Datatype declarations

datatype suit = HEARTS | DIAMONDS | CLUBS | SPADES

datatype 'a list = nil (* copy me NOT! *) | op :: of 'a * 'a list

datatype 'a heap = EHEAP | HEAP of 'a * 'a heap * 'a heap

type suit val HEARTS : suit, ...
type 'a list val nil : forall 'a . 'a list
val op :: : forall 'a .
 'a * 'a list -> 'a list

type 'a heap
val EHEAP: forall 'a. 'a heap
val HEAP : forall 'a.'a * 'a heap * 'a heap -> 'a heap
Eliminate values of algebraic types

New language construct \texttt{case} (an expression)

\begin{verbatim}
fun length xs =
 case xs
 of [] => 0
 | (x::xs) => 1 + length xs
\end{verbatim}

Clausal definition is preferred
(sugar for \texttt{val rec, fn, case})
case works for any datatype

fun toStr t =
 case t
 of EHEAP => "empty heap"
 | HEAP (v, left, right) =>
 "nonempty heap"

But often a clausal definition is better style:

fun toStr' EHEAP = "empty heap"
| toStr' (HEAP (v, left, right)) =
 "nonempty heap"
Types and their ML constructs

<table>
<thead>
<tr>
<th>Type</th>
<th>Produce</th>
<th>Consume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduce</td>
<td>Eliminate</td>
</tr>
<tr>
<td>arrow</td>
<td>Lambda ((fn))</td>
<td>Application</td>
</tr>
<tr>
<td>algebraic</td>
<td>Apply constructor</td>
<td>Pattern match</td>
</tr>
<tr>
<td>tuple</td>
<td>((e_1, \ldots, e_n))</td>
<td>Pattern match!</td>
</tr>
</tbody>
</table>
Type-directed coding

Common idea in functional programming: “lifting”

```plaintext
val lift : forall 'a . ('a -> bool) -> ('a list -> bool)
```

What (sensible) functions have this type?
Working...
Type-directed coding (results)

val lift : ('a -> bool) -> ('a list -> bool)
fun lift p = (fn xs => (case xs
 of [] => false
 | z::zs => p z orelse
 lift p zs))
Merge top-level `fn` into `fun`

```haskell
fun lift p xs = case xs of []    => false
    | z::zs => p z orelse
              lift p zs
```
Merge top-level case into fun

fun lift p [] = false
| lift p (z::zs) = p z orelse lift p zs
fun exists p [] = false
 | exists p (z::zs) = p z orelse exists p zs
Frequently overlooked

An algebraic data type is a collection of alternatives

Don’t forget:
 • Each alternative must have a name

The thing named is the value constructor

(Also called “datatype constructor”)
Define algebraic data types for SX_1 and SX_2, where

$SX_1 = ATOM \cup LIST(SX_1)$

$SX_2 = ATOM \cup \{(\text{cons} \ v_1 \ v_2) \mid v_1 \in SX_2, v_2 \in SX_2\}$

(take $ATOM$, with ML type $atom$ as given)
Wait for it . . .
Exercise answers

datatype sx1 = ATOM1 of atom
 | LIST1 of sx1 list

datatype sx2 = ATOM2 of atom
 | PAIR2 of sx2 * sx2
Exception handling in action

loop (evaldef (reader (), rho, echo))
handle EOF => finish ()
| Div => continue "Division by zero"
| Overflow => continue "Arith overflow"
| RuntimeError msg => continue ("error: " ^ msg)
| IO.Io {name, ...} => continue ("I/O error: " ^ name)
| SyntaxError msg => continue ("error: " ^ msg)
| NotFound n => continue (n ^ "not found")
ML Traps and pitfalls
Order of clauses matters

fun take n (x::xs) = x :: take (n-1) xs
 | take 0 xs = []
 | take n [] = []

(* what goes wrong? *)
Gotcha — overloading

- fun plus x y = x + y;
 > val plus = fn : int -> int -> int
- fun plus x y = x + y : real;
 > val plus = fn : real -> real -> real
Gotcha — equality types

- (fn (x, y) => x = y);
> val it = fn : ∀ 'a . 'a * 'a -> bool

Tyvar 'a is “equality type variable”:
- values must “admit equality”
- (functions don’t admit equality)
Gotcha — parentheses

Put parentheses around anything with | case, handle, fn

Function application has higher precedence than any infix operator
Syntactic sugar for lists

- 1 :: 2 :: 3 :: 4 :: nil; (* :: associates to the right *)
> val it = [1, 2, 3, 4] : int list

- "the" :: "ML" :: "follies" :: [];
> val it = ["the", "ML", "follies"] : string list

> concat it;
val it = "theMLfollies" : string
ML from 10,000 feet
The value environment

Names bound to immutable values
 Immutable ref and array values point to mutable locations

ML has no binding-changing assignment

Definitions add new bindings (hide old ones):

 val pattern = exp
 val rec pattern = exp
 fun ident patterns = exp
 datatype ... = ...
Nesting environments

At top level, definitions

Definitions contain expressions:

\[\text{def ::= val pattern = exp} \]

Expressions contain definitions:

\[\text{exp ::= let defs in exp end} \]

Sequence of \textit{defs} has let-star semantics
What is a pattern?

```
pattern ::= variable
   | wildcard
   | value-constructor [pattern]
   | tuple-pattern
   | record-pattern
   | integer-literal
   | list-pattern
```

Design bug: no lexical distinction between
 • VALUE CONSTRUCTORS
 • variables

Workaround: programming convention
Function peculiarities: 1 argument

Each function takes 1 argument, returns 1 result

For “multiple arguments,” use tuples!

```plaintext
fun factorial n =  
  let fun f (i, prod) =  
    if i > n then prod else f (i+1, i*prod)  
  in  f (1, 1)  
end

fun factorial n =  (* you can also Curry *)  
  let fun f i prod =  
    if i > n then prod else f (i+1) (i*prod)  
  in  f 1 1  
end
```
Mutual recursion

Let-star semantics will not do.

Use \textbf{and} (different from \textbf{andalso})!

\begin{verbatim}
 fun a x = ... b (x-1) ...
 and b y = ... a (y-1) ...
\end{verbatim}
Syntax of ML types

Abstract syntax for types:

\[ty \Rightarrow TYVAR \text{ of string} \quad \text{type variable} \]

\[\mid TYCON \text{ of string } \ast \text{ ty list} \quad \text{apply type constructor} \]

Each tycon takes fixed number of arguments.

- **nullary**: \(\text{int, bool, string, ...} \)
- **unary**: \(\text{list, option, ...} \)
- **binary**: \(\Rightarrow \)
- **n-ary**: \(\text{tuples (infix \ast)} \)
Syntax of ML types

Concrete syntax is baroque:

- \(ty \Rightarrow tyvar \) type variable
- \(ty \Rightarrow tycon \) (nullary) type constructor
- \(ty \Rightarrow ty \) (unary) type constructor
- \(ty \Rightarrow (ty, \ldots, ty) tycon \) (n-ary) type constructor
- \(ty \Rightarrow ty * \ldots * ty \) tuple type
- \(ty \Rightarrow ty \rightarrow ty \) arrow (function) type
- \(ty \Rightarrow (ty) \)

- \(tyvar \Rightarrow ' \text{identifier} \) 'a, 'b, 'c, ...
- \(tycon \Rightarrow \text{identifier} \) list, int, bool, ...
Polymorphic types

Abstract syntax of type scheme σ:

$$\sigma \Rightarrow \text{FORALL of tyvar list } \ast \text{ ty}$$

Bad decision: \forall left out of concrete syntax

$$(\text{fn } (f, g) \Rightarrow \text{fn } x \Rightarrow f \ (g \ x))$$

: $\forall \ 'a, \ 'b, \ 'c .$

$$('a \rightarrow 'b) \ast ('c \rightarrow 'a) \rightarrow ('c \rightarrow 'b)$$

Key idea: substitute for quantified type variables
Old and new friends

\[\text{op o} : \forall \ 'a, 'b, 'c . \]
\[\text{('a \rightarrow 'b) * ('c \rightarrow 'a) \rightarrow 'c \rightarrow 'b} \]

\[\text{length} : \forall \ 'a . \ 'a \text{ list} \rightarrow \text{int} \]

\[\text{map} : \forall \ 'a, 'b . \]
\[\text{('a \rightarrow 'b) \rightarrow ('a \text{ list} \rightarrow 'b \text{ list})} \]

\[\text{curry} : \forall \ 'a, 'b, 'c . \]
\[\text{('a \times 'b \rightarrow 'c) \rightarrow 'a \rightarrow 'b \rightarrow 'c} \]

\[\text{id} : \forall \ 'a . \ 'a \rightarrow 'a \]