Representing Constraints

datatype con = ~ of ty * ty
 | \ of con * con
 | TRIVIAL

infix 4 ~
infix 3 \
Solving Constraints

We *solve* a constraint C by finding a substitution θ such that the *constraint θC is satisfied.*

Substitutions distribute over constraints:

\[
\begin{align*}
\theta(\tau_1 \sim \tau_2) &= \theta\tau_1 \sim \theta\tau_2 \\
\theta(C_1 \land C_2) &= \theta C_1 \land \theta C_2 \\
\theta T &= T
\end{align*}
\]
What is a substitution?

Formally, θ is a function:
- Replaces a *finite* set of type variables with types
- Apply to type, constraint, type environment, . . .

In code, a data structure:
- “Applied” with tysubst, consubst
- Made with idsubst, $a \mapsto \tau$, compose
- Find domain with dom
When is a constraint satisfied?

\[\tau_1 = \tau_2 \]

\[\tau_1 \sim \tau_2 \text{ is satisfied} \] (EQ)

\[C_1 \text{ is satisfied} \quad \quad C_2 \text{ is satisfied} \]

\[C_1 \land C_2 \text{ is satisfied} \] (AND)

\[T \text{ is satisfied} \] (TRIVIAL)
Examples

Which have solutions?

1. int \sim bool
2. (list int) \sim (list bool)
3. 'a \sim int
4. 'a \sim (list int)
5. 'a \sim ((args int) \to int)
6. 'a \sim 'a
7. (args 'a int) \sim (args bool 'b)
8. (args 'a int) \sim ((args bool) \to 'b)
9. 'a \sim (pair 'a int)
10. 'a \sim tau // arbitrary tau
Substitution preserves type structure

Type structure:

datatype ty
 = TYCON of name
 | CONAPP of ty * ty list
 | TYVAR of name

Substitution replaces only type variables:
• Every type constructor is unchanged
• Distributes over type-constructor application

\[\theta(TYCON \, \mu) = TYCON \, \mu \]
\[\theta(CONAPP \, (\tau, [\tau_1, \ldots, \tau_n])) = CONAPP \, (\theta \tau, [\theta_1 \tau_1, \ldots, \theta_n \tau_n]) \]
Key: Simple type-equality constraint

Solving simple type equalities $\tau_1 \sim \tau_2$

- What are the cases?
- How will you handle them?

datatype ty
 = TYCON of name
 | CONAPP of ty * ty list
 | TYVAR of name
Solving Conjunctions

Useless rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} \quad & \quad \tilde{\theta}_2 C_2 \text{ is satisfied} \\
(\tilde{\theta}_2 \circ \theta_1) C_1 \land C_2 \text{ is or is not satisfied} \\
\end{align*}
\]

(UNSOLVED_CONJUNCTION)

Useful rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} \quad & \quad \theta_2 (\theta_1 C_2) \text{ is satisfied} \\
(\theta_2 \circ \theta_1) C_1 \land C_2 \text{ is satisfied} \\
\end{align*}
\]

(SOLVED_CONJUNCTION)

Food for thought (or recitation): Find examples to illustrate that UNSOLVED_CONJUNCTION is bogus.
Moving between type scheme and type

From σ to τ: instantiate

From τ to σ: generalize

$$\begin{align*}
\tau & ::= \alpha \\
& \mid \mu \\
& \mid (\tau_1, \ldots \tau_n)\tau \\
\sigma & ::= \forall \alpha_1, \ldots \alpha_n. \tau
\end{align*}$$
Instantiation: From Type Scheme to Type

\text{VAR} \text{ rule instantiates type scheme with fresh and distinct type variables:}

\[
\Gamma(x) = \forall \alpha_1, \ldots, \alpha_n \cdot \tau \\
\alpha'_1, \ldots, \alpha'_n \text{ are fresh and distinct} \\
\frac{T, \Gamma \vdash x : ((\alpha_1 \mapsto \alpha'_1) \circ \ldots \circ (\alpha_n \mapsto \alpha'_n))\tau}{(\text{VAR})}
\]
Generalization: From Type to Type Scheme

Goal is to get \texttt{forall}:

\[
\forall (\text{val fst (lambda (x y) x))}
\]

\[
fst : (\forall ('a 'b) ('a 'b \rightarrow 'a))
\]

First derive:

\[
T, \emptyset \vdash (\text{lambda (x y) x}) : \alpha \times \beta \rightarrow \alpha
\]

Abstract over α, β and add to environment:

\[
fst : \forall \alpha, \beta. \alpha \times \beta \rightarrow \alpha
\]
Generalize Function

Useful tool for finding quantified type variables:

\[\text{generalize}(\tau, A) = \forall \alpha_1, \ldots, \alpha_n . \tau \]

where

\[\{ \alpha_1, \ldots, \alpha_n \} = \text{ftv}(\tau) \setminus A \]

Example:

\[\text{generalize}(\alpha \times \beta \rightarrow \alpha, \emptyset) = \forall \alpha, \beta . \alpha \times \beta \rightarrow \alpha \]
First candidate VAL rule (no constraints)

\[
T, \emptyset \vdash e : \tau \\
\sigma = \text{generalize}(\tau, \emptyset) \\
\langle \text{VAL}(x, e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \}
\]

(VAL WITH \(T\))

But we need to handle nontrivial constraints
Example with nontrivial constraints

(\texttt{val pick (lambda (x y z) (if x y z)))}

During inference, we derive the judgment:

\[\alpha_x \sim \text{bool} \land \alpha_y \sim \alpha_z, \emptyset \vdash (\text{lambda (x y z) (if x y z))} : \alpha_x \times \alpha_y \times \alpha_z \rightarrow \alpha_z \]

Before generalization, solve the constraint:

\[\theta = \{\alpha_x \mapsto \text{bool}, \alpha_y \mapsto \alpha_z\} \]

So the type we need to generalize is

\[\theta(\alpha_x \times \alpha_y \times \alpha_z \rightarrow \alpha_z) = \text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z \]

And generalize(\text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z, \emptyset) is

\[\forall \alpha_z. \text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z \]
2nd candidate VAL rule (no context)

\[C, \emptyset \vdash e : \tau \]
\[\theta C \text{ is satisfied} \]
\[\sigma = \text{generalize}(\theta \tau, \emptyset) \]
\[\langle \text{VAL}(x, e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \} \]

\((\text{VAL} 2) \)

But we need to handle nonempty contexts
VAL rule — the full version

\[
\begin{align*}
C, \Gamma & \vdash e : \tau \\
\theta C \text{ is satisfied} & \quad \theta \Gamma = \Gamma \\
\sigma &= \text{generalize}(\theta \tau, \text{ftv}(\Gamma)) \\
\langle \text{VAL}(x, e), \Gamma \rangle & \rightarrow \Gamma \{x \mapsto \sigma\}
\end{align*}
\]

(VAL)
Example of Val rule with non-empty \(\Gamma \)

\[
(val \text{ pick-t} \ (\text{lambda} \ (y \ z) \ (\text{pick} \ #t \ y \ z)))
\]

\[
\Gamma = \{pick \mapsto \forall \alpha . \text{bool} \times \alpha \times \alpha \to \alpha\}
\]

Instantiate \text{pick} : \text{bool} \times \alpha_p \times \alpha_p \to \alpha_p

Derive the judgment:

\[
\alpha_y \sim \alpha_p \land \alpha_z \sim \alpha_p, \Gamma \vdash \text{(lambda} \ (y \ z) \ (\text{pick} \ #t \ y \ z)) : \alpha_y \times \alpha_p \to \alpha_p
\]

Before generalization, solve the constraint: \(\theta = \{\alpha_y \mapsto \alpha_p, \alpha_z \mapsto \alpha_p\} \)

Note that \(\theta \Gamma = \Gamma \) and \(\text{ftv}(\Gamma) = \emptyset \).

The type to generalize is \(\theta(\alpha_y \times \alpha_z \to \alpha_p) = \alpha_p \times \alpha_p \to \alpha_p \)

which yields the type: \(\forall \alpha_p . \alpha_p \times \alpha_p \to \alpha_p \)

which is the same as \(\forall \alpha . \alpha \times \alpha \to \alpha \)
Let Examples

(lambda (ys) ; OK
 (let ([s (lambda (x) (cons x '()))])
 (pair (s 1) (s #t))))

(lambda (ys) ; Oops!
 (let ([extend (lambda (x) (cons x ys))]
 (pair (extend 1) (extend #t))))

(lambda (ys) ; OK
 (let ([extend (lambda (x) (cons x ys))]
 (extend 1)))
Let

\[C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\(\theta C \) is satisfied \hspace{1cm} \theta \) is idempotent

\[C' = \bigwedge \{ \alpha \sim \theta \alpha \mid \alpha \in (\text{dom}\theta \cap \text{ftv}(\Gamma)) \} \]

\(\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')) \), \hspace{1cm} 1 \leq i \leq n

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \wedge C_b, \Gamma \vdash \text{LET}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \quad (\text{LET}) \]

- If it’s not mentioned in the context, it can be anything: independent
- If it is mentioned in the context, don’t mess with it: dependent
Idempotence

\[\theta \circ \theta = \theta \]

Implies: Applying once is good enough.

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha \mapsto \text{int})</td>
<td>(\alpha \mapsto \alpha \ 	ext{list})</td>
</tr>
<tr>
<td>(\alpha \mapsto \beta)</td>
<td>(\alpha \mapsto \beta, \beta \mapsto \gamma)</td>
</tr>
<tr>
<td>(\alpha_1 \mapsto \beta_1, \alpha_2 \mapsto \beta_2)</td>
<td></td>
</tr>
</tbody>
</table>

Implies: If \(\alpha \mapsto \tau \in \theta \), then \(\theta \alpha = \theta \tau \).
\[C, \Gamma \{ x \mapsto \alpha \} \vdash e : \tau \quad \alpha \text{ is fresh} \]
\[\theta(C \land \alpha \sim \tau) \text{ is satisfied} \quad \theta \Gamma = \Gamma \]
\[\sigma = \text{generalize}(\theta \alpha, \text{ftv}(\Gamma)) \]
\[\langle \text{VAL-REC}(x,e), \Gamma \rangle \rightarrow \Gamma \{ x \mapsto \sigma \} \]
LetRec

\[\Gamma_e = \Gamma \{ x_1 \mapsto \alpha_1, \ldots, x_n \mapsto \alpha_n \}, \quad \alpha_i \text{ distinct and fresh} \]

\[C_e, \Gamma_e \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\[C = C_e \land \tau_1 \sim \alpha_1 \land \ldots \land \tau_n \sim \alpha_n \]

\[\theta C \text{ is satisfied} \quad \theta \text{ is idempotent} \]

\[C' = \land \{ \alpha \sim \theta \alpha \mid \alpha \in \text{dom} \theta \cap \text{ftv}(\Gamma) \} \]

\[\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')), \quad 1 \leq i \leq n \]

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \land C_b, \Gamma \vdash \text{LETREC}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \quad \text{(LETREC)} \]