Representing Constraints

datatype con = ~ of ty * ty
 | /\ of con * con
 | TRIVIAL

infix 4 ~
infix 3 /\
Solving Constraints

We *solve* a constraint \mathcal{C} by finding a substitution θ such that the *constraint* $\theta \mathcal{C}$ is satisfied.

Substitutions distribute over constraints:

\[
\begin{align*}
\theta(\tau_1 \sim \tau_2) &= \theta \tau_1 \sim \theta \tau_2 \\
\theta(C_1 \land C_2) &= \theta C_1 \land \theta C_2 \\
\theta T &= T
\end{align*}
\]
What is a substitution?

Formally, θ is a function:
- Replaces a \textit{finite} set of type variables with types
- Apply to type, constraint, type environment, \ldots

In code, a data structure:
- “Applied” with tysubst, consubst
- Made with $\text{idsubst, a |--> tau, compose}$
- Find domain with dom
When is a constraint satisfied?

\[\tau_1 = \tau_2 \]
\[\tau_1 \sim \tau_2 \text{ is satisfied} \] \hspace{0.5cm} \text{(EQ)}

\[C_1 \text{ is satisfied} \quad C_2 \text{ is satisfied} \]
\[C_1 \land C_2 \text{ is satisfied} \] \hspace{0.5cm} \text{(AND)}

\[T \text{ is satisfied} \] \hspace{0.5cm} \text{(TRIVIAL)}
Examples

Which have solutions?

1. `int` ~ `bool`
2. `(list int)` ~ `(list bool)`
3. `'a` ~ `int`
4. `'a` ~ `(list int)`
5. `'a` ~ `((args int) -> int)`
6. `'a` ~ `'a`
7. `(args 'a int)` ~ `(args bool 'b)`
8. `(args 'a int)` ~ `((args bool) -> 'b)`
9. `'a` ~ `(pair 'a int)`
10. `'a` ~ `tau` // arbitrary tau
Substitution preserves type structure

Type structure:

```plaintext
datatype ty
  = TYVAR of tyvar
  | TYCON of name
  | CONAPP of ty * ty list
```

Substitution replaces only type variables:
- Every type constructor is unchanged
- Distributes over type-constructor application

\[
\theta(TYCON \, \mu) = TYCON \, \mu \\
\theta(CONAPP \, (\tau, [\tau_1, \ldots, \tau_n])) = CONAPP \, (\theta \tau, [\theta_1 \tau_1, \ldots, \theta_n \tau_n])
\]
Key: Simple type-equality constraint

Solving simple type equalities $\tau_1 \sim \tau_2$

- What are the cases?
- How will you handle them?

```plaintext
datatype ty
    = TYVAR of tyvar
    | TYCON of name
    | CONAPP of ty * ty list
```
Solving Conjunctions

Useless rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} & \quad \tilde{\theta}_2 C_2 \text{ is satisfied} \\
(\tilde{\theta}_2 \circ \theta_1)C_1 \land C_2 \text{ is or is not satisfied} \\
\text{(UNSOLVED CONJUNCTION)}
\end{align*}
\]

Useful rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} & \quad \theta_2(\theta_1 C_2) \text{ is satisfied} \\
(\theta_2 \circ \theta_1)C_1 \land C_2 \text{ is satisfied} \\
\text{(SOLVED CONJUNCTION)}
\end{align*}
\]

Food for thought (or recitation): Find examples to illustrate that UNSOLVED CONJUNCTION is bogus.
Review: Inference for IF

The nano-ML rule is

\[C, \Gamma \vdash e_1, e_2, e_3 : \tau_1, \tau_2, \tau_3 \]
\[\Rightarrow C \land \tau_1 \sim \text{bool} \land \tau_2 \sim \tau_3, \Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau_3 \] (IF)
Inference for APPLY

The Typed μScheme rule

\[
\Gamma \vdash e : (\tau_1 \times \cdots \times \tau_n \rightarrow \tau) \quad \Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n \\
\hline
\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau
\]

(APPLY)

becomes

\[
C, \Gamma \vdash e, e_1, \ldots, e_n : \tau_f, \tau_1, \ldots, \tau_n \quad \alpha \text{ is fresh} \\
\hline
C \land \tau_f \sim (\tau_1 \times \cdots \times \tau_n \rightarrow \alpha), \Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \alpha
\]

(APPLY)
Your turn: Begin Rule

The Typed μScheme rule

$$\frac{\Gamma \vdash e_i : \tau_i \quad 1 \leq i \leq n}{\Gamma \vdash \text{BEGIN}(e_1, \ldots, e_n) : \tau_n} \quad \text{(BEGIN)}$$

becomes

$$\frac{C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n}{C, \Gamma \vdash \text{BEGIN}(e_1, \ldots, e_n) : \tau_n} \quad \text{(BEGIN)}$$
Moving between type scheme and type

From σ to τ: instantiate

From τ to σ: generalize

\[
\begin{align*}
\tau & ::= \alpha \\
& \mid \mu \\
& \mid (\tau_1, \ldots, \tau_n) \tau \\
\sigma & ::= \forall \alpha_1, \ldots, \alpha_n . \tau
\end{align*}
\]
Instantiation: From Type Scheme to Type

VAR rule instantiates type scheme with fresh and distinct type variables:

\[\Gamma(x) = \forall \alpha_1, \ldots, \alpha_n \cdot \tau \]

\[\alpha'_1, \ldots, \alpha'_n \text{ are fresh and distinct} \]

\[T, \Gamma \vdash x : ((\alpha_1 \mapsto \alpha'_1) \circ \ldots \circ (\alpha_n \mapsto \alpha'_n)) \tau \]

(No constraints necessary.)
Generalization: From Type to Type Scheme

Goal is to get \texttt{forall}:

\[\rightarrow (\text{val fst (lambda (x y) x)) \text{fst : (forall ('a 'b) ('a 'b -> 'a))} \]

First derive:

\[T, \emptyset \vdash (\lambda (x y) x) : \alpha \times \beta \rightarrow \alpha \]

Abstract over \(\alpha, \beta\) and add to environment:

\[\text{fst : } \forall \alpha, \beta\cdot \alpha \times \beta \rightarrow \alpha \]
Generalize Function

Useful tool for finding quantified type variables:

\[
generalize(\tau, A) = \forall \alpha_1, \ldots, \alpha_n \cdot \tau
\]

where

\[
\{ \alpha_1, \ldots, \alpha_n \} = \text{ftv}(\tau) - A
\]

Example:

\[
generalize(\alpha \times \beta \rightarrow \alpha, \emptyset) = \forall \alpha, \beta \cdot \alpha \times \beta \rightarrow \alpha
\]
First candidate VAL rule (no constraints)

\[T, \emptyset \vdash e : \tau \]
\[
\sigma = \text{generalize}(\tau, \emptyset) \\
\langle \text{VAL}(x,e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \} \quad \text{(VAL WITH } T)\]

But we need to handle nontrivial constraints
Example with nontrivial constraints

```
(val pick (lambda (x y z) (if x y z)))
```

During inference, we derive the judgment:

\[
\alpha_x \sim \text{bool} \land \alpha_y \sim \alpha_z, \emptyset \vdash \\
(lambda \ (x \ y \ z) \ (if \ x \ y \ z)) : \alpha_x \times \alpha_y \times \alpha_z \to \alpha_z
\]

Before generalization, solve the constraint:

\[
\theta = \{ \alpha_x \mapsto \text{bool}, \alpha_y \mapsto \alpha_z \}
\]

So the type we need to generalize is

\[
\theta(\alpha_x \times \alpha_y \times \alpha_z \to \alpha_z) = \text{bool} \times \alpha_z \times \alpha_z \to \alpha_z
\]

And generalize(\text{bool} \times \alpha_z \times \alpha_z \to \alpha_z, \emptyset) is

\[
\forall \alpha_z. \text{bool} \times \alpha_z \times \alpha_z \to \alpha_z
\]
2nd candidate VAL rule (no context)

\[C, \emptyset \vdash e : \tau \]
\[\theta C \text{ is satisfied} \]
\[\sigma = \text{generalize}(\theta \tau, \emptyset) \]
\[\langle \text{VAL}(x, e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \} \]

(VAL 2)

But we need to handle nonempty contexts
VAL rule — the full version

\[C, \Gamma \vdash e : \tau \]
\[\theta C \text{ is satisfied} \quad \theta \Gamma = \Gamma \]
\[\sigma = \text{generalize}(\theta \tau, \text{ftv}(\Gamma)) \]
\[\langle \text{VAL}(x, e), \Gamma \rangle \rightarrow \Gamma \{ x \mapsto \sigma \} \]
Example of Val rule with non-empty Γ

$$(\text{val pick-t (lambda (y z) (pick #t y z)))}$$

$$\Gamma = \{ \text{pick} \mapsto \forall \alpha . \text{bool} \times \alpha \times \alpha \rightarrow \alpha \}$$

Instantiate $\text{pick}: \text{bool} \times \alpha_p \times \alpha_p \rightarrow \alpha_p$

Derive the judgment:

$$\alpha_y \sim \alpha_p \land \alpha_z \sim \alpha_p, \Gamma \vdash \text{lambda (y z) (pick #t y z)} : \alpha_y \times \alpha_z \rightarrow \alpha_p$$

Before generalization, solve the constraint: $\theta = \{ \alpha_y \mapsto \alpha_p, \alpha_z \mapsto \alpha_p \}$

Note that $\theta \Gamma = \Gamma$ and $\text{ftv}(\Gamma) = \emptyset$.

The type to generalize is $\theta(\alpha_y \times \alpha_z \rightarrow \alpha_p) = \alpha_p \times \alpha_p \rightarrow \alpha_p$

which yields the type: $\forall \alpha_p . \alpha_p \times \alpha_p \rightarrow \alpha_p$

which is the same as $\forall \alpha . \alpha \times \alpha \rightarrow \alpha$
Let Examples

(lambda (ys) ; OK
 (let ([s (lambda (x) (cons x '()))])
 (pair (s 1) (s #t))))

(lambda (ys) ; Oops!
 (let ([extend (lambda (x) (cons x ys))])
 (pair (extend 1) (extend #t))))

(lambda (ys) ; OK
 (let ([extend (lambda (x) (cons x ys))])
 (extend 1)))
Let

\[C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\(\theta C \) is satisfied \quad \theta \) is idempotent

\[C' = \land \{ \alpha \sim \theta \alpha \mid \alpha \in (\text{dom} \theta \cap \text{ftv}(\Gamma)) \} \]

\(\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')) \), \quad 1 \leq i \leq n

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \land C_b, \Gamma \vdash \text{LET}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \] (LET)

- If it’s not mentioned in the context, it can be anything: **independent**
- If it is mentioned in the context, don’t mess with it: **dependent**
Idempotence

\[\theta \circ \theta = \theta \]

Implies: Applying once is good enough.

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha \mapsto \text{int})</td>
<td>(\alpha \mapsto \alpha \text{ list})</td>
</tr>
<tr>
<td>(\alpha \mapsto \beta)</td>
<td>(\alpha \mapsto \beta, \beta \mapsto \gamma)</td>
</tr>
<tr>
<td>(\alpha_1 \mapsto \beta_1, \alpha_2 \mapsto \beta_2)</td>
<td></td>
</tr>
</tbody>
</table>

Implies: If \(\alpha \mapsto \tau \in \theta\), then \(\theta \alpha = \theta \tau\).
VAL-REC rule

\[C, \Gamma \{ x \mapsto \alpha \} \vdash e : \tau \quad \alpha \text{ is fresh} \]

\[\theta(C \land \alpha \sim \tau) \text{ is satisfied} \quad \theta \Gamma = \Gamma \]

\[\sigma = \text{generalize}(\theta \alpha, \text{ftv}(\Gamma)) \]

\[\langle \text{VAL-REC}(x, e), \Gamma \rangle \rightarrow \Gamma \{ x \mapsto \sigma \} \]
LetRec

\[\Gamma_e = \Gamma \{ x_1 \mapsto \alpha_1, \ldots, x_n \mapsto \alpha_n \}, \quad \alpha_i \text{ distinct and fresh} \]

\[C_e, \Gamma_e \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\[C = C_e \land \tau_1 \sim \alpha_1 \land \ldots \land \tau_n \sim \alpha_n \]

\[\theta C \text{ is satisfied} \quad \theta \text{ is idempotent} \]

\[C' = \bigwedge \{ \alpha \sim \theta \alpha \mid \alpha \in \text{dom} \theta \cap \text{ftv}(\Gamma) \} \]

\[\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')), \quad 1 \leq i \leq n \]

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \land C_b, \Gamma \vdash \text{LETREC}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \]

(LetRec)