A note about books

Ullman is easy to digest

Ullman costs money but saves time

Ullman is clueless about good style

Suggestion:
 • Learn the syntax from Ullman
 • Learn style from Ramsey, Harper, & Tofte

Details in course guide *Learning Standard ML*
Datatype definitions

datatype suit = HEARTS | DIAMONDS | CLUBS | SPADES

datatype 'a list = nil (* copy me NOT! *)
 | op :: of 'a * 'a list

datatype 'a heap = EHEAP
 | HEAP of 'a * 'a heap * 'a heap

type suit val HEARTS : suit, ...
type 'a list val nil : forall 'a . 'a list
 val op :: : forall 'a .
 'a * 'a list -> 'a list

type 'a heap
 val EHEAP: forall 'a.
 val HEAP : forall 'a.'a * 'a heap * 'a heap -> 'a heap
Eliminate values of algebraic types

New language construct case (an expression)

fun length xs =
 case xs
 of [] => 0
 | (x::xs) => 1 + length xs

Clausal definition is preferred
(sugar for val rec, fn, case)
case works for any datatype

fun toStr t =
 case t
 of EHEAP => "empty heap"
 | HEAP (v, left, right) =>
 "nonempty heap"

But often a clausal definition is better style:

fun toStr' EHEAP = "empty heap"
 | toStr' (HEAP (v,left,right)) =
 "nonempty heap"
Other constructed data: Tuples

Always only one way to form

- **Expressions** \((e_1, e_2, \ldots, e_n)\)
- **Patterns** \((p_1, p_2, \ldots, p_n)\)

Example:

```haskell
let val (left, right) = splitList xs
in  if abs (length left - length right) < 1
  then
      NONE
  else
      SOME "not nearly equal"
end
```
Frequently overlooked

An algebraic data type is a collection of alternatives

Don’t forget:
 • Each alternative must have a name

The thing named is the value constructor

(Also called “datatype constructor”)
Define algebraic data types for SX_1 and SX_2, where

$$SX_1 = ATOM \cup LIST(SX_1)$$
$$SX_2 = ATOM \cup \{(\text{cons} \ v_1 \ v_2) \mid v_1 \in SX_2, v_2 \in SX_2\}$$

(take $ATOM$, with ML type $atom$ as given)
Wait for it ...
Exercise answers

datatype sx1 = ATOM1 of atom
 | LIST1 of sx1 list

datatype sx2 = ATOM2 of atom
 | PAIR2 of sx2 * sx2
Exception handling in action

loop (evaldef (reader (), rho, echo))
handle EOF => finish ()
 | Div => continue "Division by zero"
 | Overflow => continue "Arith overflow"
 | RuntimeError msg => continue ("error: " ^ msg)
 | IO.Io {name, ...} => continue ("I/O error: " ^ name)
 | SyntaxError msg => continue ("error: " ^ msg)
 | NotFound n => continue (n ^ "not found")
ML Traps and pitfalls
fun take n (x::xs) = x :: take (n-1) xs
 | take 0 xs = []
 | take n [] = []

(* what goes wrong? *)
Gotcha — overloading

- fun plus x y = x + y;
> val plus = fn : int -> int -> int
- fun plus x y = x + y : real;
> val plus = fn : real -> real -> real
Gotcha — equality types

- (fn (x, y) => x = y);
> val it = fn : \forall 'a. 'a * 'a -> bool

Tyvar ' 'a is “equality type variable”:
- values must “admit equality”
- (functions don’t admit equality)
Gotcha — parentheses

Put parentheses around anything with \texttt{| case, handle, fn}

Function application has higher precedence than any infix operator
Syntactic sugar for lists

- 1 :: 2 :: 3 :: 4 :: nil; (* :: associates to the right *)
 > val it = [1, 2, 3, 4] : int list

- "the" :: "ML" :: "follies" :: [];
 > val it = ["the", "ML", "follies"] : string list

 > concat it;
 val it = "theMLfollies" : string
ML from 10,000 feet
The value environment

Names bound to immutable values

Immutable ref and array values point to mutable locations

ML has no binding-changing assignment

Definitions add new bindings (hide old ones):

```
val pattern = exp
val rec pattern = exp
fun ident patterns = exp
datatype ... = ...
```
Nesting environments

At top level, definitions

Definitions contain expressions:

\[\text{def ::= val pattern = exp} \]

Expressions contain definitions:

\[\text{exp ::= let defs in exp end} \]

Sequence of defs has let-star semantics
What is a pattern?

pattern ::= variable
 | wildcard
 | value-constructor [pattern]
 | tuple-pattern
 | record-pattern
 | integer.literal
 | list-pattern

Design bug: no lexical distinction between
 • VALUE Constructors
 • variables

Workaround: programming convention
Function peculiarities: 1 argument

Each function takes 1 argument, returns 1 result

For “multiple arguments,” use tuples!

fun factorial n =
 let fun f (i, prod) =
 if i > n then prod else f (i+1, i*prod)
 in f (1, 1)
end

fun factorial n = (* you can also Curry *)
 let fun f i prod =
 if i > n then prod else f (i+1) (i*prod)
 in f 1 1
end
Mutual recursion

Let-star semantics will not do.

Use \textbf{and} (different from \textit{andalso})!

\begin{verbatim}
fun a x = ... b (x-1) ...
and b y = ... a (y-1) ...
\end{verbatim}
Syntax of ML types

Abstract syntax for types:

\[ty \Rightarrow TYVAR \text{ of string} \quad \text{type variable} \]
\[\quad \mid TYCON \text{ of string } \ast ty \text{ list} \quad \text{apply type constructor} \]

Each tycon takes fixed number of arguments.

nullary \quad int, bool, string, ...

unary \quad list, option, ...

binary \quad \rightarrow

\(n \)-ary \quad \text{tuples (infix } \ast \text{)}
Syntax of ML types

Concrete syntax is baroque:

\[
\begin{align*}
\mathit{ty} & \Rightarrow \mathit{tyvar} & \text{type variable} \\
& \mid \mathit{tycon} & \text{(nullary) type constructor} \\
& \mid \mathit{ty} \ \mathit{tycon} & \text{(unary) type constructor} \\
& \mid (\mathit{ty}, \ldots, \mathit{ty}) \ \mathit{tycon} & \text{(n-ary) type constructor} \\
& \mid \mathit{ty} \ast \ldots \ast \mathit{ty} & \text{tuple type} \\
& \mid \mathit{ty} \rightarrow \mathit{ty} & \text{arrow (function) type} \\
& \mid (\mathit{ty}) \\
\mathit{tyvar} & \Rightarrow ' \mathit{identifier} \quad 'a, 'b, 'c, \ldots \\
\mathit{tycon} & \Rightarrow \mathit{identifier} \quad \text{list, int, bool, \ldots}
\end{align*}
\]
Polymorphic types

Abstract syntax of type scheme σ:

$$\sigma \Rightarrow \text{FORALL of tyvar list} \ast \text{ty}$$

Bad decision: \forall left out of concrete syntax

$$(\text{fn} \ (f,g) \Rightarrow \text{fn} \ x \Rightarrow f \ (g \ x))$$

: $\forall \ 'a, \ 'b, \ 'c$.

$$('a \rightarrow 'b) \ast ('c \rightarrow 'a) \rightarrow ('c \rightarrow 'b)$$

Key idea: substitute for quantified type variables
Old and new friends

\[
\text{op } o : \forall \ 'a, \ 'b, \ 'c . \\
\quad (\ 'a \to \ 'b) \times (\ 'c \to \ 'a) \to \ 'c \to \ 'b
\]

\[
\text{length} : \forall \ 'a . \ 'a \ \text{list} \to \ \text{int}
\]

\[
\text{map} : \forall \ 'a, \ 'b . \\
\quad (\ 'a \to \ 'b) \to (\ 'a \ \text{list} \to \ 'b \ \text{list})
\]

\[
\text{curry} : \forall \ 'a, \ 'b, \ 'c . \\
\quad (\ 'a \times \ 'b \to \ 'c) \to \ 'a \to \ 'b \to \ 'c
\]

\[
\text{id} : \forall \ 'a . \ 'a \to \ 'a
\]