Review: Language of expressions

Numbers and Booleans:

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
and arithop = PLUS | MINUS | TIMES | ...
and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY

Problem to solve: integer register or flags register?
Review: type checker

 val typeof : exp -> ty
 exception IllTyped
 fun typeof (ARITH (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => INTTY
 | _ => raise IllTyped)
 | typeof (CMP (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => BOOLTY
 | _ => raise IllTyped)
 | typeof (LIT _) = INTTY
 | typeof (IF (e,e1,e2)) =
 (case (typeof e, typeof e1, typeof e2)
 of (BOOLTY, tau1, tau2) =>
 if eqType (tau1, tau2)
 then tau1 else raise IllTyped
 | _ => raise IllTyped)
Let’s add variables!

```ocaml
datatype exp = ARITH of arithop * exp * exp
  | CMP of relop * exp * exp
  | LIT of int
  | IF of exp * exp * exp
  | VAR of name
  | LET of name * exp * exp

and arithop = PLUS | MINUS | TIMES | ...
and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY
```
Examples: Well-formed types

These are types:

- int
- bool
- int * bool
- int * int -> int
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms
 • list (but int list is a type)
 • array (but char array is a type)
 • ref (but (int -> int) ref is a type)

These are utter nonsense
 • int int
 • bool * array
Type-formation rules

We need a way to classify type expressions into:

• types that classify terms
• type constructors that build types
• nonsense that doesn’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:
- Nullary int, bool, char also called base types
- Unary list, array, ref
- Binary (infix) →

More complex type constructors:
- records/structs
- function in C, uScheme, Impcore
What’s a good type? (Type formation)

Type formation rules for Typed Impcore

\[\tau \in \{\text{UNIT, INT, BOOL}\} \]

(\text{BASETYPES})

\(\tau\) is a type

\[\tau \text{ is a type} \]

\[
\frac{}{\text{ARRAY}(\tau) \text{ is a type}}\]

(\text{ARRAYFORMATION})
Type judgments for monomorphic system

Two judgments:

- The familiar typing judgment $\Gamma \vdash e : \tau$
- Today’s judgment “τ is a type”
Type rules for variables

Look up the type of a variable:

\[
\frac{x \in \text{dom} \Gamma \quad \Gamma(x) = \tau}{\Gamma \vdash x : \tau}
\]

(VAR)

Types match in assignment (two \(\tau\)'s must be equal):

\[
\frac{x \in \text{dom} \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau}{\Gamma \vdash \text{SET}(x, e) : \tau}
\]

(SET)
Understanding the SET rule

Types match in assignment (two τ’s must be equal):

$$
\begin{align*}
 x & \in \text{dom } \Gamma \\
 \Gamma(x) & = \tau \\
 \Gamma & \vdash e : \tau \\
 \Gamma & \vdash \text{SET}(x, e) : \tau
\end{align*}
$$

(SET)
Understanding the \texttt{SET} rule

Types match in assignment (two \(\tau\)'s must be equal):

\[
\begin{align*}
x \in \text{dom } \Gamma & \quad \Gamma(x) = \tau & \Gamma \vdash e : \tau \\
\Gamma \vdash \texttt{SET}(x, e) : \tau
\end{align*}
\]

\((\texttt{SET})\)

\[
\begin{align*}
x \in \text{dom } \Gamma & \quad \Gamma(x) = \tau_x & \Gamma \vdash e : \tau_e & \tau_x \equiv \tau_e \\
\Gamma \vdash \texttt{SET}(x, e) : \tau_e
\end{align*}
\]

\((\texttt{SET})\)
Type rules for control

Boolean condition; matching branches

\[
\frac{\Gamma \vdash e_1 : \text{BOOL} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau}
\]
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

\[\tau_1 \text{ and } \tau_2 \text{ are types} \]

\[\frac{}{\tau_1 \times \tau_2 \text{ is a type}} \]

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]

\[\frac{}{\Gamma \vdash \text{PAIR}(e_1, e_2) : \tau_1 \times \tau_2} \]

\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{FST}(e) : \tau_1} \]

\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{SND}(e) : \tau_2} \]

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: \texttt{lambda}, application

Typed \(\mu\) Scheme style:

\[
\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{(\tau_1 \cdots \tau_n \rightarrow \tau) \text{ is a type}} \quad (\text{ARROWFORMATION})
\]

ML style: functions takes a tuple:

\[
\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \rightarrow \tau \text{ is a type}} \quad (\text{MLARROWFORMATION})
\]
Arrow types: Function from x to y

Eliminate with application:

\[
\begin{align*}
\Gamma &\vdash e : (\tau_1 \cdots \tau_n \to \tau) \\
\Gamma &\vdash e_i : \tau_i, \quad 1 \leq i \leq n \\
\Gamma &\vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau
\end{align*}
\]

Introduce with \texttt{lambda}:

\[
\begin{align*}
\Gamma\{x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n\} &\vdash e : \tau \\
\Gamma &\vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \to \tau)
\end{align*}
\]
Typical syntactic support for types

Explicit types on lambda and define:

- **For lambda, argument types:**

 \[
 (\text{lambda}\ ([n : \text{int}]\ [m : \text{int}])\ (+\ (*\ n\ n)\ (*\ m\ m)))
 \]

- **For define, argument and result types:**

 \[
 (\text{define}\ \text{int}\ \text{max}\ ([x : \text{int}]\ [y : \text{int}])
 \]
 \[
 (\text{if}\ (<\ x\ y)\ y\ x))
 \]

Abstract syntax:

```
datatype\ exp = \ldots
  | LAMBDA\ of\ (name *\ tyex)\ list *\ exp
  \ldots

datatype\ def = \ldots
  | DEFINE\ of\ name *\ tyex\ *\ ((name *\ tyex)\ list *\ exp)
  \ldots
```
Array types: Array of x

Formation: \[
\frac{\tau \text{ is a type}}{\text{ARRAY}(\tau) \text{ is a type}}
\]

Introduction: \[
\frac{\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau)}
\]
Array types continued

Elimination:

\[
\begin{align*}
\begin{array}{l}
\Gamma \vdash e_1 : \text{ARRAY}(\tau) & \quad \Gamma \vdash e_2 : \text{INT} \\
\end{array}
\end{align*}
\]

\[
\Gamma \vdash \text{AAT}(e_1, e_2) : \tau
\]

\[
\begin{align*}
\begin{array}{l}
\Gamma \vdash e_1 : \text{ARRAY}(\tau) & \quad \Gamma \vdash e_2 : \text{INT} & \quad \Gamma \vdash e_3 : \tau \\
\end{array}
\end{align*}
\]

\[
\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau
\]

\[
\begin{align*}
\begin{array}{l}
\Gamma \vdash e : \text{ARRAY}(\tau) \\
\end{array}
\end{align*}
\]

\[
\Gamma \vdash \text{ASIZE}(e) : \text{INT}
\]
References (similar to C/C++ pointers)

Your turn! Given

\[\text{ref } \tau \quad \text{REF}(\tau) \]
\[\text{ref } e \quad \text{REF-MAKE}(e) \]
\[!e \quad \text{REF-GET}(e) \]
\[e_1 := e_2 \quad \text{REF-SET}(e_1, e_2) \]

Write formation, introduction, and elimination rules.
Wait for it . . .
Reference Types

Formation: \[\tau \text{ is a type} \]
\[\text{REF}(\tau) \text{ is a type} \]

Introduction: \[\Gamma \vdash e : \tau \]
\[\Gamma \vdash \text{REF-MAKE}(e) : \text{REF}(\tau) \]

Elimination: \[\Gamma \vdash e : \text{REF}(\tau) \]
\[\Gamma \vdash \text{REF-GET}(e) : \tau \]
\[\Gamma \vdash e_1 : \text{REF}(\tau) \quad \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{REF-SET}(e_1, e_2) : \tau \]
From rule to code

Arrow-introduction

\[
\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n
\]

\[
\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau)
\]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp

...

fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma' = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 val bodytype = ty (Gamma', body)
 val formaltypes =
 map (fn (x, ty) => ty) formals
 in FUNTY (formaltypes, bodytype)
 end