2-digit elements revisited

Laws:

(2digit-elements '()) == '()
(2digit-elements (cons y ys)) =
 (cons y (2digit-elements ys)), when (2digit? y)
(2digit-elements (cons y ys)) =
 (2digit-elements ys), when not (2digit? y)

How to select
• Odd elements?
• Prime elements?
• Numeric elements?
Generalize 2-digit elements

Laws:

(2digit-elements '()) == '()
(2digit-elements (cons y ys)) =
 (cons y (2digit-elements ys)), when (2digit? y)
(2digit-elements (cons y ys)) =
 (2digit-elements ys), when not (2digit? y)

Generalize selection; make predicate a parameter:

(filter p? '()) == '()
(filter p? (cons y ys)) =
 (cons y (filter p? ys)), when (p? y)
(filter p? (cons y ys)) =
 (filter p? ys), when not (p? y)

Predicate p? could come from curry
Your turn

Common computations on linked lists
Defining exists?

; (exists? p? '()) == #f
; (exists? p? (cons y ys)) == (p? y) or (exists p? ys)
-> (define exists? (p? xs)
 (if (null? xs)
 #f
 (if (p? (car xs))
 #t
 (exists? p? (cdr xs))))))
-> (exists? pair? '(1 2 3))
#f
-> (exists? pair? '(1 2 (3)))
#t
-> (exists? zero? '(1 2 3))
#f
Your turn: map

\[\textcolor{red}{\rightarrow (\text{map add3 ' (1 2 3 4 5))} \]
\[(4 5 6 7 8) \]

\[\textcolor{red}{;; (\text{map f ' ()}) =} \]
\[\textcolor{red}{;; (\text{map f (cons y ys)}) =} \]
Answers: `map`

```lisp
-> (map add3 '(1 2 3 4 5))
(4 5 6 7 8)

; (map f '()) == '()
; (map f (cons y ys)) == (cons (f y) (map f ys))
```
Defining and running map

; (map f '()) == '()
; (map f (cons y ys)) == (cons (f y) (map f ys))
-> (define map (f xs)
 (if (null? xs)
 '()
 (cons (f (car xs)) (map f (cdr xs)))))
-> (map number? '(3 a b (5 6)))
 (#t #f #f #f)
-> (map *100 '(5 6 7))
 (500 600 700)
Foldr
Algebraic laws for foldr

Idea: \(\lambda+ \cdot \lambda0 \cdot x_1 + \cdots + x_n + 0 \)

\[
(foldr \ (\text{plus} \ zero \ '()) \hspace{1cm} = \text{zero} \\
(foldr \ (\text{plus} \ zero \ (\text{cons} \ y \ ys))) \\
\hspace{1cm} (\text{plus} \ y \ (foldr \ \text{plus} \ zero \ ys))
\]

Note: Binary operator \(+\) associates to the right.

Note: \(\text{zero}\) might be identity of \(\text{plus}\).
Code for foldr

Idea: $\lambda+. \lambda 0.x_1 + \cdots + x_n + 0$

-> (define foldr (plus zero xs)
 (if (null? xs)
 zero
 (plus (car xs) (foldr plus zero (cdr xs))))))

-> (val sum (lambda (xs) (foldr + 0 xs)))
-> (sum '(1 2 3 4))
10

-> (val prod (lambda (xs) (foldr * 1 xs)))
-> (prod '(1 2 3 4))
24
Another view of operator folding

\[
'(1\ 2\ 3\ 4) = (\text{cons}\ 1\ (\text{cons}\ 2\ (\text{cons}\ 3\ (\text{cons}\ 4\ '())))))
\]

\[
(\text{foldr}\ +\ 0\ '(1\ 2\ 3\ 4))
\]

\[
= (+\ 1\ (+\ 2\ (+\ 3\ (+\ 4\ 0\ ()))))
\]

\[
(\text{foldr}\ f\ z\ '(1\ 2\ 3\ 4))
\]

\[
= (f\ 1\ (f\ 2\ (f\ 3\ (f\ 4\ z\ ()))))
\]
Your turn

Idea: \(\lambda x . x_0 . x_1 + \cdots + x_n + 0 \)

\[\rightarrow (\text{define} \ combine \ (x \ a) \ (+ \ 1 \ a)) \]
\[\rightarrow (\text{foldr} \ combine \ 0 \ '(2 \ 3 \ 4 \ 1)) \]

???
Wait for it
Answer

Idea: $\lambda+\cdot\lambda 0. x_1 + \cdots + x_n + 0$

\rightarrow (define combine (x a) (+ 1 a))

\rightarrow (foldr combine 0 '(2 3 4 1))

4

What function have we written?
Your turn: Explain the design

1. Functions like `exists?`, `map`, `filter` are subsumed by
2. Function `foldr`, which is subsumed by
3. Recursive functions

Seems redundant: Why?
Cornucopia of one-argument functions
The idea of currying

-> (map ((curry +) 3) '(1 2 3 4 5))
; add 3 to each element

-> (exists? ((curry =) 3) '(1 2 3 4 5))
; is there an element equal to 3?

-> (filter ((curry >) 3) '(1 2 3 4 5))
; keep elements that 3 is greater than
To get one-argument functions: Curry

-> (val positive? (lambda (y) (< 0 y)))
-> (positive? 3)
#t
-> (val <-c (lambda (x) (lambda (y) (< x y))))
-> (val positive? (<-c 0)) ; "partial application"
-> (positive? 0)
#f
What’s the algebraic law for `curry`?

\[\ldots \ (\text{curry } f) \ldots = \ldots f \ldots \]

Keep in mind:
All you can do with a function is apply it!

\[(((\text{curry } f) \ x) \ y) = (f \ x \ y) \]

Three applications: so implementation will have three `lambda`s
No need to Curry by hand!

```scheme
;; curry : binary function -> value -> function

-> (val curry
    (lambda (f)
      (lambda (x)
        (lambda (y) (f x y)))))

-> (val positive? ((curry <) 0))

-> (positive? -3)
  #f

-> (positive? 11)
  #t
```
Your turn!

-> (map ((curry +) 3) '(1 2 3 4 5))

-> (exists? ((curry =) 3) '(1 2 3 4 5))

-> (filter ((curry >) 3) '(1 2 3 4 5))

; tricky
Answers

-> (map ((curry +) 3) '(1 2 3 4 5))
 (4 5 6 7 8)

-> (exists? ((curry =) 3) '(1 2 3 4 5))
 #t

-> (filter ((curry >) 3) '(1 2 3 4 5))
 (1 2)
One-argument functions compose

```scheme
-> (define o (f g) (lambda (x) (f (g x))))
-> (define even? (n) (= 0 (mod n 2)))
-> (val odd? (o not even?))
-> (odd? 3)
#t
-> (odd? 4)
#f
```
Next up: proving facts about functions