
Module 1: Virtual-Machine State

1

Introduction
This week you’ll build your prototype virtual machine: you’ll design and implement a rep-
resentation for virtual-machine state, and you’ll validate your design with a simple vmrun
function. Your vmrun function needs to support only a few instructions.

This week is about learning basic VM concepts and getting immigrated back into C pro-
graming; you won’t write much new code. The machine state and its functions took me
about 30 lines, and a simple vmrunwith six instructions and no optimizations took another
30 lines.

• What am I doing?

– You’ll design and implement header file <vmstate.h>, which specifies your
chosen representation for the state of a running VM.

– You’ll build the very first prototype of function vmrun, which runs VM code un-
til it gets to a halt instruction. Your prototype will support just enough instruc-
tions to get the key ideas and run a simple test or two. (This week, I provide
the tests.)

• Why am I doing it?

– You’ll build the foundation and core for your Simple Virtual Machine, i.e., the
rest of the project.

– You’ll use C concepts, including pointers and local variables, to design code
that provides fast access to the most frequently used data.

– You’ll start learning the concepts of embedding and projection and how to use
them to take advantage of existing code. You’ll apply these concepts to manip-
ulation of values and to instruction decoding.

– You’ll refine (or develop) skills at translating formal inference rules (in our
case, operational semantics) into code.

– You’ll get reacquainted with C programming and will look at interfaces for
doing basic tasks like print error reports, manipulate bits, or work with hash
tables—old stuff from CS 15 and CS 40.

• How?

– In pre-lab you’ll review the recommended values and the operational seman-
tics for the VM. You’ll also download course code and confirm that you can
compile it.

– In lab you’ll define the representation of your VM state, and you’ll start your
vmrun function with just a few instructions.

– To prepare to implement more VM instructions, you’ll study instruction for-
mats and decoding, and you’ll find the embedding and projection functions
for values.

2

– At the end of the week you’ll deliver a <vmstate.h> and a vmrun function,
which will link with my code in an svm-test binary. You’ll be running VM
code!

3

The module step by step
Pre-lab reading
(1) Watch the short video on “Embedding and Projection”

Optional: Read about embedding in section 5.4 of Programming Languages: Build,
Prove, and Compare.

(2) Read the handout on “VM Semantics, part I.”

Pre-lab exercises
(3) Clone the student Git repository fromhttps://gitlab.cs.tufts.edu/cs106-staff/student-

2023s. Every file is documented, but you don’t need to look at the documentation just
yet.

(4) In your clone, go to subdirectory src/svm, run make svm-test, and confirm that
the GNUMakefile builds a test binary in the bin directory.

(5) Add the bin directory to your Unix PATH, run svm-test, and confirm that it halts
with an assertion failure.

(6) Think about how you to define a C struct that represents the state of the virtual
machine.

(7) Study the header file <value.h>, which is described in detail in the overview of the
code. Identify the five tags of values used to represent S-expressions. Pick three of the
tags, and for each one, write down at least one machine instruction that you would
like to have in the VM that either produces or consumes a value of that tag. Start
with the semantics of the instruction; here are some examples:1

• An instruction that adds two registers and puts the result in a third register

• An instruction that sets a register to zero

• An instruction that examines a value in a register and projects that value to a
Boolean—using some notion of “truthiness”—and puts the Boolean in a reg-
ister

• An instruction that allocates and initializes a cons cell

An instruction design works only if it can be coded within the limitations of the 32-
bit format. There are several instruction formats available, but you’re always safe
designing an instruction that operates on one, two, or three VM registers.

(8) Now study the short handout “Instruction Formats” and the accompanying header
file <iformat.h>. Choose a format for each of your instructions in step 6, and iden-
tify the decoding functions you will need to implement each instruction.

1Not all of the examples are good ideas, and not all of them are easy to implement, but at least one example is
both, and every example is either a good idea or easy to implement.

4

01Aopsem.html
https://gitlab.cs.tufts.edu/cs106-staff/student-2023s
https://gitlab.cs.tufts.edu/cs106-staff/student-2023s
01Dcode.html
01Dcode.html#detailed-explanation-of-value.h
01Dcode.html
01Dcode.html
01Bformats.html
01Bformats.html
01Bformats.html

If any of your hoped-for instructions doesn’t fit any of the available formats, either
redesign the instruction or choose another instruction.

Come to lab prepared with your list of instructions and the decoding function youwill need
for each one.

(9) Finally, think about how you will answer these questions:

A. Do you like to start work as soon as it’s assigned, or do you prefer to wait until
later?

B. Do you prefer to work before dinner or after dinner?

C. What attitudes or skills do you bring to a programming partnership?

D. What do you look for in a programming partner?

Lab
Introductions

(10) When instructed, count off (most likely by fours).

(11) Join the other students who have the same number as you. Introduce yourselves,
and exchange answers to these questions:

A. Do you like to start work as soon as it’s assigned, or do you prefer to wait until
later?

B. Do you prefer to work before dinner or after dinner?

C. What attitudes or skills do you bring to a programming partnership?

D. What do you look for in a programming partner?

Coding

You may work the coding problems as a single group, or if your group seems to big, you
may split into two subgroups.

(12) Using the suggestions in the handout on VM semantics, edit vmstate.h to define
struct VMState.

(13) Implement functions newstate and freestatep; for now, skip literal_slot.
A VM state is never garbage-collected, so allocate space using malloc or calloc;
free it with free. To confirm that your code compiles, run make obj.

(14) Edit the template file vmrun.c and alter the vmrun function so it runs a sequence of
instructions. Implement just one instruction: Halt. The halt instruction tells vmrun
to save any cached VM state onto the heap and to return. (The idea of caching is
explained in the handout on efficient interpretation, so depending on the choices
you make, you may not have anything cached during lab.)

5

01Aopsem.html
01Cinterp.html

(15) Using the Makefile, compile and run the svm-test binary. You should get an output
suggesting that the code passed one test, something like this:

Test: halt
Test: print $r0; halt
Run-time error: Unknown opcode 17 in instruction 0x11000000

(16) If time permits, you can addmore instructions. (Over the next 17weeks, you’ll be do-
ing that a lot.) To passmy basic tests, implement opcodes Print, Check, and Expect,
and go back to vmstate.c to implement literal_slot.

• Print prints the value in register X, followed by a newline. If rx is the value,
you can call print("%v\n", rx);.

• Check calls function check from header file <check-expect.h>. It has a reg-
ister number in the X field and literal index in the YZ field.

• Expect is just like check, except it calls expect.

Post-lab
(17) If necessary, complete your lab work.

(18) Implement the literal_slot function, which adds a Value to the VM’s literal pool
(and returns the index of the added value).

(19) Rebuild svm-test, which should now pass all three of my initial tests. Good output
looks like this:

Test: halt
Test: print $r0; halt
nil
Test: check $r0, ...; expect $r0, ...; halt
The only test passed.

(20) Extend your implementation with the three instructions you chose in step 5. A sim-
ple ALU instruction generally requires three or four lines of code: a case line for the
opcode, one or two lines for the δ semantics, and a line for break;.

(21) Read “Principles of Efficient Bytecode Interpretation” and if needed, adjust your vm-
run to make it efficient.

(22) Revisit the learning outcomes and make sure you are in a good position to claim as
many as you can.

(23) As time permits, implement more VM instructions. The more instructions you im-
plement now, the fewer you will have to do later on.

• Each species of value can potentially be supported with VM instructions. In-
structions that support numbers are the simplest and easiest. Lean on your
embedding and projection functions!

6

01Cinterp.html

• You’ll want instructions that move data between VM registers and that move
data between VM registers and VM global variables.

• Any vScheme primitive function is a legitimate candidate to be implemented
as a VM instruction.

• The semantics defines two control-flow instructions, if and goto, which are
both pretty easy to implement.

Hold off on instructions that support function calls. We’ll do functions in module 7.

What and how to submit
(24) OnMonday, submit your work. In the src/svm directory you’ll find a file SUBMIT.01.

That file needs to be edited to answer a number of questions:

• Say who did the work. If the work was done by a pair or group, one person
should submit on behalf of the group. All group members will be credited with
the work.

• Say what work you were proud of, what you’d like help with, and what you’d
like the course staff to review.

• Say what code you’d like help with during code review. If there are bugs that
code review might help you find, say what they are.

• If there’s any code you’d like the course staff to look at, say what it is, and let
us know why you’d like us to look at it.

• For the first module, I will present at a plenary code review. If any of you are
willing to serve on the review panel, let us know. And if there’s code you’d like
me to present, let us know that, too.

Run make clean.

To submit, you’ll need to copy your working tree to the department servers. We rec-
ommend using rsync, but scp also works.

Now log into a department server, change to the src directory of your working tree,
and submit your entire svm directory:

provide cs106 hw01 svm

(25) On Tuesday, submit your reflection. Create a plain text file REFLECTION, which will
hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus whatever is
called for in the section “How to claim the project points”—usually a few sentences.

For point number 5, where you write a transition rule, please use plain text with
Unicode characters. As an example, here’s the first transition rule in the operational-
semantics handout:

7

01Aopsem.html
01Aopsem.html

i ∈ dom δ
--
⟨I1 • i ⋅ I2, R, L, G, σ⟩ → ⟨I1 ⋅ i • I2, R, L, G, δ(i, R, L, σ)

Now copy your REFLECTION file to a department server and submit it using provide:

provide cs106 reflection01 REFLECTION

8

Learning outcomes
Learning outcomes for project points:

1. Completeness: The makefile builds svm-test, which passes its three tests.

2. Embedding and projection of values: You can analyze 7 instructions (halt, print,
check, expect, and the three you propose) and say which ones embed values, which
project values, which do both, and which do neither.

3. Embedding and projection of languages: a 32-bit word can sometimes be projected
into a machine instruction with one 8-bit opcode and up to three operands. You can
identify, by file names and function names, where in your code such projection is
used. And you can identify, by line number, a decision point (if statement, case in
a switch statement, or ternary expression) where it is determined whether a given
32-bit word can be projected into a machine instruction.

4. Reading formalism: In addition to the store σ, which is represented by theCheap, the
operational semantics identifies four other components of abstract-machine state: an
instruction streamwith instruction pointer, a register file, a literal pool, and a global-
variable table. For each of these components, you can say how it is represented in
your struct VMState.

5. Writing formalism: You can write operational semantics for VM states. To claim a
project point for this outcome, write a transition rule of operational semantics for an
instruction that does one of the following: set a global variable, read a global variable,
or copy a value from one VM register to another.

6. Performance: The state of a VM is stored in a struct that is allocated on the heap,
but during the execution of vmrun, andwith the help of the C compiler, some compo-
nents may be stored in real machine registers. You can identify which components
these are, you can name the C variables that store them, and you can explain why
you chose them.

7. Reuse of values: You can say which types from value.h would be useful and not
useful for implementing another language not in the Scheme family.

8. Reuse of code: You can say how you would reuse a C module (.c file and accompa-
nying .h file) to implement another language not in the Scheme family.

Learning outcomes for depth points:

9. Depth (1 point), design: You can say what would constitute a complete set of VM
instructions suitable for implementing vScheme. Expires whenmodule 2 is delivered.

10. Depth (20 points), implementation: Add bignums to the SVM, and change the UFT
so that bignums are the default numeric type. These points can be claimed any time
before classes end

11. Depth (up to 5 points), tools: You use ChatGPT and/or Copilot to write some of your
code, and you demonstrate your understanding of what the tool did well and how to

9

prompt it effectively. 1 point per module up to a maximum of 5. These points can be
claimed any time before classes end

How to claim the project points
Each of the numbered learning outcomes 1 to 8 is worth one point, and the points can be
claimed as follows:

1. Submit code that works.

2. List the instructions in each category.

3. Name all the functions youwrote that do such projection, with the files in which they
appear. Give the file name and line number of one decision point.

4. Name each component of the semantic state and say what parts of the struct VM-
State implement it and how.

5. Write a transition rule. Use Unicode characters.

6. Name the components and variables, and say briefly why you chose them. A couple
of sentences would be plenty.

7. To claim a project point for this outcome, choose one of the following dynamically
typed languages: Awk, Erlang, Icon, JavaScript, Lua, Matlab, Perl, Python, Rexx, Tcl,
or VBScript.2 Then say for each type of tag whether it would be useful, not useful,
or possibly useful. Finally, pick one tag in each category (useful and not useful) and
explain your answer. (Example: “The Number tag would be useful in implementing
Icon because Icon has arithmetic.”)

8. To claim a project point for this outcome, choose one module from the sets “Code
you will look at and understand” or “Code you will look at eventually”. List three of
the languages from the previous outcome that you think the module could help you
implement. Pick one of the three and explain how you would use themodule to help
implement that language.

To give you an idea of the recommended scope of your answers, I’ve written a model reflec-
tion that addresses a related set of learning outcomes.

2Ideally choose one that you know. If you prefer a language that’s not on this list, ask the instructor’s approval
on Slack.

10

01Dcode.html#code-you-will-look-at-and-understand
01Dcode.html#code-you-will-look-at-and-understand
01Dcode.html#code-you-will-look-at-eventually-but-maybe-not-this-week
../model-reflection.html
../model-reflection.html

	Introduction
	The module step by step
	Pre-lab reading
	Pre-lab exercises
	Lab
	Introductions
	Coding

	Post-lab
	What and how to submit

	Learning outcomes
	How to claim the project points

