Using polymorphic names

\[\text{-> } (\text{val } cc \ (\text{lambda } (\text{nss}) \ (\text{car } (\text{car } \text{nss})))) \]
Using polymorphic names

\[\rightarrow \text{(val } \text{cc (lambda (nss) (car (car nss)))})\]

\[\text{cc : (forall ('a) ((list (list 'a)) -> 'a))}\]
Refresh your skills!

-> (val second (lambda (xs) (car (cdr xs)))))
second : ...

-> (val two (lambda (f) (lambda (x) (f (f x)))))
two : ...
Skills refreshed

-> (val second (lambda (xs) (car (cdr xs))))
second : (forall ('a) ((list 'a) -> 'a))
-> (val two (lambda (f) (lambda (x) (f (f x)))))
two : (forall ('a) (('a -> 'a) -> ('a -> 'a)))
Making Type Inference Precise

Sad news:
• Type inference for polymorphism is undecidable

Solution:
• Each formal parameter has a monomorphic type

Consequences:
• The *argument* to a higher-order function *cannot* be polymorphic
• *forall* appears only outermost in types
We infer stratified “Hindley-Milner” types

Two layers: Monomorphic types τ
Polymorphic type schemes σ

$$\tau ::= \alpha \quad \text{type variables}$$
$$\mid \mu \quad \text{type constructors: int, list}$$
$$\mid (\tau_1, \ldots, \tau_n) \tau \quad \text{constructor application}$$

$$\sigma ::= \forall \alpha_1, \ldots, \alpha_n . \tau \quad \text{type scheme}$$

Each variable in Γ introduced via LET, LETREC, VAL, and VAL-REC has a type scheme σ with \forall

Each variable in Γ introduced via LAMBDA has a degenerate type scheme $\forall . \tau$—a type, wrapped
Representing Hindley-Milner types

type tyvar = name

datatype ty
 = TYVAR of tyvar
 | TYCON of name
 | CONAPP of ty * ty list

datatype type_scheme
 = FORALL of tyvar list * ty

fun funtype (args, result) =
 CONAPP (TYCON "function",
 [CONAPP (TYCON "arguments", args),
 result])
Key ideas

Type environment Γ binds var to type scheme σ

- $\text{singleton} : \forall \alpha. \alpha \rightarrow \alpha \text{ list}$
- $\text{cc} : \forall \alpha. \alpha \text{ list list} \rightarrow \alpha$
- $\text{car} : \forall \alpha. \alpha \text{ list} \rightarrow \alpha$
- $\text{n} : \forall. \text{int}$ (note empty \forall)

Judgment $\Gamma \vdash e : \tau$ gives expression e a type τ

(Transitions happen automatically!)
Key ideas

Definitions are polymorphic with type schemes

Each use is monomorphic with a (mono-) type

Transitions:
• At use, type scheme instantiated automatically
• At definition, automatically abstract over tyvars
All the pieces

1. Hindley-Milner types
2. Bound names: \(\sigma \), expressions: \(\tau \)
3. Type inference yields type-equality constraint
4. Constraint solving produces substitution
5. Substitution refines types
6. Call solver, introduce polytypes at \texttt{val}
7. Call solver, introduce polytypes at all \texttt{let} forms
Type-inference algorithm

Given Γ and e, compute C and τ such that

$$C, \Gamma \vdash e : \tau$$

Idea #2: Extend to list of e_i: $C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n$

$$
\frac{
\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau
}{
\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau}
$$

becomes (note equality constraints with \sim)

$$
\frac{
C, \Gamma \vdash e_1, e_2, e_3 : \tau_1, \tau_2, \tau_3
}{
C \land \tau_1 \sim \text{bool} \land \tau_2 \sim \tau_3, \Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau_3}
$$

(If)
Apply rule

\[\Gamma \vdash e : \tau_1 \times \cdots \times \tau_n \to \tau \quad \Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n \]
\[\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau \]
(Apply)

becomes

\[C, \Gamma \vdash e, e_1, \ldots, e_n : \tau_f, \tau_1, \ldots, \tau_n \quad \text{\(\alpha\) is fresh} \]
\[C \land \tau_f \sim \tau_1 \times \cdots \times \tau_n \longrightarrow \alpha, \Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \alpha \]
(Apply)
Your turn: Begin Rule

\[
\Gamma \vdash e_i : \tau_i \quad 1 \leq i \leq n \\
\Gamma \vdash \text{BEGIN}(e_1, \ldots, e_n) : \tau_n
\]

\[
C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \\
C, \Gamma \vdash \text{BEGIN}(e_1, \ldots, e_n) : \tau_n
\]
Type inference, operationally

Like type checking:
- Top-down, bottom up pass over abstract syntax
- Use Γ to look up types of variables

Different from type checking:
- Create fresh type variables when needed
- Accumulate equality constraints
Your skills so far

You can complete `typeof`

- Takes e and Γ, returns τ and C

(Except for `let` forms.)

Next up: solving constraints!