fun ty (IFX (e1, e2, e3)) =
 if eqType (ty e1, booltype) then
 let val (tau2, tau3) = (ty e2, ty e3)
 in ... YOU FILL IN 1 ...
 end
 else
 ... YOU FILL IN 2 ...
 end
| ty (SET (x, e)) =
 let val tau_x = find (x, Gamma)
 val tau_e = ty e
 in ... YOU FILL IN 3 ...
 end
fun ty (APPLY (f, actuals)) =
 let val atys = map ty actuals
 in case ty f
 of FUNTY (formals, result) =>
 if eqTypes (atys, formals) then
 ... YOU FILL IN 4 ...
 else
 ... YOU FILL IN 5 ...
 | _ => ... YOU FILL IN 6 ...
 end
Monomorphic types are limiting

Each new type constructor requires

• Special syntax
• New type rules
• New internal representation (type formation)
• New code in type checker (intro, elim)
• New or revised proof of soundness
Monomorphic burden: Array types

Formulation:

\[
\frac{\tau \text{ is a type}}{\text{ARRAY(\(\tau\)) is a type}}
\]

Introduction:

\[
\frac{\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY(\(\tau\))}}
\]

Elimination:

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY(\(\tau\))} \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{AAT}(e_1, e_2) : \tau}
\]

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY(\(\tau\))} \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau}
\]

\[
\frac{\Gamma \vdash e : \text{ARRAY(\(\tau\))}}{\Gamma \vdash \text{ASIZE}(e) : \text{INT}}
\]
Monomorphism hurts programmers too

Monomorphism leads to code duplication

User-defined functions are monomorphic:

```
(define int lengthI ([xs : (list int)])
  (if (null? xs) 0 (+ 1 (lengthI (cdr xs)))))
(define int lengthB ([xs : (list bool)])
  (if (null? xs) 0 (+ 1 (lengthB (cdr xs)))))
(define int lengthS ([xs : (list sym)])
  (if (null? xs) 0 (+ 1 (lengthS (cdr xs)))))
```
Quantified types

Heart of polymorphism: $\forall \alpha_1, \ldots, \alpha_n . \tau$.
In Typed μScheme: (forall (’a1 ... ’an) type)

Two ideas:

• Type variable ’a stands for an unknown type
• Quantified type (with forall) enables substitution

length : $\forall \alpha . \alpha$ list \rightarrow int
cons : $\forall \alpha . \alpha \times \alpha$ list \rightarrow α list
car : $\forall \alpha . \alpha$ list \rightarrow α
cdr : $\forall \alpha . \alpha$ list \rightarrow α list
’ () : $\forall \alpha . \alpha$ list
“Type variable”?

Back up here—what types do we have?
Type formation: Composing types

Typed Impcore:
- Closed world (no new types)
- Simple formation rules

Typed μScheme:
- Semi-closed world (new type variables)
- How are types formed (from other types)?

Standard ML:
- Open world (programmers create new types)
- How are types formed (from other types)?

Can’t add new syntactic forms and new type formation rules for every new type.
Representing type constructors generically

Start with monomorphic fragment (Typed μScheme):

datatype tyex
 = TYCON of name
 | CONAPP of tyex * tyex list
 | FUNTY of tyex list * tyex (* I’m special *)

Examples: bool, (list int), (int int → bool)

 TYCON "bool"
 CONAPP (TYCON "list", [TYCON "int"])
 FUNTY ([TYCON "int", TYCON "int"], TYCON "bool")

Hard to read, but easy to write code for.
Well-formed types

We still need to classify type expressions into:

• types that classify terms (e.g., int)
• type constructors that build types (e.g., list)
• nonsense that means nothing (e.g., int int)

Idea: kinds classify types

\[\Delta \vdash \tau :: \kappa \quad \text{“Type } \tau \text{ has kind } \kappa \text{”} \]
\[\Delta \vdash \tau :: * \quad \text{Special case: “} \tau \text{ is a type”} \]

Replaces one-off type-formation rules

Kind environment \(\Delta \) tracks type constructors, vars
Return to quantified types

Heart of polymorphism: $\forall \alpha_1, \ldots, \alpha_n . \tau.$

In Typed μScheme: (forall (‘al ... ’an) type)

Two ideas:

- Type variable ‘a stands for an unknown type
- Quantified type (with forall) enables substitution

\[
\begin{align*}
\text{length} : & \forall \alpha . \alpha \text{ list} \rightarrow \text{int} \\
\text{cons} : & \forall \alpha . \alpha \times \alpha \text{ list} \rightarrow \alpha \text{ list} \\
\text{car} : & \forall \alpha . \alpha \text{ list} \rightarrow \alpha \\
\text{cdr} : & \forall \alpha . \alpha \text{ list} \rightarrow \alpha \text{ list} \\
\text{’}() : & \forall \alpha . \alpha \text{ list}
\end{align*}
\]
Representing quantified types

Two new alternatives for tyex:

datatype tyex
 = TYCON of name
 | CONAPP of tyex * tyex list
 | FUNTY of tyex list * tyex
 | TYVAR of name
 | FORALL of name list * tyex
Formation rules for quantified types

Reminder: $\Delta \vdash \tau :: *$ means “τ is a type”

$\Delta \vdash \forall \alpha_1, \ldots, \alpha_n \tau :: *$

$\Delta \vdash \forall \alpha_1, \ldots, \alpha_n \exists \tau :: *$

$\alpha \in \text{dom} \Delta$

$\Delta \vdash \forall \alpha \exists \Delta(\alpha)$

Example: $(\forall \alpha \exists \alpha) (\alpha \rightarrow \alpha)$
Programming with quantified types

Substitute for quantified variables

\[\rightarrow \text{length} \]
\[<\text{procedure}> : (\forall \text{'}a\) \ ((\text{list }\text{'}a) \rightarrow \text{int}) \]
\[\rightarrow (@ \text{length }\text{int}) \]
\[<\text{procedure}> : ((\text{list int}) \rightarrow \text{int}) \]
\[\rightarrow (\text{length }'(1 \ 2 \ 3)) \]

type error: function is polymorphic; instantiate before applying
\[\rightarrow ((@ \text{length }\text{int}) ')(1 \ 2 \ 3)) \]
3 : int
Substitute what you like

-> length
<procedure> : (forall ('a) ((list 'a) -> int))
-> (@ length bool)
<procedure> : ((list bool) -> int)
-> ((@ length bool) '(#t #f))
2 : int
More “Instantiations”

-> (val length-int (@ length int))
length-int : ((list int) -> int)
-> (val cons-bool (@ cons bool))
cons-bool : ((bool (list bool)) -> (list bool))
-> (val cdr-sym (@ cdr sym))
cdr-sym : ((list sym) -> (list sym))
-> (val empty-int (@ '() int))
() : (list int)
Abstract over unknown type using `type-lambda`:

```plaintext
-> (val id (type-lambda ['a]
    (lambda ([x : 'a]) x )))

id : (forall ('a) ('a -> 'a))

'a is type parameter (an unknown type)

This feature is parametric polymorphism
```
Power comes at notational cost

Function composition

→ (val o (type-lambda ['a 'b 'c]
 (lambda ([f : ('b -> 'c)]
 [g : ('a -> 'b)])
 (lambda ([x : 'a]) (f (g x)))))))

o : (forall ('a 'b 'c)
 (('b -> 'c) ('a -> 'b) -> ('a -> 'c)))

Aka o : ∀α, β, γ. (β → γ) × (α → β) → (α → γ)
Instantiate by substitution

∀ elimination:
 • Concrete syntax ($\forall e \; \tau_1 \cdots \tau_n$)
 • Rule (note new judgment form $\Delta, \Gamma \vdash e : \tau$):

$$\Delta, \Gamma \vdash e : \forall \alpha_1, \ldots, \alpha_n. \tau$$
$$\Delta, \Gamma \vdash \text{TYAPPLY}(e, \tau_1, \ldots, \tau_n) : \tau[\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]$$

Substitution is in the book as function tysubst

(Also in the book: instantiate)
Generalize with type-lambda

∀ introduction:

- **Concrete syntax** (type-lambda \([\alpha_1 \cdots \alpha_n] e\))
- **Rule (forall introduction):**

\[
\begin{align*}
\Delta\{\alpha_1 :: *, \ldots \alpha_n :: *\}, \Gamma \vdash e : \tau \\
\alpha_i \not\in \text{ftv}(\Gamma), \quad 1 \leq i \leq n \\
\hline \\
\Delta, \Gamma \vdash \text{TYLAMBDA}(\alpha_1, \ldots, \alpha_n, e) : \forall \alpha_1, \ldots, \alpha_n.\tau
\end{align*}
\]

\(\Delta\) is kind environment (remembers \(\alpha_i\)'s are types)
A phase distinction embodied in code

-> (val x 3)
3 : int
-> (val y (+ x x))
6 : int

fun processDef (d, (delta, gamma, rho)) =
 let val (gamma’, tystring) = elabdef (d, gamma, delta)
 val (rho’, valstring) = evaldef (d, rho)
 val _ = print (valstring ^ " : " ^ tystring)
 in (delta, gamma’, rho’) end
Return to well-formed types

To classify type expressions into:
 • **types** that classify terms (e.g., \(\text{int} \))
 • **type constructors** that build types (e.g., \(\text{list} \))
 • **nonsense** that means nothing (e.g., \(\text{int int} \))

Use judgment

\[\Delta \vdash \tau :: \kappa \]
Type formation through kinds

Each type constructor has a kind.
Type constructors of kind \(\ast \) classify terms
\((\text{int} :: \ast, \text{bool} :: \ast)\)

\(\ast \) is a kind

Type constructors of arrow kinds are “types in waiting”
\((\text{list} :: \ast \Rightarrow \ast, \text{pair} :: \ast \times \ast \Rightarrow \ast)\)

\(\kappa_1, \ldots, \kappa_n \) are kinds \(\kappa \) is a kind

\(\kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \) is a kind
(KINDFORMATIONARROW)
Use kinds to give arities

Examples: \texttt{int :: \star}, \texttt{list :: \star \Rightarrow \star}, \texttt{pair :: \star \times \star \Rightarrow \star}

Non-Examples: \texttt{int int and bool \times list} have no kind because they are nonsense.

\textit{Kinds classify type expressions just as types classify terms}
The kinding judgment

\[\Delta \vdash \tau :: \kappa \quad \text{“Type } \tau \text{ has kind } \kappa \text{”} \]

\[\Delta \vdash \tau :: * \quad \text{Special case: “} \tau \text{ is a type”} \]

Replaces one-off type-formation rules

Kind environment \(\Delta \) tracks type constructor names and kinds.
Kinding rules for types

\[\mu \in \text{dom } \Delta \quad \Delta(\mu) = \kappa \]
\[\Gamma \vdash \text{TYCON} (\mu) :: \kappa \quad \text{KindIntroCon} \]

\[\Delta \vdash \tau :: \kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \]
\[\Delta \vdash \tau_i :: \kappa_i, \quad 1 \leq i \leq n \]
\[\Delta \vdash \text{CONAPP} (\tau, [\tau_1, \ldots, \tau_n]) :: \kappa \quad \text{KindApp} \]

These two rules replace all formation rules.

(Check out book functions \texttt{kindof} and \texttt{asType})
Kinds of primitive type constructors

\[\Delta(\text{int}) = * \]

\[\Delta(\text{bool}) = * \]

\[\Delta(\text{list}) = * \Rightarrow * \]

\[\Delta(\text{option}) = * \Rightarrow * \]

\[\Delta(\text{pair}) = * \times * \Rightarrow * \]

\[\Delta(\text{queue}) = \text{You fill in} \]

\[\Delta(\text{unit}) = \text{You fill in} \]
Three environments — what happens?

\[\Delta \text{ maps names (of tycons and tyvars) to kinds} \]
\[\Gamma \text{ maps names (of variables) to types} \]
\[\rho \text{ maps names (of variables) to values or locations} \]

New val def
\[
\text{val } x = 33
\]

New type def
\[
\text{type 'a transformer = 'a -> 'a}
\]

New datatype def
\[
\text{datatype color = RED | GREEN | BLUE}
\]
Three environments revealed

Δ maps names (of tycons and tyvars) to kinds
Γ maps names (of variables) to types
ρ maps names (of variables) to values or locations

New val def modifies Γ, ρ

val $x = 33$ means $\Gamma\{x : \text{int}\}, \rho\{x \mapsto 33\}$

New type def modifies Δ

type 'a transformer = 'a list * 'a list
means $\Delta\{\text{transformer} ::= * \Rightarrow *\}$

New datatype def modifies Δ, Γ, ρ

datatype color = RED | GREEN | BLUE

means $\Delta\{\text{color} ::= *\}, \Gamma\{\text{RED : color, GREEN : color, BLUE : color}\}$,
$\rho\{\text{RED} \mapsto 0, \text{GREEN} \mapsto 1, \text{BLUE} \mapsto 2\}$
Exercise: Three environments

datatype 'a tree
 = NODE of 'a tree * 'a * 'a tree
 | EMPTY

means
\[\Delta \{ \text{tree} \mapsto * \Rightarrow * \} , \]
\[\Gamma \{ \text{NODE} \mapsto \forall 'a . 'a \text{ tree} * 'a * 'a \text{ tree} \rightarrow 'a \text{ tree} , \]
\[\quad \text{EMPTY} \mapsto \forall 'a . 'a \text{ tree} \} , \]
\[\rho \{ \text{NODE} \mapsto \lambda (l,x,r) \ldots ,\text{EMPTY} \mapsto 1 \} \]