for Collection, 653
in the protocol for Magnitude, 659
in the protocol for Object, 646

==
in the protocol for Object, 646

=alist?
µScheme function, 135a

>
Impcore primitive, 53a
primitive in the µScheme inter-

preter written in ML, 321c
µScheme primitive, 163b

>
in the protocol for Magnitude, 659

>=
in the protocol for Magnitude, 659

̃
in the extended µML interpreter,

446e
in the µHaskell interpreter, 446e
in the µML interpreter, 446e

a
in the extended µML interpreter,

421d
in the µHaskell interpreter, 421d
in the µML interpreter, 421d

a-a-law
µScheme function, 188e

AAT
in the Typed Impcore interpreter,

353d
abs

in the protocol for Number, 659
add-element

µScheme function, 107b, 133c,
136a

add1
Impcore function, 21g
Typed Impcore function, 338

add:

S587
Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.

To be published by Cambridge University Press. Not for distribution.

Code indexV
S588

in the protocol for Collection, 653
in the protocol for Picture, 627

addAll:
in the protocol for Collection, 653

addFirst:
in the protocol for List, 658

addLargeNegativeIntegerTo:
private method of LargeInteger,

676
addLargePositiveIntegerTo:

private method of LargeInteger,
676

addLast:
in the protocol for List, 658

addn
Impcore function, 22b

addpage
in the mark-and-sweep garbage

collector, 272d
addPrim

in the Typed µScheme interpreter,
391e

addSelector:withMethod:
in the protocol for Class, 648

addSmallIntegerTo:
private method of LargeInteger,

676
addVal

in the Typed µScheme interpreter,
391e

addVcon
in the extended µML interpreter,

502
in the µML interpreter, 502

addzero
Impcore function, 61

addzero2
Impcore function, 61

adjustPoint:to:
in the protocol for Shape, 630

ALL
in the extended µML interpreter,

530
in the µML interpreter, 530

all-solutions
µScheme function, 144e

allocate
in the copying garbage collector,

270e
in the mark-and-sweep garbage

collector, 270e
in the µScheme interpreter, 156a,

164b
in the µScheme+ interpreter,

156a, 164b
allocloc

in the copying garbage collector,
270c, 281c

in the mark-and-sweep garbage
collector, 270c, 273a

alt-all?
µScheme function, 133a

AMAKE
in the Typed Impcore interpreter,

353d
and:

in the protocol for Boolean, 649
APPLY

in the ML interpreter for
µScheme, 313a

in the Typed Impcore interpreter,
341a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
apply-n-times

µScheme function, 123a
applyClosure

in the µSmalltalk interpreter, 699c
APUT

in the Typed Impcore interpreter,
353d

arg1
nano-ML function, 427a

arith
in the µScheme interpreter, 163b
in the µScheme+ interpreter,

163b
arithOp

in the ML interpreter for
µScheme, 320c

arityError
in the ML interpreter for

µScheme, 320b
ARRAY

in the Typed Impcore interpreter,
340f

in the Typed µScheme interpreter,
370b

in the µSmalltalk interpreter, 694a
ARRAYTY

in the Typed Impcore interpreter,
340c

ARROW
in the extended µML interpreter,

364a
in the Typed µScheme interpreter,

364a
in the µML interpreter, 364a

aset-elements
µScheme function, 136a

aset-eq?
µScheme function, 136a

aset?
µScheme function, 136a

asFloat

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S589

in the protocol for Number, 659
asFraction

in the protocol for Number, 659
asFuntype

in the µHaskell interpreter, 422c
in the µML interpreter, 422c

asInteger
in the protocol for Number, 659

ASIZE
in the Typed Impcore interpreter,

353d
asLiteral

in the copying garbage collector,
234a

in the mark-and-sweep garbage
collector, 234a

in the µScheme+ interpreter, 234a
asLiterals

in the copying garbage collector,
234a

in the mark-and-sweep garbage
collector, 234a

in the µScheme+ interpreter, 234a
associationAt:

in the protocol for
KeyedCollection, 656

associationAt:ifAbsent:
in the protocol for

KeyedCollection, 656
associationsDo:

in the protocol for
KeyedCollection, 656

asType
in the Typed µScheme interpreter,

389b
at:

in the protocol for
KeyedCollection, 656

at:ifAbsent:
in the protocol for

KeyedCollection, 656
at:put:

in the protocol for
KeyedCollection, 656

B
µSmalltalk class, 641a

base
private method of class Natural,

680, 681
basis

in the Typed µScheme interpreter,
391d

BEGIN
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
in the µSmalltalk interpreter, 696a

binaryOp
in the ML interpreter for

µScheme, 320b
bind

in molecule-mlton.du, 312b
in the extended µML interpreter,

312b
in the ML interpreter for

µScheme, 312b
in the Typed Impcore interpreter,

312b
in the Typed µScheme interpreter,

312b
in the µHaskell interpreter, 312b
in the µML interpreter, 312b
in the µSmalltalk interpreter, 312b

bindalloc
in the µScheme interpreter, 155c
in the µScheme+ interpreter, 155c

bindalloclist
in the µScheme interpreter, 155c
in the µScheme+ interpreter, 155c

bindfun
in the Impcore interpreter, 45d

bindList
in molecule-mlton.du, 312c
in the extended µML interpreter,

312c
in the ML interpreter for

µScheme, 312c
in the Typed Impcore interpreter,

312c
in the Typed µScheme interpreter,

312c
in the µHaskell interpreter, 312c
in the µML interpreter, 312c
in the µSmalltalk interpreter, 312c

binds?
µScheme function, 144a

bindtyscheme
in the extended µML interpreter,

446c
in the µHaskell interpreter, 446c
in the µML interpreter, 446c

bindval
in the Impcore interpreter, 45d,

56c
BLOCK

in the µSmalltalk interpreter, 696a
boolean?

primitive in the µScheme inter-
preter written in ML, 321c

µScheme primitive, 164a
BOOLTY

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S590

in the Typed Impcore interpreter,
340c

BOOLV
in the ML interpreter for

µScheme, 313a
in the Typed µScheme interpreter,

370b
in the µML interpreter, 415b

C
µSmalltalk class, 641a

canonicalize
in the extended µML interpreter,

444a
in the µHaskell interpreter, 444a
in the µML interpreter, 444a

car
nML primitive, 451a
µScheme primitive, 164a

car
in the protocol for Cons, 683

car:
in the protocol for Cons, 683

CASE
in the extended µML interpreter,

498a
in the µML interpreter, 498a

cdr
nML primitive, 451a
µScheme primitive, 164a

cdr
in the protocol for Cons, 683

cdr:
in the protocol for Cons, 683

CHECK_ASSERT
in the Typed Impcore interpreter,

341d
CHECK_ERROR

in the Typed Impcore interpreter,
341d

CHECK_EXPECT
in the Typed Impcore interpreter,

341d
CHECK_FUNCTION_TYPE

in the Typed Impcore interpreter,
341d

CHECK_TYPE_ERROR
in the Typed Impcore interpreter,

341d
checkargc

in the Impcore interpreter, 48b
in the µScheme interpreter, 48b
in the µScheme+ interpreter, 48b

choicetype
in the extended µML interpreter,

509b
in the µML interpreter, 509b

CLASS

in the µSmalltalk interpreter, 694c
class

in the µSmalltalk interpreter, 694c
class

in the protocol for Object, 646
CLASSD

in the µSmalltalk interpreter, 695b
classifySimple

in the extended µML interpreter,
531a

in the µML interpreter, 531a
CLASSREP

in the µSmalltalk interpreter, 694a
clearstack

in the copying garbage collector,
226a

in the mark-and-sweep garbage
collector, 226a

in the µScheme+ interpreter, 226a
CLOSURE

in the extended µML interpreter,
498d

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370b

in the µML interpreter, 415b, 498d
in the µSmalltalk interpreter, 694a

closure
in the µSmalltalk interpreter, 699b

CMETHOD
in the µSmalltalk interpreter, 695b

coerce:
in the protocol for Number, 659

collect:
in the protocol for Collection, 653

compare-numbers
µScheme function, 166a

compare:withLt:withEq:withGt:
aNatural ltBlock eqBlock
gtBlock

private method of Natural, 681
comparison

in the ML interpreter for
µScheme, 321a

compiledMethodAt:
in the protocol for Class, 648

compose
in the extended µML interpreter,

421b
in the µHaskell interpreter, 421b
in the µML interpreter, 421b

con
in the extended µML interpreter,

446e
in the µHaskell interpreter, 446e
in the µML interpreter, 446e

CONAPP

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S591

in the extended µML interpreter,
418

in the Typed µScheme interpreter,
366a

in the µHaskell interpreter, 418
in the µML interpreter, 418

conjoinConstraints
in the extended µML interpreter,

447c
in the µHaskell interpreter, 447c
in the µML interpreter, 447c

CONPAT
in the extended µML interpreter,

498c
in the µML interpreter, 498c

cons
in the µScheme interpreter, 163c
in the µScheme+ interpreter, 163c
nML primitive, 451a

constrainArrow
in the extended µML interpreter,

509a
in the µML interpreter, 509a

consubst
in the extended µML interpreter,

447b
in the µHaskell interpreter, 447b
in the µML interpreter, 447b

CONVAL
in the extended µML interpreter,

498d
in the µML interpreter, 498d

copyEL
in the copying garbage collector,

233d
in the mark-and-sweep garbage

collector, 233d
in the µScheme+ interpreter,

233d
counter-reset

µScheme function, 125b
counter-step

µScheme function, 125b
counter?

µScheme function, 125b

DATA
in the extended µML interpreter,

498b
in the µML interpreter, 498b

data_def
in the extended µML interpreter,

498b
in the µML interpreter, 498b

decimal
in the protocol for Natural, 662

def

in the extended µML interpreter,
498b

in the ML interpreter for
µScheme, 313b

in the Typed Impcore interpreter,
341c

in the Typed µScheme interpreter,
370c

in the µML interpreter, 415a, 498b
in the µSmalltalk interpreter, 695b

DEFINE
in the ML interpreter for

µScheme, 313b
in the Typed Impcore interpreter,

341c
in the Typed µScheme interpreter,

370c
in the µML interpreter, 415a
in the µSmalltalk interpreter, 695b

degree
private method of Natural, 680

deleteAfter
in the protocol for Cons, 683

desugarLetStar
in the µScheme interpreter, 165
in the µScheme+ interpreter, 165

detect:
in the protocol for Collection, 653

detect:ifNone:
in the protocol for Collection, 653

digit:
private method of Natural, 680

digit:put:
private method of Natural, 680

digits:
private method of Natural, 680

div:
in the protocol for Integer, 660

divBase
private method of Natural, 681

divides?
µScheme function, 104a, 166b

do:
in the protocol for Collection, 653
in the protocol for Cons, 683

doDigitIndices:
private method of Natural, 680

dom
in the extended µML interpreter,

421b
in the µHaskell interpreter, 421b
in the µML interpreter, 421b

double
Impcore function, 21g
Typed Impcore function, 338

drawEllipseAt:width:height:
in the protocol for TikzCanvas, 628

drawOn:

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S592

in the protocol for Shape, 630
drawPolygon:

in the protocol for TikzCanvas, 628

embedBool
in the ML interpreter for

µScheme, 315b
in the Typed µScheme interpreter,

315b
in the µML interpreter, 315b

embedInt
in the ML interpreter for

µScheme, 315a
in the Typed µScheme interpreter,

315a
in the µML interpreter, 315a

embedList
in the ML interpreter for

µScheme, 315c
in the Typed µScheme interpreter,

315c
in the µML interpreter, 315c

empty
in the protocol for class Picture,

627
empty-tree?

µScheme function, 112a
empty?

µScheme function, 121a
emptystack

in the copying garbage collector,
226a

in the mark-and-sweep garbage
collector, 226a

in the µScheme+ interpreter, 226a
enqueue

µScheme function, 121a
Env

in the copying garbage collector,
155a

in the mark-and-sweep garbage
collector, 155a

in the µScheme interpreter, 155a
in the µScheme+ interpreter, 155a

env
in molecule-mlton.du, 310b
in the extended µML interpreter,

310b
in the ML interpreter for

µScheme, 310b
in the Typed Impcore interpreter,

310b
in the Typed µScheme interpreter,

310b
in the µHaskell interpreter, 310b
in the µML interpreter, 310b
in the µSmalltalk interpreter, 310b

EQ

in the Typed Impcore interpreter,
341b

eqFunty
in the Typed Impcore interpreter,

340e
eqKind

in the extended µML interpreter,
364b

in the Typed µScheme interpreter,
364b

in the µML interpreter, 364b
eqKinds

in the extended µML interpreter,
364b

in the Typed µScheme interpreter,
364b

in the µML interpreter, 364b
eqTycon

in the extended µML interpreter,
497c

in the µHaskell interpreter, 419a
in the µML interpreter, 419a, 497c

eqType
in the extended µML interpreter,

422b
in the Typed Impcore interpreter,

340d
in the Typed µScheme interpreter,

379a
in the µHaskell interpreter, 422b
in the µML interpreter, 422b

eqTypes
in the extended µML interpreter,

422b
in the Typed Impcore interpreter,

340d
in the Typed µScheme interpreter,

379a
in the µHaskell interpreter, 422b
in the µML interpreter, 422b

eqv:
in the protocol for Boolean, 649

error
nML primitive, 451b
µScheme primitive, 164a

error:
in the protocol for Object, 646

ev
in the µSmalltalk interpreter, 697a

eval
in the copying garbage collector,

229a
in the Impcore interpreter, 45e,

48d
in the mark-and-sweep garbage

collector, 229a
in the ML interpreter for

µScheme, 316a

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S593

in the µScheme interpreter, 157a,
157b

in the µScheme+ interpreter,
157a, 229a

in the µSmalltalk interpreter, 696b
evalDataDef

in the extended µML interpreter,
502

in the µML interpreter, 502
evaldef

in the Impcore interpreter, 45e,
54a

in the ML interpreter for
µScheme, 318c

in the µScheme interpreter, 157a,
161e

in the µScheme+ interpreter,
157a, 161e

in the µSmalltalk interpreter, 701c
evallist

in the Impcore interpreter, 48c,
52a

in the µScheme interpreter, 159c
evalMethod

in the µSmalltalk interpreter, 698a
even?

µScheme function, 127b, 129a,
187a

exhaustivenessCheck
in the extended µML interpreter,

531c
in the µML interpreter, 531c

EXP
in the ML interpreter for

µScheme, 313b
in the Typed Impcore interpreter,

341c
in the Typed µScheme interpreter,

370c
in the µML interpreter, 415a
in the µSmalltalk interpreter, 695b

exp
in the extended µML interpreter,

498a
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
in the µML interpreter, 414, 498a
in the µSmalltalk interpreter, 696a

fetchfun
in the Impcore interpreter, 45b

fetchval
in the Impcore interpreter, 45b,

56b

find
in molecule-mlton.du, 311b
in the extended µML interpreter,

311b
in the ML interpreter for

µScheme, 311b
in the Typed Impcore interpreter,

311b
in the Typed µScheme interpreter,

311b
in the µHaskell interpreter, 311b
in the µML interpreter, 311b
in the µScheme interpreter, 155b
in the µScheme+ interpreter,

155b
in the µSmalltalk interpreter, 311b

find-c
µScheme function, 138

find-cnf-true-assignment
µScheme function, 145a

find-D-true-assignment
µScheme function, 145a

find-default
µScheme function, 139b

find-lit-true-assignment
µScheme function, 145a

findMethod
in the µSmalltalk interpreter, 698b

findtyscheme
in the extended µML interpreter,

446b
in the µHaskell interpreter, 446b
in the µML interpreter, 446b

findval
in the Impcore interpreter, 55d

first
in the protocol for Sequenceable-

Collection, 657
first:rest: anInteger aNatural

private method of class Natural,
681

firstKey
in the protocol for Sequenceable-

Collection, 657
followers

µScheme function, 139d
FORALL

in the extended µML interpreter,
418

in the Typed µScheme interpreter,
366a

in the µHaskell interpreter, 418
in the µML interpreter, 418

forward
in the copying garbage collector,

282c, 283a
Frame

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S594

in the copying garbage collector,
225a

in the mark-and-sweep garbage
collector, 225a

in the µScheme+ interpreter, 225a
freeEL

in the copying garbage collector,
233d

in the mark-and-sweep garbage
collector, 233d

in the µScheme+ interpreter,
233d

freetyvars
in the extended µML interpreter,

442
in the Typed µScheme interpreter,

381a
in the µHaskell interpreter, 442
in the µML interpreter, 442

freetyvarsConstraint
in the extended µML interpreter,

447a
in the µHaskell interpreter, 447a
in the µML interpreter, 447a

freetyvarsGamma
in the extended µML interpreter,

446d
in the Typed µScheme interpreter,

381b
in the µHaskell interpreter, 446d
in the µML interpreter, 446d

freeVL
in the copying garbage collector,

234b
in the mark-and-sweep garbage

collector, 234b
in the µScheme+ interpreter,

234b
freq

µScheme function, 139c
freshInstance

in the extended µML interpreter,
445b

in the µHaskell interpreter, 445b
in the µML interpreter, 445b

freshName
in the Typed µScheme interpreter,

408
freshtyvar

in the extended µML interpreter,
444b

in the µHaskell interpreter, 444b
in the µML interpreter, 444b

fromSmall:
in the protocol for class

LargeInteger, 676
in the protocol for class Natural,

662

front
µScheme function, 121a

frozen-dinner-starch
µScheme function, 109b

frozen-dinner?
µScheme function, 109b, 110c,

169a
func

in the Typed Impcore interpreter,
341e

Funclist
in the Impcore interpreter, 44b

Funenv
in the Impcore interpreter, 44f

FUNTY
in the Typed Impcore interpreter,

340c
in the Typed µScheme interpreter,

366a
funty

in the Typed Impcore interpreter,
340c

funtype
in the µHaskell interpreter, 422c
in the µML interpreter, 422c

gc_debug_init
in the copying garbage collector,

287a
in the mark-and-sweep garbage

collector, 287a
gc_debug_post_acquire

in the mark-and-sweep garbage
collector, 286a

gc_debug_post_reclaim
in the copying garbage collector,

286d
in the mark-and-sweep garbage

collector, 286d
gc_debug_pre_allocate

in the copying garbage collector,
286c

in the mark-and-sweep garbage
collector, 286c

gcd:
in the protocol for Integer, 660

gcprintf
in the copying garbage collector,

286g
in the mark-and-sweep garbage

collector, 286g
generalize

in the extended µML interpreter,
445a

in the µHaskell interpreter, 445a
in the µML interpreter, 445a

has?

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S595

µScheme function, 105b
head_replaced_with_hole

in the copying garbage collector,
233c

in the mark-and-sweep garbage
collector, 233c

in the µScheme+ interpreter, 233c

ifFalse:
in the protocol for Boolean, 649

ifTrue:
in the protocol for Boolean, 649

ifTrue:ifFalse:
in the protocol for Boolean, 649

IFX
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
in the µML interpreter, 414

IMETHOD
in the µSmalltalk interpreter, 695b

inc
µScheme function, 191

includes:
in the protocol for Collection, 653

includesKey:
in the protocol for

KeyedCollection, 656
inExp

in the ML interpreter for
µScheme, 320a

inject:into:
in the protocol for Collection, 653

insert
µScheme function, 103a

insertAfter:
in the protocol for Cons, 683

insertion-sort
µScheme function, 103b

instanceVars
in the µSmalltalk interpreter, 694b

instantiate
in the extended µML interpreter,

421c
in the Typed µScheme interpreter,

385b
in the µHaskell interpreter, 421c
in the µML interpreter, 421c

intcompare
in the ML interpreter for

µScheme, 321a
INTTY

in the Typed Impcore interpreter,
340c

isbound

in molecule-mlton.du, 312a
in the extended µML interpreter,

312a
in the ML interpreter for

µScheme, 312a
in the Typed Impcore interpreter,

312a
in the Typed µScheme interpreter,

312a
in the µHaskell interpreter, 312a
in the µML interpreter, 312a
in the µSmalltalk interpreter, 312a

isEmpty
in the protocol for Collection, 653

isKindOf:
in the protocol for Object, 646

isMemberOf:
in the protocol for Object, 646

isNegative
in the protocol for Number, 659

isNil
in the protocol for Object, 646

isNonnegative
in the protocol for Number, 659

isSolved
in the extended µML interpreter,

448b
in the µHaskell interpreter, 448b
in the µML interpreter, 448b

isStrictlyPositive
in the protocol for Number, 659

isvalbound
in the Impcore interpreter, 56a

isZero
in the protocol for Natural, 662

key
in the protocol for Association,

656
keyAtValue:

in the protocol for
KeyedCollection, 656

keyAtValue:ifAbsent:
in the protocol for

KeyedCollection, 656
kind

in the extended µML interpreter,
364a

in the Typed µScheme interpreter,
364a, 388a

in the µML interpreter, 364a
kindof

in the Typed µScheme interpreter,
387b

LAMBDA
in the ML interpreter for

µScheme, 313a

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S596

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
lambda

in the extended µML interpreter,
498d

in the ML interpreter for
µScheme, 313a

in the µML interpreter, 415b, 498d
lambda_exp

in the Typed µScheme interpreter,
370b

lambda_value
in the Typed µScheme interpreter,

370b
last

in the protocol for Sequenceable-
Collection, 657

lastKey
in the protocol for Sequenceable-

Collection, 657
lcm:

in the protocol for Integer, 660
leftAsExercise

in the protocol for Object, 646
length

µScheme function, 100
length-append-law

µScheme function, 188b
LET

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
let_kind

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
Letkeyword

in the copying garbage collector,
147b

in the mark-and-sweep garbage
collector, 147b

in the µScheme interpreter, 147b
in the µScheme+ interpreter,

147b
LETREC

in the ML interpreter for
µScheme, 313a

in the µML interpreter, 414
LETRECX

in the Typed µScheme interpreter,
370a

LETSTAR

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
LETX

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370a

in the µML interpreter, 414
level-order

µScheme function, 121b, 122a
level-order-of-q

µScheme function, 121b, 121c
listtype

in the Typed µScheme interpreter,
390a

in the µHaskell interpreter, 422c
in the µML interpreter, 422c

LITERAL
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
in the µML interpreter, 414
in the µSmalltalk interpreter, 696a

literal
in the extended µML interpreter,

448e
in the µML interpreter, 448e

location:
in the protocol for Shape, 630

locations:
in the protocol for Shape, 630

locationsDo:with:
in the protocol for updated shapes,

730
lower

in the copying garbage collector,
228e

in the mark-and-sweep garbage
collector, 228e

in the µScheme+ interpreter, 228e
LoweringContext

in the copying garbage collector,
228d

in the mark-and-sweep garbage
collector, 228d

in the µScheme+ interpreter,
228d

lowerXdef
in the copying garbage collector,

228f
in the mark-and-sweep garbage

collector, 228f

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S597

in the µScheme+ interpreter, 228f

m1
µSmalltalk method

in class B, 641a
m2

µSmalltalk method
in class B, 641a
in class C, 641a

magnitude
private method of LargeInteger,

676
make-aset

µScheme function, 136a
make-counter

µScheme function, 125b
make-frozen-dinner

µScheme function, 109b, 169a
make-node

µScheme function, 111a
make-set-ops

µScheme function, 136c
makecurrent

in the mark-and-sweep garbage
collector, 272c

makeEmpty:
private method of Natural, 680

match
in the extended µML interpreter,

506b
in the µML interpreter, 506b

matrix
Typed Impcore function, 353b

matrix-using-a-and-i
Typed Impcore function, 353b

max:
in the protocol for Magnitude, 659

member?
µScheme function, 107a, 133c,

135b, 136a
META

in the µSmalltalk interpreter, 694c
metaclass

in the µSmalltalk interpreter, 694c
METHOD

in the µSmalltalk interpreter, 696a
method

in the µSmalltalk interpreter, 694d
method_def

in the µSmalltalk interpreter, 695b
method_flavor

in the µSmalltalk interpreter, 695b
methodNames

in the protocol for Class, 648
METHODV

in the µSmalltalk interpreter, 694a
min:

in the protocol for Magnitude, 659

minus:borrow:
private method of Natural, 681

mk-insertion-sort
µScheme function, 137c

mk-rand
µScheme function, 126b

mkEnv
in molecule-mlton.du, 312c
in the extended µML interpreter,

312c
in the ML interpreter for

µScheme, 312c
in the Typed Impcore interpreter,

312c
in the Typed µScheme interpreter,

312c
in the µHaskell interpreter, 312c
in the µML interpreter, 312c
in the µSmalltalk interpreter, 312c

mkPrimitive
in the Impcore interpreter, 44e

mkUserdef
in the Impcore interpreter, 44e

mkValenv
in the Impcore interpreter, 45a,

55c
mod

Impcore function, 27c
mod:

in the protocol for Integer, 660
modBase

private method of Natural, 681
more-than-one?

µScheme function, 140
multiplyByLargeNegativeInteger:

private method of LargeInteger,
676

multiplyByLargePositiveInteger:
private method of LargeInteger,

676
multiplyBySmallInteger:

private method of LargeInteger,
676

Mvalue
in the mark-and-sweep garbage

collector, 271a

Name
in the copying garbage collector,

43b
in the Impcore interpreter, 43b
in the mark-and-sweep garbage

collector, 43b
in the µScheme interpreter, 43b
in the µScheme+ interpreter, 43b

name
in molecule-mlton.du, 310a

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S598

in the extended µML interpreter,
310a

in the ML interpreter for
µScheme, 310a

in the Typed Impcore interpreter,
310a

in the Typed µScheme interpreter,
310a

in the µHaskell interpreter, 310a
in the µML interpreter, 310a
in the µSmalltalk interpreter, 310a

name
in the protocol for Class, 648

Namelist
in the copying garbage collector,

43b
in the Impcore interpreter, 43b
in the mark-and-sweep garbage

collector, 43b
in the µScheme interpreter, 43b
in the µScheme+ interpreter, 43b

nametostr
in the Impcore interpreter, 43c
in the µScheme interpreter, 43c
in the µScheme+ interpreter, 43c

negated
Impcore function, 27c

negated
in the protocol for Number, 659

new
in the protocol for a canvas class,

628
in the protocol for class Shape, 630
in the protocol for Class, 648

new:
in the protocol for Array, 657

newBoundVars
in the extended µML interpreter,

444a
in the µHaskell interpreter, 444a
in the µML interpreter, 444a

NIL
in the ML interpreter for

µScheme, 313a
in the Typed µScheme interpreter,

370b
in the µML interpreter, 415b

node-left
µScheme function, 111a

node-right
µScheme function, 111a

node-tag
µScheme function, 111a

node?
µScheme function, 111a

not
in the protocol for Boolean, 649

notNil

in the protocol for Object, 646
nth

µScheme function, 190a
null?

nML primitive, 451a
primitive in the µScheme inter-

preter written in ML, 321c
µScheme primitive, 164a

NUM
in the extended µML interpreter,

498d
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

340f
in the Typed µScheme interpreter,

370b
in the µML interpreter, 415b, 498d
in the µSmalltalk interpreter, 694a

number?
µScheme primitive, 164a

nutrition?
µScheme function, 110d

occurrencesOf:
in the protocol for Collection, 653

ofVcon
in the extended µML interpreter,

531b
in the µML interpreter, 531b

ok
in the Typed µScheme interpreter,

408
ONE

in the extended µML interpreter,
530

in the µML interpreter, 530
one-solution

µScheme function, 144d
or

Impcore function, 27a
or:

in the protocol for Boolean, 649

Page
in the mark-and-sweep garbage

collector, 272a
PAIR

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370b

in the µML interpreter, 415b
pair<

µScheme function, 187b
pair?

µScheme primitive, 164a
pairs

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S599

in molecule-mlton.du, 312d
in the extended µML interpreter,

312d
in the ML interpreter for

µScheme, 312d
in the Typed Impcore interpreter,

312d
in the Typed µScheme interpreter,

312d
in the µHaskell interpreter, 312d
in the µML interpreter, 312d
in the µSmalltalk interpreter, 312d

pairtype
in the µHaskell interpreter, 422c
in the µML interpreter, 422c

pat
in the extended µML interpreter,

498c
in the µML interpreter, 498c

pattype
in the extended µML interpreter,

510
in the µML interpreter, 510

pattypes
in the extended µML interpreter,

510
in the µML interpreter, 510

PENDING
in the µSmalltalk interpreter, 694c

plus:carry:
private method of Natural, 681

popframe
in the copying garbage collector,

226a
in the mark-and-sweep garbage

collector, 226a
in the µScheme+ interpreter, 226a

popreg
in the copying garbage collector,

270a
in the mark-and-sweep garbage

collector, 270a
popregs

in the copying garbage collector,
270b

in the mark-and-sweep garbage
collector, 270b

positive?
Typed Impcore function, 339b

pred
in the protocol for Cons, 683

pred:
in the protocol for Cons, 683

predOp
in the ML interpreter for

µScheme, 321a
preorder

µScheme function, 112b

primes-in
µScheme function, 104c

primes<=
µScheme function, 104d

PRIMITIVE
in the extended µML interpreter,

498d
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341e
in the Typed µScheme interpreter,

370b
in the µML interpreter, 415b, 498d
in the µSmalltalk interpreter, 696a

Primitive
in the copying garbage collector,

154b
in the mark-and-sweep garbage

collector, 154b
in the µScheme interpreter, 154b
in the µScheme+ interpreter,

154b
primitive

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370b

primop
in the extended µML interpreter,

498d
in the µML interpreter, 415b, 498d

PRINT
in the Typed Impcore interpreter,

341b
print

in the protocol for CoordPair, 623
in the protocol for Object, 646

PRINTLN
in the Typed Impcore interpreter,

341b
println

in the protocol for Object, 646
printLocalProtocol

in the protocol for Class, 648
printName

in the protocol for Collection, 667
printProtocol

in the protocol for Class, 648
procedure?

µScheme primitive, 164a
projectBool

in the ML interpreter for
µScheme, 315b

in the Typed µScheme interpreter,
315b

in the µML interpreter, 315b
projectInt

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S600

in the ML interpreter for
µScheme, 315a

in the Typed µScheme interpreter,
315a

in the µML interpreter, 315a
projectint32

in the µScheme interpreter, 163a
in the µScheme+ interpreter, 163a

pushenv_opt
in the copying garbage collector,

226c, 240
in the mark-and-sweep garbage

collector, 226c, 240
in the µScheme+ interpreter,

226c, 240
pushframe

in the copying garbage collector,
226a

in the mark-and-sweep garbage
collector, 226a

in the µScheme+ interpreter, 226a
pushreg

in the copying garbage collector,
270a

in the mark-and-sweep garbage
collector, 270a

pushregs
in the copying garbage collector,

270b
in the mark-and-sweep garbage

collector, 270b
PVAR

in the extended µML interpreter,
498c

in the µML interpreter, 498c

raisedToInteger:
in the protocol for Number, 659

reciprocal
in the protocol for Number, 659

reject:
in the protocol for Collection, 653

rejectOne:ifAbsent:withPred:
in the protocol for Cons, 683

remove-multiples
µScheme function, 104b, 166b

remove:
in the protocol for Collection, 653

remove:ifAbsent:
in the protocol for Collection, 653

removeAll:
in the protocol for Collection, 653

removeFirst
in the protocol for List, 658

removeKey:
in the protocol for

KeyedCollection, 656
removeKey:ifAbsent:

in the protocol for
KeyedCollection, 656

removeLast
in the protocol for List, 658

removeSelector:
in the protocol for Class, 648

rename
in the Typed µScheme interpreter,

385a
renameForallAvoiding

in the Typed µScheme interpreter,
407

renderUsing: aCanvas
in the protocol for Picture, 627

rep
in the µSmalltalk interpreter, 694a

RETURN
in the µSmalltalk interpreter, 696a

revapp
nano-ML function, 412

roots
µScheme function, 120a

runerror
in the Impcore interpreter, 47
in the µScheme interpreter, 47
in the µScheme+ interpreter, 47

satisfiable?
µScheme function, 144b

satisfies?
µScheme function, 143b

satisfying-value
µScheme function, 143a

SavedEnvTag
in the copying garbage collector,

228b
in the mark-and-sweep garbage

collector, 228b
in the µScheme+ interpreter,

228b
saveTrueAndFalse

in the µSmalltalk interpreter, 706c
scale:

in the protocol for Shape, 630
scanenv

in the copying garbage collector,
281d, 282a

scanexp
in the copying garbage collector,

281d
scanexplist

in the copying garbage collector,
281d

scanframe
in the copying garbage collector,

281d
scanloc

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S601

in the copying garbage collector,
281d, 282b

scantest
in the copying garbage collector,

281d
scantests

in the copying garbage collector,
281d

sdiv:
in the protocol for LargeInteger,

676
in the protocol for Natural, 662

sdivmod:with:
in the protocol for Natural, 662

select:
in the protocol for Collection, 653

SEND
in the µSmalltalk interpreter, 696a

seq
µScheme function, 104a

SET
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
in the µSmalltalk interpreter, 696a

set-of-list
µScheme function, 133c

set-ops-add-element
µScheme function, 136c

set-ops-member?
µScheme function, 136c

set-ops-with
µScheme function, 136c

set-ops?
µScheme function, 136c

setKey:
in the protocol for Association,

656
setValue:

in the protocol for Association,
656

simple-next
µScheme function, 126c

simple-reverse
µScheme function, 102a

simple_vset
in the extended µML interpreter,

530
in the µML interpreter, 530

size
µScheme function, 107c

size
in the protocol for Collection, 653

smod:

in the protocol for LargeInteger,
676

in the protocol for Natural, 662
snoc (µScheme function), 186
solve

in the extended µML interpreter,
448a

in the µHaskell interpreter, 448a
in the µML interpreter, 448a

solves
in the extended µML interpreter,

448b
in the µHaskell interpreter, 448b
in the µML interpreter, 448b

species
private method of Collection, 667

sqrt
in the protocol for Number, 659

sqrtWithin:
in the protocol for Number, 659

squared
in the protocol for Number, 659

Stack
in the copying garbage collector,

225a
in the mark-and-sweep garbage

collector, 225a
in the µScheme+ interpreter, 225a

stack_trace_current_expression
in the copying garbage collector,

226f
in the mark-and-sweep garbage

collector, 226f
in the µScheme+ interpreter, 226f

stack_trace_current_value
in the copying garbage collector,

226f
in the mark-and-sweep garbage

collector, 226f
in the µScheme+ interpreter, 226f

startDrawing
in the protocol for TikzCanvas, 628

stopDrawing
in the protocol for TikzCanvas, 628

strtoname
in the Impcore interpreter, 43c
in the µScheme interpreter, 43c
in the µScheme+ interpreter, 43c

sub-alist?
µScheme function, 135a

subclassResponsibility
in the protocol for Object, 646

subst
in the extended µML interpreter,

420
in the Typed µScheme interpreter,

384a
in the µHaskell interpreter, 420

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S602

in the µML interpreter, 420
subtract:withDifference:ifNegative:

in the protocol for Natural, 662
SUPER

in the µSmalltalk interpreter, 696a
superclass

in the protocol for Class, 648
SYM

in the extended µML interpreter,
498d

in the ML interpreter for
µScheme, 313a

in the Typed µScheme interpreter,
370b

in the µML interpreter, 415b, 498d
in the µSmalltalk interpreter, 694a

symbol?
µScheme primitive, 164a

synerror
in the Impcore interpreter, 48a
in the µScheme interpreter, 48a
in the µScheme+ interpreter, 48a

timesBase
private method of Natural, 681

timesRepeat:
in the protocol for Integer, 660

toArray
in the Typed Impcore interpreter,

354a
toInt

in the Typed Impcore interpreter,
354a

topframe
in the copying garbage collector,

226b
in the mark-and-sweep garbage

collector, 226b
in the µScheme+ interpreter,

226b
transition_explist

in the copying garbage collector,
233b

in the mark-and-sweep garbage
collector, 233b

in the µScheme+ interpreter,
233b

translateVcon
in the extended µML interpreter,

501b
in the µML interpreter, 501b

tree-height
µScheme function, 188a

trim
private method of Natural, 680

TRIVIAL
in the extended µML interpreter,

446e

in the µHaskell interpreter, 446e
in the µML interpreter, 446e

twice
µScheme function, 123b

ty
in the extended µML interpreter,

418, 449a
in the Typed Impcore interpreter,

340c, 347b
in the µHaskell interpreter, 418
in the µML interpreter, 418, 449a

TYAPPLY
in the Typed µScheme interpreter,

370a
TYCON

in the extended µML interpreter,
418

in the Typed µScheme interpreter,
366a

in the µHaskell interpreter, 418
in the µML interpreter, 418

tycon
in the extended µML interpreter,

497b
in the µHaskell interpreter, 419a
in the µML interpreter, 419a, 497b

tycon_identity
in the extended µML interpreter,

497a
in the µML interpreter, 497a

tyconString
in the µHaskell interpreter, 419a
in the µML interpreter, 419a

tyex
in the Typed µScheme interpreter,

366a
TYLAMBDA

in the Typed µScheme interpreter,
370a

typdef
in the extended µML interpreter,

449f
in the Typed Impcore interpreter,

350c
in the Typed µScheme interpreter,

375
in the µML interpreter, 449f

TYPE
in the extended µML interpreter,

364a
in the Typed µScheme interpreter,

364a
in the µML interpreter, 364a

type_env
in the extended µML interpreter,

446a
in the µHaskell interpreter, 446a
in the µML interpreter, 446a

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S603

type_scheme
in the extended µML interpreter,

418
in the µHaskell interpreter, 418
in the µML interpreter, 418

typeDataDef
in the extended µML interpreter,

501b
in the µML interpreter, 501b

typeof
in the extended µML interpreter,

448c
in the Typed Impcore interpreter,

347a
in the Typed µScheme interpreter,

375
in the µML interpreter, 448c

typesof
in the extended µML interpreter,

448d
in the µHaskell interpreter, 448d
in the µML interpreter, 448d

tysubst
in the extended µML interpreter,

421a
in the Typed µScheme interpreter,

384a
in the µHaskell interpreter, 421a
in the µML interpreter, 421a

TYVAR
in the extended µML interpreter,

418
in the Typed µScheme interpreter,

366a
in the µHaskell interpreter, 418
in the µML interpreter, 418

tyvar
in the extended µML interpreter,

418
in the µHaskell interpreter, 418
in the µML interpreter, 418

unary
in the µScheme interpreter, 164a
in the µScheme+ interpreter, 164a

unaryOp
in the ML interpreter for

µScheme, 320b
UndefinedObject

in Smalltalk, 663
union

µScheme function, 107c, 133c
unit_test

in the Typed Impcore interpreter,
341d

UNITTY
in the Typed Impcore interpreter,

340c

unspecified
in the µScheme interpreter, 156d
in the µScheme+ interpreter,

156d
unusedIndex

in the extended µML interpreter,
444a

in the µHaskell interpreter, 444a
in the µML interpreter, 444a

USER
in the µSmalltalk interpreter, 694a

USERDEF
in the Typed Impcore interpreter,

341e
userfun

in the Typed Impcore interpreter,
341c

VAL
in the ML interpreter for

µScheme, 313b
in the Typed Impcore interpreter,

341c
in the Typed µScheme interpreter,

370c
in the µML interpreter, 415a
in the µSmalltalk interpreter, 695b

Valenv
in the Impcore interpreter, 44f

validate
in the copying garbage collector,

227b
in the mark-and-sweep garbage

collector, 227b
in the µScheme+ interpreter,

227b
VALREC

in the Typed µScheme interpreter,
370c

in the µML interpreter, 415a
VALUE

in the µSmalltalk interpreter, 696a
Value

in the Impcore interpreter, 44a
value

in the extended µML interpreter,
498d

in the ML interpreter for
µScheme, 313a

in the Typed Impcore interpreter,
340f

in the Typed µScheme interpreter,
370b

in the µML interpreter, 415b, 498d
in the µSmalltalk interpreter, 693

value
in the protocol for blocks, 650

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S604

in the protocol for Association,
656

value:
in the protocol for blocks, 650

value:value:
in the protocol for blocks, 650

value:value:value:
in the protocol for blocks, 650

value:value:value:value:
in the protocol for blocks, 650

Valuelist
in the Impcore interpreter, 44a

valuePrim
in the µSmalltalk interpreter, 699b

valueString
in the ML interpreter for

µScheme, 314
in the Typed µScheme interpreter,

314
in the µML interpreter, 314

VAR
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
in the µML interpreter, 414
in the µSmalltalk interpreter, 696a

variable-of
µScheme function, 143a

varsubst
in the extended µML interpreter,

420
in the µHaskell interpreter, 420
in the µML interpreter, 420

vcon
in the extended µML interpreter,

498a, 498c
in the µML interpreter, 498a, 498c

VCONX
in the extended µML interpreter,

498a
in the µML interpreter, 498a

visitenv
in the mark-and-sweep garbage

collector, 273b, 273d
visitexp

in the mark-and-sweep garbage
collector, 273b

visitexplist
in the mark-and-sweep garbage

collector, 273b
visitframe

in the mark-and-sweep garbage
collector, 273b

visitloc

in the mark-and-sweep garbage
collector, 273b, 274a

visitregister
in the mark-and-sweep garbage

collector, 274b
visitregisterlist

in the mark-and-sweep garbage
collector, 273b

visitroots
in the mark-and-sweep garbage

collector, 273b
visitstack

in the mark-and-sweep garbage
collector, 273b

visittestlists
in the mark-and-sweep garbage

collector, 273b
visitvalue

in the mark-and-sweep garbage
collector, 273b, 274c

whileFalse:
in the protocol for blocks, 650

whileTrue:
in the protocol for blocks, 650

WHILEX
in the ML interpreter for

µScheme, 313a
in the Typed Impcore interpreter,

341a
in the Typed µScheme interpreter,

370a
WILDCARD

in the extended µML interpreter,
498c

in the µML interpreter, 498c
with:

in the protocol for class
Collection, 653

withAll:
in the protocol for class

Collection, 653
withKey:value:

in the protocol for class
Association, 656

withMagnitude:
private method of class

LargeInteger, 676
withNameBound

in the ML interpreter for
µScheme, 318b

without-front
µScheme function, 121a

withX:y:
in the protocol for class

CoordPair, 623

x

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code index

S605

Impcore function, 29
x

in the protocol for CoordPair, 623
x-3-plus-1

Impcore function, 12b
xor:

in the protocol for Boolean, 649

y
in the protocol for CoordPair, 623

z
Impcore function, 29

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

Code indexV
S606

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

