Type soundness

If $\Gamma \vdash e : \text{int}$, and if $\langle e, \rho, \sigma \rangle \Downarrow \langle \nu, \sigma' \rangle$, and if Γ and ρ are consistent, then

ν has the form $\text{NUM } n$ for some n

(Must generalize to all types τ)
fun ty (IFX (e1, e2, e3)) =
 if eqType (ty e1, booltype) then
 let val (tau2, tau3) = (ty e2, ty e3)
 in ... YOU FILL IN 1 ...
 end
 else
 ... YOU FILL IN 2 ...
 end

| ty (SET (x, e)) =
 let val tau_x = find (x, Gamma)
 val tau_e = ty e
 in ... YOU FILL IN 3 ...
 end
fun ty (APPLY (f, actuals)) =
 let val atys = map ty actuals
 in case ty f
 of FUNTY (formals, result) =>
 if eqTypes (atys, formals) then
 ... YOU FILL IN 4 ...
 else
 ... YOU FILL IN 5 ...
 | _ => ... YOU FILL IN 6 ...
 end
New types are expensive

Closed world
• Only a designer can add a new type constructor

A new type constructor (“array”) requires
• Special syntax
• New type rules
• New internal representation (type formation)
• New code in type checker (intro, elim)
• New or revised proof of soundness
Expense of array types

Formation: \(\tau \) is a type

\[\text{ARRAY}(\tau) \text{ is a type} \]

Introduction: \(\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau \)

\[\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau) \]

Elimination: \(\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \)

\[\Gamma \vdash \text{AAT}(e_1, e_2) : \tau \]

\[\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau \]

\[\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau \]

\[\Gamma \vdash e : \text{ARRAY}(\tau) \]

\[\Gamma \vdash \text{ASIZE}(e) : \text{INT} \]
Monomorphism leads to code duplication

User-defined functions are monomorphic:

```scheme
(define unit swap ([a : (array bool)]
  [i : int]
  [j : int])

(begin
  (set tmp (array-at a i))
  (array-put a i (array-at a j))
  (array-put a j tmp)
  (begin)))
```
Better type for a swap function

(check-type
 swap
 (forall ('a) ([array 'a] int int -> unit)))
Quantified types

Heart of polymorphism: \(\forall \alpha_1, \ldots, \alpha_n . \tau. \)

In Typed \(\mu \) Scheme: (forall (’al … ’an) type)

Two ideas:
- Type variable ’a stands for an unknown type
- Quantified type (with forall) enables substitution

\begin{align*}
\text{car} & : \forall \alpha . \alpha \text{ list} \to \alpha \\
\text{cdr} & : \forall \alpha . \alpha \text{ list} \to \alpha \text{ list} \\
\text{cons} & : \forall \alpha . \alpha \times \alpha \text{ list} \to \alpha \text{ list} \\
’ () & : \forall \alpha . \alpha \text{ list} \\
\text{length} & : \forall \alpha . \alpha \text{ list} \to \text{ int}
\end{align*}
Quantified types

Heart of polymorphism: \(\forall \alpha_1, \ldots, \alpha_n . \tau. \)

In Typed \(\mu \)Scheme: (forall ('a1 ... 'an) type)

Two ideas:
- Type variable 'a stands for an unknown type
- Quantified type (with forall) enables substitution

\[
\begin{align*}
car & : (forall ('a) ([list 'a] -> 'a)) \\
cdr & : (forall ('a) ([list 'a] -> [list 'a])) \\
cons & : (forall ('a) ('a [list 'a] -> [list 'a])) \\
'() & : (forall ('a) (list 'a)) \\
length & : (forall ('a) ([list 'a] -> int))
\end{align*}
\]
Representing quantified types

Two new alternatives for \texttt{tyex}:

```plaintext
datatype tyex
    = TYCON of name // int
    | CONAPP of tyex * tyex list // (list bool)
    | FUNTY of tyex list * tyex // (int int \to \text{bool})
    | TYVAR of name // 'a
    | FORALL of name list * tyex // (forall (\text{\textquoteleft}a\textquoteright) \ldots)
```
Programming with quantified types

Substitute for quantified variables: “instantiate”

-> length
<procedure> : (forall ('a) ((list 'a) -> int))
-> [@ length int]
<procedure> : ((list int) -> int)
-> (length '(1 2 3))

Type error: function is polymorphic; instantiate before applying

-> ([@ length int] '(1 2 3))
3 : int
Substitute what you like

-> length
<procedure> : (forall ('a) ((list 'a) -> int))
-> [@ length bool]
<procedure> : ((list bool) -> int)
-> ([@ length bool] '(#t #f))
2 : int
More instantiations

-> (val length-int [@ length int])
length-int : ((list int) -> int)
-> (val cons-bool [@ cons bool])
cons-bool : ((bool ... bool)) -> (list bool)
-> (val cdr-sym [@ cdr sym])
cdr-sym : ((list sym) -> (list sym))
-> (val empty-int [@ '() int])
() : (list int)
Abstract over unknown type using `type-lambda`:

\[
\Rightarrow (\text{val id (type-lambda } ['a] \\
\quad (\text{lambda ([x : } 'a]) \ x)))
\]

\[
\text{id : (forall } ('a) (\text{'}a \Rightarrow 'a))
\]

\text{'}a\text{ is type parameter (an } unknown\text{ type)}

This feature is parametric polymorphism.
Polymorphic array swap

(check-type swap
 (forall ('a) ([array 'a] int int -> unit)))

(val swap
 (type-lambda ('a)
 (lambda ([a : (array 'a)]
 [i : int]
 [j : int])
 (let ([tmp (@ Array.at 'a] a i)])
 (begin
 (@ Array.at-put 'a] a i (@ Array.at 'a] a j)
 (@ Array.at-put 'a] a j tmp))))))
Power comes at notational cost

Function composition

→ (val o (type-lambda ['a 'b 'c]
 (lambda ([f : ('b -> 'c)]
 [g : ('a -> 'b)])
 (lambda ([x : 'a]) (f (g x))))))

o : (forall ('a 'b 'c)
 (('b -> 'c) ('a -> 'b) -> ('a -> 'c)))

Aka o : ∀α, β, γ . (β → γ) × (α → β) → (α → γ)
Instantiate by substitution

\forall \text{ elimination:}

- Concrete syntax \((\forall e \; \tau_1 \cdots \tau_n)\)
- Rule (note new judgment form \(\Delta, \Gamma \vdash e : \tau\)):

\[
\Delta, \Gamma \vdash e : \forall \alpha_1, \ldots, \alpha_n. \tau
\]
\[
\Delta, \Gamma \vdash \text{TYAPPLY}(e, \tau_1, \ldots, \tau_n) : \tau[\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]
\]

Substitution is in the book as function \text{tysubst}

(Also in the book: \text{instantiate})
Generalize with type-lambda

∀ introduction:

- **Concrete syntax** \(\text{type-lambda} \ [\alpha_1 \cdots \alpha_n] \ e \)
- **Rule (forall introduction):**

\[
\Delta \{\alpha_1 :: *, \ldots \alpha_n :: *\}, \Gamma \vdash e : \tau \\
\alpha_i \notin \text{ftv}(\Gamma), \quad 1 \leq i \leq n \\
\hline
\Delta, \Gamma \vdash \text{TYLAMBDA}(\alpha_1, \ldots, \alpha_n, e) : \forall \alpha_1, \ldots, \alpha_n. \tau
\]

\(\Delta\) is kind environment (remembers \(\alpha_i\)'s are types)
You can’t trust code

Type checking guarantees expressions are OK

What about types?

-> (lambda ([a : array]) (Array.size a))
 type error: used type constructor ‘array’ as a type
-> (lambda ([x : (bool int)]) x)
 type error: tried to apply type bool as type constructor
-> (@ car list)
 type error: instantiated at type constructor ‘list’, which

(User’s types not blindly trusted)
When is a type well formed?

A well-formed type has the right kind

• “Types classify terms”
• “Kinds classify types”
What kinds do

Kinds classify type expressions into:
• **types** that classify terms (e.g., `int`)
• **type constructors** that build types (e.g., `list`)
• **nonsense** that means nothing (e.g., `int int`)

Use judgment

\[\Delta \vdash \tau :: \kappa \]

Where

\[\kappa \] Roughly, “type” or “type constructor”

\[\Delta \] Kind of each type constructor, type variable
Type formation through kinds

Each type constructor has a kind, which is either:

• *, or
• \(\kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \)

Type constructors of kind * classify terms

(int :: *, bool :: *)

Type constructors of arrow kinds are “types in waiting”

(list :: * \Rightarrow *, array :: * \Rightarrow *, pair :: * \times * \Rightarrow *)
Use kinds to give arities

Examples: int :: *, list :: * ⇒ *, pair :: * × * ⇒ *

Non-Examples: int int and bool × list have no kind because they are nonsense.

Kinds classify type expressions just as types classify terms
The kinding judgment

\[\Delta \vdash \tau :: \kappa \quad \text{“Type } \tau \text{ has kind } \kappa \text{”} \]
\[\Delta \vdash \tau :: * \quad \text{Special case: \textquotedblleft } \tau \text{ is a type\textquotedblright} \ (\text{asType}) \]

Replaces one-off type-formation rules

Kind environment \(\Delta \) tracks type constructor names and kinds.

Use \texttt{asType} in code!
Kinding rules for types

\[
\frac{\mu \in \text{dom} \Delta \quad \Delta(\mu) = \kappa}{\Delta \vdash \text{TYCON}(\mu) :: \kappa} \quad \text{KINDINTROCON}
\]

\[
\frac{\Delta \vdash \tau :: \kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \quad \Delta \vdash \tau_i :: \kappa_i, \quad 1 \leq i \leq n}{\Delta \vdash \text{CONAPP}(\tau, [\tau_1, \ldots, \tau_n]) :: \kappa} \quad \text{KINDAPP}
\]

These two rules replace all formation rules.

(Check out book functions \texttt{kindof} and \texttt{asType})
Designer’s burden reduced

To extend Typed Impcore:
 • New syntax
 • New type rules
 • New internal representation
 • New code
 • New soundness proof

To extend Typed μScheme, none of the above! Just
 • New functions
 • New primitive type constructor in Δ

You’ll do arrays both ways
Kinds of primitive type constructors

\(\Delta(\text{int}) = * \)

\(\Delta(\text{bool}) = * \)

\(\Delta(\text{list}) = * \Rightarrow * \)

\(\Delta(\text{option}) = * \Rightarrow * \)

\(\Delta(\text{pair}) = * \times * \Rightarrow * \)

\(\Delta(\text{array}) = \text{You fill in} \)

\(\Delta(\text{unit}) = \text{You fill in} \)
What can a programmer add?

Typed Impcore:
- Closed world (no new types)
- Simple formation rules

Typed μScheme:
- Semi-closed world (new type variables)
- How are types formed (from other types)?

Standard ML:
- Open world (programmers create new types)
- How are types formed (from other types)?
How ML works: Three environments

\(\Delta \) maps names (of tycons and tyvars) to kinds
\(\Gamma \) maps names (of variables) to types
\(\rho \) maps names (of variables) to values or locations

New val def

\[
\text{val } x = 33
\]

New type def

\[
\text{type } 'a \text{ transformer} = 'a \to 'a
\]

New datatype def

\[
\text{datatype } \text{color} = \text{RED} \mid \text{GREEN} \mid \text{BLUE}
\]
Three environments revealed

Δ maps names (of tycons and tyvars) to kinds
Γ maps names (of variables) to types
ρ maps names (of variables) to values or locations

New val def modifies Γ, ρ

val x = 33 means $\Gamma\{x : \text{int}\}, \rho\{x \mapsto 33\}$

New type def modifies Δ

type 'a transformer = 'a list * 'a list
means $\Delta\{\text{transformer} :: \ast \Rightarrow \ast\}$

New datatype def modifies Δ, Γ, ρ

datatype color = RED | GREEN | BLUE

means $\Delta\{\text{color} :: \ast\}, \Gamma\{\text{RED : color, GREEN : color, BLUE : color}\}$,
$\rho\{\text{RED} \mapsto 0, \text{GREEN} \mapsto 1, \text{BLUE} \mapsto 2\}$
Exercise: Three environments

datatype 'a tree
 = NODE of 'a tree * 'a * 'a tree
 | EMPTY

means
\Delta\{tree \mapsto \ast \Rightarrow \ast\},
\Gamma\{NODE \mapsto \forall'a . 'a tree * 'a * 'a tree \mapsto 'a tree,
 EMPTY \mapsto \forall'a . 'a tree\},
\rho\{NODE \mapsto \lambda(l,x,r) \cdots , EMPTY \mapsto 1\}