Representing Constraints

datatype con = ~ of ty * ty
 | /\ of con * con
 | TRIVIAL

infix 4 ~
infix 3 /\
Solving Constraints

We *solve* a constraint C by finding a substitution θ such that the constraint θC is satisfied.

Substitutions distribute over constraints:

\[
\begin{align*}
\theta (\tau_1 \sim \tau_2) &= \theta \tau_1 \sim \theta \tau_2 \\
\theta (C_1 \land C_2) &= \theta C_1 \land \theta C_2 \\
\theta T &= T
\end{align*}
\]
What is a substitution?

Formally, θ is a function:
- Replaces a \textit{finite} set of type variables with types
- Apply to type, constraint, type environment, \ldots

In code, a data structure:
- “Applied” with tysubst, consubst
- Made with idsubst, $a \mapsto \tau$, compose
- Find domain with dom
When is a constraint satisfied?

\[
\frac{\tau_1 = \tau_2}{\tau_1 \sim \tau_2 \text{ is satisfied}} \quad \text{(EQ)}
\]

\[
\frac{C_1 \text{ is satisfied} \quad C_2 \text{ is satisfied}}{C_1 \land C_2 \text{ is satisfied}} \quad \text{(AND)}
\]

\[
\frac{T \text{ is satisfied}}{} \quad \text{(TRIVIAL)}
\]
Examples

Which have solutions?

1. int ~ bool
2. (list int) ~ (list bool)
3. 'a ~ int
4. 'a ~ (list int)
5. 'a ~ ((args int) -> int)
6. 'a ~ 'a
7. (args 'a int) ~ (args bool 'b)
8. (args 'a int) ~ ((args bool) -> 'b)
9. 'a ~ (pair 'a int)
10. 'a ~ tau // arbitrary tau
Substitution preserves type structure

Type structure:

datatype ty
 = TYCON of name
 | CONAPP of ty * ty list
 | TYVAR of name

Substitution replaces only type variables:
 - Every type constructor is unchanged
 - Distributes over type-constructor application

\[
\theta(TYCON \, \mu) = TYCON \, \mu
\]
\[
\theta(CONAPP \, (\tau, [\tau_1, \ldots, \tau_n])) = CONAPP \, (\theta \tau, [\theta_1 \tau_1, \ldots \theta_n \tau_n])
\]
Solving simple type equalities $\tau_1 \sim \tau_2$

- What are the cases?
- How will you handle them?

```datatype
datatype ty
  = TYCON of name
  | CONAPP of ty * ty list
  | TYVAR of name
```
Solving Conjunctions

Useless rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} & \quad \tilde{\theta}_2 C_2 \text{ is satisfied} \\
(\tilde{\theta}_2 \circ \theta_1) C_1 \land C_2 \text{ is or is not satisfied} \\
\end{align*}
\]

(\text{UNSOLVED\text{CONJUNCTION}})

Useful rule:

\[
\begin{align*}
\theta_1 C_1 \text{ is satisfied} & \quad \theta_2(\theta_1 C_2) \text{ is satisfied} \\
(\theta_2 \circ \theta_1) C_1 \land C_2 \text{ is satisfied} \\
\end{align*}
\]

(\text{SOLVED\text{CONJUNCTION}})

Food for thought (or recitation): Find examples to illustrate that \text{UNSOLVED\text{CONJUNCTION}} is bogus.
Moving between type scheme and type

From σ to τ: instantiate

From τ to σ: generalize

\[\begin{align*}
\tau & ::= \alpha \\
& \mid \mu \\
& \mid (\tau_1, \ldots, \tau_n)\tau \\
\sigma & ::= \forall \alpha_1, \ldots, \alpha_n . \tau
\end{align*} \]
Instantiation: From Type Scheme to Type

VAR rule instantiates type scheme with fresh and distinct type variables:

\[
\Gamma(x) = \forall \alpha_1, \ldots, \alpha_n . \tau \\
\alpha'_1, \ldots, \alpha'_n \text{ are fresh and distinct} \\
\begin{array}{c}
T, \Gamma \vdash x : ((\alpha_1 \mapsto \alpha'_1) \circ \ldots \circ (\alpha_n \mapsto \alpha'_n)) \tau \\
\end{array}
\]
Generalization: From Type to Type Scheme

Goal is to get \text{forall}:

\[
\text{\texttt{\textbf{forall}}} : (\forall (\alpha \beta) (\alpha \beta \rightarrow \alpha))
\]

First derive:

\[
T, \emptyset \vdash \text{\texttt{(\lambda (x y) x)}} : \alpha \times \beta \rightarrow \alpha
\]

Abstract over \(\alpha, \beta\) and add to environment:

\[
\text{\large\texttt{fst}} : \forall \alpha, \beta. \alpha \times \beta \rightarrow \alpha
\]
Generalize Function

Useful tool for finding quantified type variables:

\[
\text{generalize}(\tau, A) = \forall \alpha_1, \ldots, \alpha_n . \tau
\]

where

\[
\{\alpha_1, \ldots \alpha_n\} = \text{ftv}(\tau) - A
\]

Example:

\[
\text{generalize}(\alpha \times \beta \rightarrow \alpha, \emptyset) = \forall \alpha, \beta . \alpha \times \beta \rightarrow \alpha
\]
First candidate VAL rule (no constraints)

\[T, \emptyset \vdash e : \tau \]

\[\sigma = \text{generalize}(\tau, \emptyset) \]

\[\langle \text{VAL}(x, e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \} \]

(VAL WITH \(T \))

But we need to handle nontrivial constraints
Example with nontrivial constraints

(val pick (lambda (x y z) (if x y z)))

During inference, we derive the judgment:

\[\alpha_x \sim \text{bool} \land \alpha_y \sim \alpha_z, \emptyset \vdash (\lambda (x \ y \ z) (\text{if} \ x \ y \ z)) : \alpha_x \times \alpha_y \times \alpha_z \rightarrow \alpha_z \]

Before generalization, solve the constraint:

\[\theta = \{ \alpha_x \mapsto \text{bool}, \alpha_y \mapsto \alpha_z \} \]

So the type we need to generalize is

\[\theta(\alpha_x \times \alpha_y \times \alpha_z \rightarrow \alpha_z) = \text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z \]

And generalize(\text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z, \emptyset) is

\[\forall \alpha_z. \text{bool} \times \alpha_z \times \alpha_z \rightarrow \alpha_z \]
2nd candidate VAL rule (no context)

\[C, \emptyset \vdash e : \tau \]

\(\theta C \) is satisfied

\[\sigma = \text{generalize}(\theta \tau, \emptyset) \]

\[\langle \text{VAL}(x, e), \emptyset \rangle \rightarrow \{ x \mapsto \sigma \} \]

(VAL 2)

But we need to handle nonempty contexts
VAL rule — the full version

\[C, \Gamma \vdash e : \tau \]

\[\begin{align*}
\theta C & \text{ is satisfied} & \theta \Gamma &= \Gamma \\
\sigma &= \text{generalize}(\theta \tau, \text{ftv}(\Gamma)) \\
\langle \text{VAL}(x, e), \Gamma \rangle & \rightarrow \Gamma \{ x \mapsto \sigma \}
\end{align*} \]

(VAL)
Example of Val rule with non-empty Γ

$$(\text{val } \text{pick-t } (\lambda (y \ z) (\text{pick } \#t \ y \ z)))$$

$$\Gamma = \{\text{pick} \mapsto \forall \alpha . \text{bool} \times \alpha \times \alpha \rightarrow \alpha\}$$

Instantiate $\text{pick}: \text{bool} \times \alpha_p \times \alpha_p \rightarrow \alpha_p$

Derive the judgment:

$$\alpha_y \sim \alpha_p \land \alpha_z \sim \alpha_p, \Gamma \vdash (\lambda (y \ z) (\text{pick } \#t \ y \ z)) : \alpha_y \times \alpha_z \rightarrow \alpha_p$$

Before generalization, solve the constraint: $\theta = \{\alpha_y \mapsto \alpha_p, \alpha_z \mapsto \alpha_p\}$

Note that $\theta \Gamma = \Gamma$ and $\text{ftv}(\Gamma) = \emptyset$.

The type to generalize is $\theta(\alpha_y \times \alpha_z \rightarrow \alpha_p) = \alpha_p \times \alpha_p \rightarrow \alpha_p$

which yields the type: $\forall \alpha_p . \alpha_p \times \alpha_p \rightarrow \alpha_p$

which is the same as $\forall \alpha . \alpha \times \alpha \rightarrow \alpha$
Let Examples

(lambda (ys) ; OK
 (let ([s (lambda (x) (cons x '()))])
 (pair (s 1) (s #t))))

(lambda (ys) ; Oops!
 (let ([extend (lambda (x) (cons x ys))])
 (pair (extend 1) (extend #t))))

(lambda (ys) ; OK
 (let ([extend (lambda (x) (cons x ys))])
 (extend 1)))
Let

\[C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\(\theta C \) is satisfied \quad \theta \text{ is idempotent}

\[C' = \bigwedge \left\{ \alpha \sim \theta \alpha \mid \alpha \in (\text{dom} \theta \cap \text{ftv}(\Gamma)) \right\} \]

\(\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')) \), \quad 1 \leq i \leq n

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \land C_b, \Gamma \vdash \text{LET}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \quad \text{(LET)} \]

• If it’s not mentioned in the context, it can be anything: independent

• If it is mentioned in the context, don’t mess with it: dependent
Idempotence

\[\theta \circ \theta = \theta \]

Implies: Applying once is good enough.

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha \mapsto \text{int})</td>
<td>(\alpha \mapsto \alpha \text{ list})</td>
</tr>
<tr>
<td>(\alpha \mapsto \beta)</td>
<td>(\alpha \mapsto \beta, \beta \mapsto \gamma)</td>
</tr>
<tr>
<td>(\alpha_1 \mapsto \beta_1, \alpha_2 \mapsto \beta_2)</td>
<td></td>
</tr>
</tbody>
</table>

Implies: If \(\alpha \mapsto \tau \in \theta \), then \(\theta \alpha = \theta \tau \).
VAL-REC rule

\[C, \Gamma \{ x \mapsto \alpha \} \vdash e : \tau \quad \alpha \text{ is fresh} \]
\[\theta(C \land \alpha \sim \tau) \text{ is satisfied} \quad \theta \Gamma = \Gamma \]
\[\sigma = \text{generalize}(\theta \alpha, \text{ftv}(\Gamma)) \]
\[\langle \text{VAL-REC}(x, e), \Gamma \rangle \rightarrow \Gamma \{ x \mapsto \sigma \} \]
\[\Gamma_e = \Gamma \{ x_1 \mapsto \alpha_1, \ldots, x_n \mapsto \alpha_n \}, \quad \alpha_i \text{ distinct and fresh} \]

\[C_e, \Gamma_e \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n \]

\[C = C_e \land \tau_1 \sim \alpha_1 \land \ldots \land \tau_n \sim \alpha_n \]

\[\theta C \text{ is satisfied} \quad \theta \text{ is idempotent} \]

\[C' = \land \{ \alpha \sim \theta \alpha \mid \alpha \in \text{dom} \theta \cap \text{ftv}(\Gamma) \} \]

\[\sigma_i = \text{generalize}(\theta \tau_i, \text{ftv}(\Gamma) \cup \text{ftv}(C')), \quad 1 \leq i \leq n \]

\[C_b, \Gamma \{ x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n \} \vdash e : \tau \]

\[C' \land C_b, \Gamma \vdash \text{LETREC}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau \]

\text{(LETREC)}