Last time: Type-directed coding

Common idea in functional programming: “lifting”

val lift : forall 'a . ('a -> bool) -> ('a list -> bool)

fun lift p [] = false
 | lift p (z::zs) = p z orelse lift p zs
Types and their C constructs

<table>
<thead>
<tr>
<th>Type</th>
<th>Produce</th>
<th>Consume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce</td>
<td></td>
<td>Eliminate</td>
</tr>
</tbody>
</table>

- **“initializer”**: `struct { ..., ... }`
- **dot notation**: `e.next, e->next`
- **pointer**: `&`, `*`
- **function (definition form)**: application
Types and their ML constructs

Type	Produce	Consume
Introduce	Lambda \(\text{(fn)} \)	Eliminate

arrow | Application

constructed \(\text{(algebraic)} \) | Apply constructor

constructed \(\text{(tuple)} \) | \((e_1, \ldots, e_n) \) | Pattern match!
Type this: Language of expressions

Numbers and Booleans:

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp

and arithop = PLUS | MINUS | TIMES | ...

and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY

Problem to solve: integer register or flags register?
Type checking in ML (no variables!)

val typeof : exp -> ty
exception IllTyped
fun typeof (ARITH (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => INTTY
 | _ => raise IllTyped)
 | typeof (CMP (_, e1, e2)) =
 (case (typeof e1, typeof e2)
 of (INTTY, INTTY) => BOOLTY
 | _ => raise IllTyped)
 | typeof (LIT _) = INTTY
 | typeof (IF (e,e1,e2)) =
 (case (typeof e, typeof e1, typeof e2)
 of (BOOLTY, tau1, tau2) =>
 if eqType (tau1, tau2)
 then tau1 else raise IllTyped
 | _ => raise IllTyped)
Type checking in ML (no variables!)

```ml
val typeof : exp -> ty
exception IllTyped

fun typeof (ARITH (_, e1, e2)) =
  (case (typeof e1, typeof e2)
    of (INTTY, INTTY) => INTTY
    | _ => raise IllTyped)

| typeof (CMP (_, e1, e2)) =
  (case (typeof e1, typeof e2)
    of (INTTY, INTTY) => BOOLTY
    | _ => raise IllTyped)

| typeof (LIT _) = INTTY

| typeof (IF (e,e1,e2)) =
  (case (typeof e, typeof e1, typeof e2)
    of (BOOLTY, tau1, tau2) =>
      if eqType (tau1, tau2)
      then tau1 else raise IllTyped
    | _ => raise IllTyped)
```
Let’s add variables!

datatype exp = ARITH of arithop * exp * exp
 | CMP of relop * exp * exp
 | LIT of int
 | IF of exp * exp * exp
 | VAR of name
 | LET of name * exp * exp

and arithop = PLUS | MINUS | TIMES | ...

and relop = EQ | NE | LT | LE | GT | GE

datatype ty = INTTY | BOOLTY
Examples: Well-formed types

These are types:

• int
• bool
• int * bool
• int * int -> int
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms
- list (but int list is a type)
- array (but char array is a type)
- ref (but (int -> int) ref is a type)

These are utter nonsense
- int int
- bool * array
Type-formation rules

We need a way to classify type expressions into:

- types that classify terms
- type constructors that build types
- nonsense that doesn’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:

- **Nullary** int, bool, char also called **base types**
- **Unary** list, array, ref
- **Binary (infix)** \(\rightarrow \)

More complex type constructors:

- **records/structs**
- **function in C, uScheme, Impcore**
What’s a good type? (Type formation)

Type formation rules for Typed Impcore

\[\tau \in \{ \text{UNIT, INT, BOOL} \} \]
\[\Rightarrow \tau \text{ is a type} \] \hspace{2cm} (\text{BASETYPES})

\[\tau \text{ is a type} \]
\[\Rightarrow \text{ARRAY}(\tau) \text{ is a type} \] \hspace{2cm} (\text{ARRAYFORMATION})
Type judgments for monomorphic system

Two judgments:

- The familiar *typing judgment* $\Gamma \vdash e : \tau$
- Today’s judgment “τ is a type”
Type rules for variables

Lookup the type of a variable:

\[x \in \text{dom} \Gamma \quad \Gamma(x) = \tau \]

\[\Gamma \vdash x : \tau \quad \text{(VAR)} \]

Types match in assignment (two \(\tau \)'s must be equal):

\[x \in \text{dom} \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau \]

\[\Gamma \vdash \text{SET}(x, e) : \tau \quad \text{(SET)} \]
Type rules for control

Boolean condition; matching branches

\[
\frac{\Gamma \vdash e_1 : \text{BOOL} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau}
\] (IF)
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

Γ ⊢ e₁ : τ₁ Γ ⊢ e₂ : τ₂
Γ ⊢ PAIR(e₁, e₂) : τ₁ × τ₂

Γ ⊢ e : τ₁ × τ₂
Γ ⊢ FST(e) : τ₁
Γ ⊢ SND(e) : τ₂

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: \texttt{lambda}, application

Typed μScheme style:

$$\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{(\tau_1 \cdots \tau_n \rightarrow \tau) \text{ is a type}} \quad (\text{TARROWFORMATION})$$

ML style: functions takes a tuple:

$$\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \rightarrow \tau \text{ is a type}} \quad (\text{MLTARROWFORMATION})$$
Arrow types: Function from x to y

Eliminate with application:

\[
\Gamma \vdash e : (\tau_1 \cdots \tau_n \rightarrow \tau)
\]
\[
\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n
\]
\[
\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau
\]

Introduce with \texttt{lambda}:

\[
\Gamma \{x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n\} \vdash e : \tau
\]
\[
\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau)
\]
Typical syntactic support for types

Explicit types on lambda and define:

• For lambda, argument types:
 \[
 \text{(lambda ([n : int] [m : int]) (+ (* n n) (* m m))}
 \]

• For define, argument and result types:
 \[
 \text{(define int max ([x : int] [y : int])}
 \]
 \[
 \text{(if (< x y) y x))}
 \]

Abstract syntax:

```
datatype exp = ...
  | LAMBDA of (name * tyex) list * exp
  ...

datatype def = ...
  | DEFINE of name * tyex * ((name * tyex) list * exp)
  ...
```
Array types: Array of x

Formation: \(\tau \) is a type
\[\frac{}{\text{ARRAY}(\tau) \text{ is a type}} \]

Introduction:
\[\frac{\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau)} \]
Array types continued

Elimination:

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT}}{\Gamma \vdash \text{AAT}(e_1, e_2) : \tau}
\]

\[
\frac{\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau}
\]

\[
\frac{\Gamma \vdash e : \text{ARRAY}(\tau)}{\Gamma \vdash \text{ASIZE}(e) : \text{INT}}
\]
References (similar to C/C++ pointers)

Your turn! Given

\[
\begin{align*}
\text{ref } \tau & \quad \text{REF}(\tau) \\
\text{ref } e & \quad \text{REF-MAKE}(e) \\
!e & \quad \text{REF-GET}(e) \\
e1 := e2 & \quad \text{REF-SET}(e1, e2)
\end{align*}
\]

Write formation, introduction, and elimination rules.
Wait for it . . .
Reference Types

Formation:

\[
\begin{array}{c}
\tau \text{ is a type} \\
\overline{\text{REF(} \tau \text{) is a type}}
\end{array}
\]

Introduction:

\[
\begin{array}{c}
\Gamma \vdash e : \tau \\
\overline{\Gamma \vdash \text{REF-MAKE}(e) : \text{REF}(\tau)}
\end{array}
\]

Elimination:

\[
\begin{array}{c}
\Gamma \vdash e : \text{REF}(\tau) \\
\overline{\Gamma \vdash \text{REF-GET}(e) : \tau}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e_1 : \text{REF}(\tau) \\
\Gamma \vdash e_2 : \tau \\
\overline{\Gamma \vdash \text{REF-SET}(e_1,e_2) : \tau}
\end{array}
\]

From rule to code

Arrow-introduction

\[
\Gamma \{x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n\} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n
\]

\[
\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : (\tau_1 \cdots \tau_n \rightarrow \tau)
\]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp
...

fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma’ = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 in
 val bodytype = ty (Gamma’, body)
 val formaltypes = map (fn (x, ty) => ty) formals
 in
 FUNTY (formaltypes, bodytype)
 end
fun ty (IFX (e1, e2, e3)) =
 if eqType (ty e1, booltype) then
 let val (tau2, tau3) = (ty e2, ty e3)
 in ... YOU FILL IN 1 ...
 end
 else
 ... YOU FILL IN 2 ...
 end

| ty (SET (x, e)) =
 let val tau_x = find (x, Gamma)
 val tau_e = ty e
 in ... YOU FILL IN 3 ...
 end
fun ty (APPLY (f, actuals)) =
 let val atys = map ty actuals
 in case ty f
 of FUNTY (formals, result) =>
 if eqTypes (atys, formals) then
 ... YOU FILL IN 4 ...
 else
 ... YOU FILL IN 5 ...
 | _ => ... YOU FILL IN 6 ...
 end
Monomorphic types are limiting

Each new type constructor requires

- Special syntax
- New type rules
- New internal representation (type formation)
- New code in type checker (intro, elim)
- New or revised proof of soundness
Monomorphic burden: Array types

Formation:
\[\tau \text{ is a type} \]
\[\text{ARRAY}(\tau) \text{ is a type} \]

Introduction:
\[\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau) \]

Elimination:
\[\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \]
\[\Gamma \vdash \text{AAT}(e_1, e_2) : \tau \]
\[\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau \]
\[\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau \]
\[\Gamma \vdash e : \text{ARRAY}(\tau) \]
\[\Gamma \vdash \text{ASIZE}(e) : \text{INT} \]
Monomorphism hurts programmers too

Monomorphism leads to code duplication

User-defined functions are monomorphic:

```
(define int lengthI ([xs : (list int)])
  (if (null? xs) 0 (+ 1 (lengthI (cdr xs)))))
(define int lengthB ([xs : (list bool)])
  (if (null? xs) 0 (+ 1 (lengthB (cdr xs)))))
(define int lengthS ([xs : (list sym)])
  (if (null? xs) 0 (+ 1 (lengthS (cdr xs))))))
```
Quantified types

Heart of polymorphism: $\forall \alpha_1, \ldots, \alpha_n . \tau$.

In Typed μScheme: (forall (’a1 ... ’an) type)

Two ideas:

• Type variable ’a stands for an unknown type
• Quantified type (with forall) enables substitution

\[
\begin{align*}
\text{length} & : \forall \alpha . \alpha \text{ list } \rightarrow \text{ int} \\
\text{cons} & : \forall \alpha . \alpha \times \alpha \text{ list } \rightarrow \alpha \text{ list} \\
\text{car} & : \forall \alpha . \alpha \text{ list } \rightarrow \alpha \\
\text{cdr} & : \forall \alpha . \alpha \text{ list } \rightarrow \alpha \text{ list} \\
’() & : \forall \alpha . \alpha \text{ list}
\end{align*}
\]
“Type variable”???

Back up here—what types do we have?
Type formation: Composing types

Typed Impcore:
 • Closed world (no new types)
 • Simple formation rules

Typed μScheme:
 • Semi-closed world (new type variables)
 • How are types formed (from other types)?

Standard ML:
 • Open world (programmers create new types)
 • How are types formed (from other types)?

Can’t add new syntactic forms and new type formation rules for every new type.
Representing type constructors generically

Start with monomorphic fragment (Typed μScheme):

```
datatype tyex
    = TYCON of name
    | CONAPP of tyex * tyex list
    | FUNTY of tyex list * tyex  (* I'm special *)
```

Examples: bool, (list int), (int int -> bool)

```
TYCON "bool"
CONAPP (TYCON "list", [TYCON "int"])
FUNTY ([TYCON "int", TYCON "int"], TYCON "bool")
```

Hard to read, but easy to write code for.
Well-formed types

We still need to classify type expressions into:

- types that classify terms (e.g., int)
- type constructors that build types (e.g., list)
- nonsense that means nothing (e.g., int int)

Idea: kinds classify types

\[\Delta \vdash \tau :: \kappa \quad \text{“Type } \tau \text{ has kind } \kappa \text{”} \]

\[\Delta \vdash \tau :: * \quad \text{Special case: “} \tau \text{ is a type”} \]

Replaces one-off type-formation rules

Kind environment \(\Delta \) tracks type constructors, vars
Return to quantified types

Heart of polymorphism: $\forall \alpha_1, \ldots, \alpha_n . \tau$.

In Typed μ-Scheme: (forall (’a1 ... ’an) type)

Two ideas:

• Type variable ’a stands for an unknown type
• Quantified type (with forall) enables substitution

\[
\begin{align*}
\text{length} : & \forall \alpha . \alpha \text{ list } \rightarrow \text{ int} \\
\text{cons} : & \forall \alpha . \alpha \times \alpha \text{ list } \rightarrow \alpha \text{ list} \\
\text{car} : & \forall \alpha . \alpha \text{ list } \rightarrow \alpha \\
\text{cdr} : & \forall \alpha . \alpha \text{ list } \rightarrow \alpha \text{ list} \\
\text{’() :} & \forall \alpha . \alpha \text{ list}
\end{align*}
\]
Representing quantified types

Two new alternatives for tyex:

```plaintext
datatype tyex
    = TYCON of name
    | CONAPP of tyex * tyex list
    | FUNTY of tyex list * tyex
    | TYVAR of name
    | FORALL of name list * tyex
```
Formation rules for quantified types

Reminder: $\Delta \vdash \tau :: *$ means "τ is a type"

\[
\Delta \{ \alpha_1 :: *, \ldots, \alpha_n :: * \} \vdash \tau :: *
\]

(KindAll)

\[
\Delta \vdash \text{FORALL}(\left[\alpha_1, \ldots, \alpha_n\right], \tau) :: *
\]

(KindIntroVar)

\[
\alpha \in \text{dom} \Delta \quad \frac{}{\Delta \vdash \text{TYVAR}(\alpha) :: \Delta(\alpha)}
\]

Example: $\text{(forall } [\texttt{a}] \ (\texttt{a} \rightarrow \texttt{a})\text{)}$
Programming with quantified types

Substitute for quantified variables

--> length
<procedure> : (forall ('a) ((list 'a) --> int))
--> (@ length int)
<procedure> : ((list int) --> int)
--> (length '(1 2 3))
type error: function is polymorphic; instantiate before applying
--> (((@ length int) ')(1 2 3))
3 : int
Substitute what you like

-> length
<procedure> : (forall ('a) ((list 'a) -> int))
-> (@ length bool)
<procedure> : ((list bool) -> int)
-> ((@ length bool) '(#t #f))
2 : int
More “Instantiations”

-> (val length-int (@ length int))
length-int : ((list int) -> int)
-> (val cons-bool (@ cons bool))
cons-bool : ((bool (list bool)) -> (list bool))
-> (val cdr-sym (@ cdr sym))
cdr-sym : ((list sym) -> (list sym))
-> (val empty-int (@ '() int))
() : (list int)
Create your own!

Abstract over unknown type using `type-lambda`:

\[
\rightarrow \ \text{(val id (type-lambda [\text{'}a]\n\quad \text{(lambda ([x : \text{'}a]) x }]))} \\
\text{id : (forall (\text{'}a) (\text{'}a -> \text{'}a))}
\]

`\text{'}a` is type parameter (an unknown type)

This feature is parametric polymorphism.
Power comes at notational cost

Function composition

-> (val o (type-lambda ['a 'b 'c]
 (lambda ([f : ('b -> 'c)]
 [g : ('a -> 'b)])
 (lambda ([x : 'a]) (f (g x))))))

o : (forall ('a 'b 'c)
 (('b -> 'c) ('a -> 'b) -> ('a -> 'c)))

Aka o : ∀α, β, γ . (β → γ) × (α → β) → (α → γ)
Instantiate by substitution

\(\forall \) elimination:

- Concrete syntax \((\forall e \, \tau_1 \cdots \tau_n)\)
- Rule (note new judgment form \(\Delta, \Gamma \vdash e : \tau\)):

\[
\Delta, \Gamma \vdash e : \forall \alpha_1, \ldots, \alpha_n. \tau \\
\Delta, \Gamma \vdash \text{TYAPPLY}(e, \tau_1, \ldots, \tau_n) : \tau[\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]
\]

Substitution is in the book as function \(\text{tysubst}\)

(Also in the book: instantiate)
Generalize with type-lambda

\(\forall \) introduction:

- Concrete syntax \((\text{type-lambda } [\alpha_1 \cdots \alpha_n] e)\)
- Rule (forall introduction):

\[
\begin{align*}
\Delta \{\alpha_1 :: \ast, \ldots \alpha_n :: \ast\}, \Gamma &\vdash e : \tau \\
\alpha_i \not\in \text{ftv}(\Gamma), \quad 1 \leq i \leq n \\
\Delta, \Gamma &\vdash \text{TYLAMBDA}(\alpha_1, \ldots, \alpha_n, e) : \forall \alpha_1, \ldots, \alpha_n.\tau
\end{align*}
\]

\(\Delta\) is kind environment (remembers \(\alpha_i\)'s are types)
A phase distinction embodied in code

-> (val x 3)
3 : int
-> (val y (+ x x))
6 : int

fun processDef (d, (delta, gamma, rho)) =
 let val (gamma', tystring) = elabdef (d, gamma, delta)
 val (rho', valstring) = evaldef (d, rho)
 val _ = print (valstring ^ " : " ^ tystring)
 in (delta, gamma', rho')
 end
Return to well-formed types

To classify type expressions into:

- **types** that classify terms (e.g., `int`)
- **type constructors** that build types (e.g., `list`)
- **nonsense** that means nothing (e.g., `int int`)

Use judgment

\[\Delta \vdash \tau :: \kappa \]
Type formation through kinds

Each type constructor has a kind.

Type constructors of kind \(\ast \) classify terms

\((\text{int} :: \ast, \text{bool} :: \ast) \)

\(\ast \) is a kind

Type constructors of arrow kinds are “types in waiting”

\((\text{list} :: \ast \Rightarrow \ast, \text{pair} :: \ast \times \ast \Rightarrow \ast) \)

\(\kappa_1, \ldots, \kappa_n \) are kinds \(\kappa \) is a kind

\(\kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \) is a kind

\(\text{(KindFormationType)} \)

\(\text{(KindFormationArrow)} \)
Use kinds to give arities

Examples: int :: *, list :: * \Rightarrow *, pair :: * \times * \Rightarrow *

Non-Examples: int int and bool \times list have no kind because they are nonsense.

Kinds classify type expressions just as types classify terms
The kinding judgment

\[\Delta \vdash \tau :: \kappa \quad \text{“Type } \tau \text{ has kind } \kappa \text{”} \]

\[\Delta \vdash \tau :: * \quad \text{Special case: “} \tau \text{ is a type”} \]

Replaces one-off type-formation rules

Kind environment \(\Delta \) tracks type constructor names and kinds.
Kinding rules for types

\[
\begin{align*}
\mu & \in \text{dom} \Delta & \Delta(\mu) & = \kappa \\
\Delta & \vdash \text{TYCON}(\mu) :: \kappa & & \text{KINDINTROCON} \\
\end{align*}
\]

\[
\begin{align*}
\Delta & \vdash \tau :: \kappa_1 \times \cdots \times \kappa_n \Rightarrow \kappa \\
\Delta & \vdash \tau_i :: \kappa_i, \quad 1 \leq i \leq n \\
\Delta & \vdash \text{CONAPP}(\tau, [\tau_1, \ldots, \tau_n]) :: \kappa & & \text{KINDAPP} \\
\end{align*}
\]

These two rules replace all formation rules.

(Check out book functions \texttt{kindof and asType})
Kinds of primitive type constructors

\[\Delta(\text{int}) = * \]
\[\Delta(\text{bool}) = * \]
\[\Delta(\text{list}) = * \Rightarrow * \]
\[\Delta(\text{option}) = * \Rightarrow * \]
\[\Delta(\text{pair}) = * \times * \Rightarrow * \]
\[\Delta(\text{queue}) = \text{You fill in} \]
\[\Delta(\text{unit}) = \text{You fill in} \]
Three environments — what happens?

Δ maps names (of tycons and tyvars) to kinds
Γ maps names (of variables) to types
ρ maps names (of variables) to values or locations

New val def

```
val x = 33
```

New type def

```
type 'a transformer = 'a -> 'a
```

New datatype def

```
datatype color = RED | GREEN | BLUE
```
Three environments revealed

\[\Delta \] maps names (of tycons and tyvars) to kinds
\[\Gamma \] maps names (of variables) to types
\[\rho \] maps names (of variables) to values or locations

New \texttt{val} def modifies \(\Gamma, \rho \)
\[
\text{val } x = 33 \text{ means } \Gamma\{x : \text{int}\}, \rho\{x \mapsto 33\}
\]

New \texttt{type} def modifies \(\Delta \)
\[
\text{type } 'a \text{ transformer} = 'a \text{ list } \ast 'a \text{ list} \\
\text{means } \Delta\{\text{transformer} :: \ast \Rightarrow \ast\}
\]

New \texttt{datatype} def modifies \(\Delta, \Gamma, \rho \)
\[
\text{datatype color} = \text{RED} \mid \text{GREEN} \mid \text{BLUE} \\
\text{means } \Delta\{\text{color} :: \ast\}, \Gamma\{\text{RED} : \text{color}, \text{GREEN} : \text{color}, \text{BLUE} : \text{color}\}, \rho\{\text{RED} \mapsto 0, \text{GREEN} \mapsto 1, \text{BLUE} \mapsto 2\}
\]
Exercise: Three environments

datatype 'a tree
 = NODE of 'a tree * 'a * 'a tree
 | EMPTY

means
\[\Delta\{\text{tree} \mapsto \ast \Rightarrow \ast\}\],
\[\Gamma\{\text{NODE} \mapsto \forall 'a . 'a \text{ tree} * 'a * 'a \text{ tree} \rightarrow 'a \text{ tree},
\quad \text{EMPTY} \mapsto \forall 'a . 'a \text{ tree}\}\],
\[\rho\{\text{NODE} \mapsto \lambda(l,x,r) . \cdots , \text{EMPTY} \mapsto 1\}\]