Type checking in ML (no variables!)

```ml
val typeof : exp -> ty
exception IllTyped

fun typeof (ARITH (_, e1, e2)) =
  (case (typeof e1, typeof e2)
   of (INTTY, INTTY) => INTTY
   | _ => raise IllTyped)

| typeof (CMP (_, e1, e2)) =
  (case (typeof e1, typeof e2)
   of (INTTY, INTTY) => BOOLTY
   | _ => raise IllTyped)

| typeof (LIT _) = INTTY

| typeof (IF (e, e1, e2)) =
  (case (typeof e, typeof e1, typeof e2)
   of (BOOLTY, tau1, tau2) =>
     if eqType (tau1, tau2)
     then tau1 else raise IllTyped
   | _ => raise IllTyped)
```
Let’s add variables!

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
 | VAR of name
 | LET of name * exp * exp

and arithop = PLUS | MINUS | TIMES | ...
and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY
Examples: Well-formed types

These are types:

- int
- bool
- int * bool
- int * int -> int
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms
• list (but int list is a type)
• array (but char array is a type)
• ref (but (int -> int) ref is a type)

These are utter nonsense
• int int
• bool * array
Type-formation rules

We need a way to classify type expressions into:

- types that classify terms
- type constructors that build types
- nonsense that doesn’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:
 • **Nullary** int, bool, char also called base types
 • **Unary** list, array, ref
 • **Binary (infix)** –>

More complex type constructors:
 • records/structs
 • function in C, uScheme, Impcore
What’s a good type? (Type formation)

Type formation rules for Typed Impcore

\[\tau \in \{ \text{UNIT, INT, BOOL} \} \]

\[\tau \text{ is a type} \] (BASETYPES)

\[\tau \text{ is a type} \]

\[\text{ARRAY}(\tau) \text{ is a type} \] (ARRAYFORMATION)
Type judgments for monomorphic system

Two judgments:

• The familiar *typing judgment* $\Gamma \vdash e : \tau$
• Today’s judgment “τ is a type”
Type rules for variables

Lookup the type of a variable:

\[\frac{x \in \text{dom} \, \Gamma \quad \Gamma(x) = \tau}{\Gamma \vdash x : \tau}\] \quad (\text{VAR})

Types match in assignment (two \(\tau\)'s must be equal):

\[\frac{x \in \text{dom} \, \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau}{\Gamma \vdash \text{SET}(x, e) : \tau}\] \quad (\text{SET})
Type rules for control

Boolean condition; matching branches

\[
\frac{\Gamma \vdash e_1 : \text{BOOL} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau}
\]

(IF)
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

\[\tau_1 \text{ and } \tau_2 \text{ are types} \]
\[\frac{}{\tau_1 \times \tau_2 \text{ is a type}} \]
\[\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{PAIR}(e_1, e_2) : \tau_1 \times \tau_2} \]
\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{FST}(e) : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{SND}(e) : \tau_2} \]

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: \texttt{lambda}, application

Typed μScheme style:

\[
\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{(\tau_1 \cdots \tau_n \rightarrow \tau) \text{ is a type}} \quad (\text{ARROW FORMATION})
\]

ML style: functions takes a tuple:

\[
\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \rightarrow \tau \text{ is a type}} \quad (\text{ML ARROW FORMATION})
\]
Arrow types: Function from x to y

Eliminate with application:

\[\Gamma \vdash e : (\tau_1 \cdot \cdot \cdot \tau_n \rightarrow \tau) \]

\[\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n \]

\[\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau \]

Introduce with \textbf{lambda}:

\[\Gamma\{x_1 \leftrightarrow \tau_1, \ldots, x_n \leftrightarrow \tau_n\} \vdash e : \tau \]

\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdot \cdot \cdot \tau_n \rightarrow \tau) \]
Typical syntactic support for types

Explicit types on lambda and define:

- For lambda, argument types:
 \[
 \text{lambda ([n : int] [m : int]) (+ (* n n) (* m m))}
 \]
- For define, argument and result types:
 \[
 \text{define int max ([x : int] [y : int])}
 \]
 \[
 \text{(if (< x y) y x))}
 \]

Abstract syntax:

```plaintext
datatype exp = ...  
  | LAMBDA of (name * tyex) list * exp  
  ...  
datatype def = ...  
  | DEFINE of name * tyex * ((name * tyex) list * exp)  
  ...
```
Array types: Array of x

Formation: \[\tau \text{ is a type} \]
\[\text{ARRAY}(\tau) \text{ is a type} \]

Introduction: \[\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau) \]
Array types continued

Elimination:

\[\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT}}{\Gamma \vdash \text{AAT}(e_1, e_2) : \tau} \]

\[\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau} \]

\[\frac{\Gamma \vdash e : \text{ARRAY}(\tau)}{\Gamma \vdash \text{ASIZE}(e) : \text{INT}} \]
References (similar to C/C++ pointers)

Your turn! Given

\[
\begin{align*}
\text{ref } \tau & \quad \text{REF}(\tau) \\
\text{ref } e & \quad \text{REF-MAKE}(e) \\
!e & \quad \text{REF-GET}(e) \\
e_1 := e_2 & \quad \text{REF-SET}(e_1, e_2)
\end{align*}
\]

Write formation, introduction, and elimination rules.
Wait for it ...
Reference Types

Formation: \[\frac{\tau \text{ is a type}}{\text{REF}(\tau) \text{ is a type}} \]

Introduction: \[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{REF-MAKE}(e) : \text{REF}(\tau)} \]

Elimination: \[\frac{\Gamma \vdash e : \text{REF}(\tau)}{\Gamma \vdash \text{REF-GET}(e) : \tau} \]
\[\frac{\Gamma \vdash e_1 : \text{REF}(\tau) \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{REF-SET}(e_1, e_2) : \tau} \]
From rule to code

Arrow-introduction

\[\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n \]

\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau) \]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp
...

fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma’ = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 in
 val bodytype = ty (Gamma’, body)
 val formaltypes = map (fn (x, ty) => ty) formals
 end