Review: Language of expressions

Numbers and Booleans:

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
and arithop = PLUS | MINUS | TIMES | ...
and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY

Problem to solve: integer register or flags register?
Review: type checker

val typeof : exp -> ty
exception IllTyped

fun typeof (ARITH (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => INTTY
 | _ => raise IllTyped)

 typeof (CMP (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => BOOLTY
 | _ => raise IllTyped)

 typeof (LIT _) = INTTY

 typeof (IF (e, e1, e2)) =
 (case (typeof e, typeof e1, typeof e2)
 of (BOOLTY, tau1, tau2) =>
 if eqType (tau1, tau2)
 if tau1 else raise IllTyped)
 | _ => raise IllTyped)
Let’s add variables!

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
 | VAR of name
 | LET of name * exp * exp

and arithop = PLUS | MINUS | TIMES | ...

and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY
Examples: Well-formed types

These are types:

• int
• bool
• int * bool
• int * int -> int
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms

- list (but int list is a type)
- array (but char array is a type)
- ref (but (int -> int) ref is a type)

These are utter nonsense

- int int
- bool * array
Type-formation rules

We need a way to classify type expressions into:

- **types** that classify terms
- **type constructors** that build types
- **nonsense** that doesn’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:
 • Nullary int, bool, char also called base types
 • Unary list, array, ref
 • Binary (infix) ->

More complex type constructors:
 • records/structs
 • function in C, uScheme, Impcore
What’s a good type? (Type formation)

Type formation rules for Typed Impcore

\[\tau \in \{\text{UNIT, INT, BOOL}\} \]
\[\tau \text{ is a type} \]

BASETYPES

\[\tau \text{ is a type} \]
\[\text{ARRAY}(\tau) \text{ is a type} \]

ARRAYFORMATION
Type judgments for monomorphic system

Two judgments:

• The familiar \textit{typing judgment} $\Gamma \vdash e : \tau$
• Today’s judgment “τ is a type”
Type rules for variables

Look up the type of a variable:

$$x \in \text{dom} \Gamma \quad \Gamma(x) = \tau$$

$$\Gamma \vdash x : \tau \quad \text{(VAR)}$$

Types match in assignment (two τ’s must be equal):

$$x \in \text{dom} \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau$$

$$\Gamma \vdash \text{SET}(x, e) : \tau \quad \text{(SET)}$$
Understanding the SET rule

Types match in assignment (two \(\tau \)'s must be equal):

\[
\begin{align*}
x & \in \text{dom} \quad \Gamma \\
\Gamma(x) &= \tau \\
\Gamma \vdash e : \tau \\
\hline
\Gamma \vdash \text{SET}(x,e) : \tau
\end{align*}
\]
Understanding the \textbf{SET} rule

Types match in assignment (two τ’s must be equal):

\[
x \in \text{dom } \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau
\]
\[
\Gamma \vdash \text{SET}(x, e) : \tau
\]
\hspace{1cm} (SET)

\[
x \in \text{dom } \Gamma \quad \Gamma(x) = \tau_x \quad \Gamma \vdash e : \tau_e \quad \tau_x \equiv \tau_e
\]
\[
\Gamma \vdash \text{SET}(x, e) : \tau_e
\]
\hspace{1cm} (SET)
Type rules for control

Boolean condition; matching branches

\[
\frac{\Gamma \vdash e_1 : \text{BOOL} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau}
\]
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

\[\tau_1 \text{ and } \tau_2 \text{ are types} \]
\[\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{PAIR}(e_1, e_2) : \tau_1 \times \tau_2} \]
\[\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{FST}(e) : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{SND}(e) : \tau_2} \]

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: lambda, application

Typed μ Scheme style:

\[\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \cdots \tau_n \to \tau \text{ is a type}} \]

(ARROWFORMATION)

ML style: functions takes a tuple:

\[\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \to \tau \text{ is a type}} \]

(MLARROWFORMATION)
Arrow types: Function from x to y

Eliminate with application:

\[\Gamma \vdash e : (\tau_1 \cdots \tau_n \rightarrow \tau) \]
\[\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n \]
\[\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau \]

Introduce with \texttt{lambda}:

\[\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \]
\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau) \]
Typical syntactic support for types

Explicit types on lambda and define:

- For lambda, argument types:

 \[
 \text{(lambda ([n : int] [m : int]) (+ (* n n) (* m m)))}
 \]

- For define, argument and result types:

 \[
 \text{(define int max ([x : int] [y : int]) (if (< x y) y x))}
 \]

Abstract syntax:

\[
\text{datatype exp = ...}
\]

| LAMBDA of (name * tyex) list * exp |
| ... |

\[
\text{datatype def = ...}
\]

| DEFINE of name * tyex * ((name * tyex) list * exp) |
| ... |
Array types: Array of x

Formation: \[\frac{\tau \text{ is a type}}{ \text{ARRAY}(\tau) \text{ is a type}} \]

Introduction: \[\frac{\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau)} \]
Array types continued

Elimination:

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT}}{\Gamma \vdash \text{AAT}(e_1, e_2) : \tau}
\]

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau}
\]

\[
\frac{\Gamma \vdash e : \text{ARRAY}(\tau)}{\Gamma \vdash \text{ASIZE}(e) : \text{INT}}
\]
References (similar to C/C++ pointers)

Your turn! Given

\[\text{ref } \tau \rightarrow \text{REF(}\tau\text{)} \]

\[\text{ref } e \rightarrow \text{REF-MAKE}(e) \]

\[!e \rightarrow \text{REF-GET}(e) \]

\[e_1 := e_2 \rightarrow \text{REF-SET}(e_1, e_2) \]

Write formation, introduction, and elimination rules.
Wait for it . . .
Reference Types

Formation: \[\tau \text{ is a type} \]
\[\frac{}{\text{REF}(\tau) \text{ is a type}} \]

Introduction:
\[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{REF-MAKE}(e) : \text{REF}(\tau)} \]

Elimination:
\[\frac{\Gamma \vdash e : \text{REF}(\tau)}{\Gamma \vdash \text{REF-GET}(e) : \tau} \]
\[\frac{\Gamma \vdash e_1 : \text{REF}(\tau) \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{REF-SET}(e_1, e_2) : \tau} \]
From rule to code

Arrow-introduction

\[
\Gamma \{x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n\} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n
\]

\[
\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \to \tau)
\]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp
...
fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma’ = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 val bodytype = ty (Gamma’, body)
 val formaltypes =
 map (fn (x, ty) => ty) formals
 in FUNTY (formaltypes, bodytype)
 end