Type checking in ML (no variables!)

val typeof : exp -> ty
exception IllTyped

fun typeof (ARITH (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => INTTY
 | _ => raise IllTyped)

| typeof (CMP (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => BOOLTY
 | _ => raise IllTyped)

| typeof (LIT _) = INTTY

| typeof (IF (e,e1,e2)) =
 (case (typeof e, typeof e1, typeof e2)
 of (BOOLTY, tau1, tau2) =>
 if eqType (tau1, tau2)
 then tau1 else raise IllTyped
 | _ => raise IllTyped)
Let’s add variables!

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
 | VAR of name
 | LET of name * exp * exp

and arithop = PLUS | MINUS | TIMES | ...

and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY
Examples: Well-formed types

These are types:

- int
- bool
- int * bool
- int * int -> int
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms
 • list (but int list is a type)
 • array (but char array is a type)
 • ref (but (int -> int) ref is a type)

These are utter nonsense
 • int int
 • bool * array
Type-formation rules

We need a way to classify type expressions into:

• types that classify terms
• type constructors that build types
• nonsense that doesn’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:

- **Nullary** \texttt{int}, \texttt{bool}, \texttt{char} also called base types
- **Unary** \texttt{list}, \texttt{array}, \texttt{ref}
- **Binary (infix)** \rightarrow

More complex type constructors:

- records/structs
- function in C, uScheme, Impcore
What’s a good type? (Type formation)

Type formation rules for Typed Impcore

\[\tau \in \{\text{UNIT, INT, BOOL}\} \]
\[\Rightarrow \tau \text{ is a type} \] \hspace{2cm} (\text{BASETYPES})

\[\tau \text{ is a type} \]
\[\Rightarrow \text{ARRAY}(\tau) \text{ is a type} \] \hspace{2cm} (\text{ARRAYFORMATION})
Type judgments for monomorphic system

Two judgments:

• The familiar \textit{typing judgment} $\Gamma \vdash e : \tau$

• Today’s judgment “τ is a type”
Type rules for variables

Lookup the type of a variable:

\[\frac{x \in \text{dom } \Gamma \quad \Gamma(x) = \tau}{\Gamma \vdash x : \tau} \]

(VAR)

Types match in assignment (two \(\tau \)'s must be equal):

\[\frac{x \in \text{dom } \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau}{\Gamma \vdash \text{SET}(x, e) : \tau} \]

(SET)
Type rules for control

Boolean condition; matching branches

\[\Gamma \vdash e_1 : \text{BOOL} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau \]

\[\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau \]
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

\[\tau_1 \text{ and } \tau_2 \text{ are types} \]
\[\frac{}{\tau_1 \times \tau_2 \text{ is a type}} \]
\[\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{PAIR}(e_1, e_2) : \tau_1 \times \tau_2} \]
\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{FST}(e) : \tau_1} \]
\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{SND}(e) : \tau_2} \]

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: λ function, application

Typed μ Scheme style:

τ_1, \ldots, τ_n and τ are types

$\frac{}{\tau_1 \cdots \tau_n \rightarrow \tau}$ is a type

(ARROW FORMATION)

ML style: functions takes a tuple:

τ_1, \ldots, τ_n and τ are types

$\frac{}{\tau_1 \times \cdots \times \tau_n \rightarrow \tau}$ is a type

$\text{(ML ARROW FORMATION)}$
Arrow types: Function from x to y

Eliminate with application:

\[
\Gamma \vdash e : (\tau_1 \cdots \tau_n \rightarrow \tau) \\
\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n \\
\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau
\]

Introduce with \texttt{lambda}:

\[
\Gamma\{x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n\} \vdash e : \tau \\
\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau)
\]
Typical syntactic support for types

Explicit types on lambda and define:

- For lambda, argument types:
 \[(\text{lambda } ([n : \text{int}] [m : \text{int}]) (\text{+} (* n n) (* m m)))\]

- For define, argument and result types:
 \[(\text{define int max } ([x : \text{int}] [y : \text{int}])
 (\text{if} (< x y) y x)\]

Abstract syntax:

datatype exp = ...
 | LAMBDA of (name * tyex) list * exp
 ...

datatype def = ...
 | DEFINE of name * tyex * ((name * tyex) list * exp)
 ...

Array types: Array of x

Formation: \[\tau \text{ is a type} \]
\[\frac{}{\text{ARRAY}(\tau) \text{ is a type}} \]

Introduction: \[\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau \]
\[\frac{}{\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau)} \]
Array types continued

Elimination:

\[\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \]

\[\Gamma \vdash \text{AAT}(e_1, e_2) : \tau \]

\[\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau \]

\[\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau \]

\[\Gamma \vdash e : \text{ARRAY}(\tau) \]

\[\Gamma \vdash \text{ASIZE}(e) : \text{INT} \]
References (similar to C/C++ pointers)

Your turn! Given

\[
\begin{align*}
\text{ref } \tau & \quad \text{REF}(\tau) \\
\text{ref } e & \quad \text{REF-MAKE}(e) \\
!e & \quad \text{REF-GET}(e) \\
e_1 \ := \ e_2 & \quad \text{REF-SET}(e_1, e_2)
\end{align*}
\]

Write formation, introduction, and elimination rules.
Wait for it . . .
Reference Types

Formation:
\[
\begin{align*}
\tau & \text{ is a type} \\
\Gamma & \vdash e : \tau \\
\Gamma & \vdash \text{REF-MAKE}(e) : \text{REF}(\tau)
\end{align*}
\]

Introduction:
\[
\begin{align*}
\Gamma & \vdash e : \tau \\
\Gamma & \vdash \text{REF-Make}(e) : \text{REF}(\tau)
\end{align*}
\]

Elimination:
\[
\begin{align*}
\Gamma & \vdash e : \text{REF}(\tau) \\
\Gamma & \vdash \text{REF-GET}(e) : \tau \\
\Gamma & \vdash e_1 : \text{REF}(\tau) \quad \Gamma & \vdash e_2 : \tau \\
\Gamma & \vdash \text{REF-SET}(e_1, e_2) : \tau
\end{align*}
\]
From rule to code

Arrow-introduction

\[\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n \]

\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau) \]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp
...

fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma' = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 val bodytype = ty (Gamma', body)
 val formaltypes =
 map (fn (x, ty) => ty) formals
 in FUNTY (formaltypes, bodytype)
 end