
Module 6: Code Generation

Introduction
This week you’ll translate K-normal form into assembly language. Then you’ll
be able to run vScheme code—as long as it’s in K-normal form and it calls only
primitive functions.

• What am I doing?

– Define a utility function that will enable you to change the represen-
tation of register names in K-normal form.

– Update the UFT driver so it can translate from K-normal form to
assembly code, enabling new passes kn-vs and kn-vo.

– Define two of the three code-generation functions that translate K-
normal form into assembly code.

• Why am I doing it?

– This translation is the most dramatic step in the UFT. You’ll learn
how to translate primitive operators as well as control-flow constructs
like if and while. And you’ll start to identify contexts of translation,
which is a key concept in compilers and which will eventually enable
you to optimize tail calls.

– The utility function and the UFT-driver update will enable you to
take vScheme code (in K-normal form) all the way through your
compiler to the SVM and run it. You’ll also be able to run the exact
same code using the vscheme interpreter, so you can compare results.

• How?

– Before lab you’ll implement name-changing code for K-normal form,
which will enable you to pull K-normal form with register names off of
disk. You’ll also study how K-normal form is translated to assembly
code.

– In lab you’ll add the code-generation translation to the UFT driver,
which will enable you to run uft kn-vo, taking K-normal form Scheme
all the way to virtual object code. You’ll also implement three cases

1

05Cuft.html
06Atranslation.html
06Atranslation.html
05Cuft.html


for the code-generation functions, so you can compile and run a sim-
ple Scheme expression.

– After lab, you’ll complete your code generator, you’ll test every
syntactic form, and you’ll make sure both lists of primitives
(UFT and SVM) are up to date. At the end of the week, you’ll
deliver a working Universal Forward Translator that includes a kn-vo
pass.

The module step by step
Before lab (essential steps)
In lab you’ll add your code generator to the UFT driver, and you’ll take the first
steps in implementing it. To get any of this done productively, you’ll need to
have the stubs for the code, and you’ll need to understand how code generation
works.

(1) Download updates. Update your git repository in two steps:

A. Be sure all your own code is committed. Confirm using git status.

B. Update your working tree by running git pull (or you might possibly
need git pull origin main). Merge conflicts are unlikely.

(2) Study code generation. Everything you need to generate assembly lan-
guage from K-normal form is described in a handout. To be productive
during lab, the most important sections are the opening example, the
translations of let bindings, and the explanation of destinies. The equa-
tions of translation are also super useful, but you won’t need them until
the lab starts.

(3) Review the secrets of the UFT driver. In lab you’ll update a material-
izer function and use a reader function. Review the materializer function
KN_text_of that you wrote last time, and remind yourself of the type of
the reader function KN_of_file. If you don’t remember what materializer
and reader functions are or how they fit together, review the handout on
the UFT driver and the note on function composition with error types.

Before lab (recommended steps)
To maximize the value of your lab, I’m recommending that you complete two
more steps before the lab begins. If you complete these steps, then by the end of
the lab, you should be able to compile the following expression to virtual object
code and run it in your SVM:

(let ([r100 'victory]) (println r100))

Here’s the demo:

2

05Cuft.html
06Atranslation.html
06Atranslation.html#code-generation-example
06Atranslation.html#translations-of-let-bindings
06Atranslation.html#translation-guided-by-destiny
06Atranslation.html#equations-of-translation
06Atranslation.html#equations-of-translation
05Cuft.html
05Cuft.html
05Dcomposition.html


> echo "(let ([r100 'victory]) (println r100))" | uft kn-vo | svm
victory

To make the demo possible, and to test whatever other code you may write in
lab, your UFT needs to be able to translate that r100 into register number 100.
That’s this step:

(4) Change the representation of names in K-normal form. In order to gener-
ate code, you need K-normal form in which each name is identified with a
particular machine register: type ObjectCode.reg KNormal.exp. But your
projection function produces a K-normal form in which a name is a string:
type string KNormal.exp. To get K-normal form of the right type, you’ll
implement a mapx function. Function mapx copies the structure of a K-
normal form expression while changing the representation of each name.
(If you think of K-normal form as a tree, mapx changes some of the values
at the leaves, but it does not touch internal nodes.)

Not every string represents the name of a register, so the change of names
is a projection, which can fail. The change of names is already defined for
you as function AsmLex.registerNum, and it has type string -> Object-
Code.reg Error.error. Your job is to lift the function on names up to a
function on expressions. The lifting function is higher-order and polymor-
phic; you will define

val mapx : ('a -> 'b Error.error) ->
('a KNormalForm.exp -> 'b KNormalForm.exp Error.error)

This function combines two skills you already have:

• The function requires the tedious copying of program structure that
you find in function Disambiguate.disambiguate.

• The function requires the management of projection failure that you
find in function ProjectKN.def.

Once you have mastered the <$>, <*>, and succeed functions from the
Error interface, the coding will go quickly.

Your lab experience will also benefit if you know about two convenience func-
tions:

(5) Learn two functions in asmutil.sml. File asmutil.sml contains the AsmGen
interface, which exports a bunch of functions that make it more convenient
to write your code generator. Everything here can also be done using
functions in the Primitive, AssemblyCode, and ObjectCode interfaces, but
with more effort and with more opportunities for error.

Before lab, all you need to know is these two functions:

• Use effect to generate a println instruction.
• Use loadlit to generate a loadliteral instruction.

3



Lab
(6) Add a translation to the UFT driver. In this step you’ll make the UFT

driver aware of the translation you’re about to write (and for which stub
code already exists).

A. To complement the materializer KN_text_of that you wrote last time,
write a function KN_reg_of that materializes a program of type Ob-
jectCode.reg KNormalForm.exp list.

When asked to materialize K-normal form from input language KN,
your KN_reg_of function should use the reader KN_of_file, plus func-
tions KNRename.mapx and KNRename.regOfName from step (4). If you
didn’t complete step (4) before the lab, you can still write this code
and get it to typecheck, but when you run it the UFT will halt with
an assertion failure.

Because function KN_of_file produces a list of expressions, but KN-
Rename.mapx KNRename.regOfName renames one expression, you will
want to use Error.mapList. The easiest way to get this code right
is to define a helper function that does the renaming. The benefit
of defining a helper function is that you can give it an explicit type
signature, which will help the compiler tell you what you need to do:

val KN_reg_of_KN_string :
string KNormalForm.exp list ->
ObjectCode.reg KNormalForm.exp list error

= ... fill in with a composition of functions ...

You can then compose this function with KN_of_file. If you want
guidance, consult the composition handout. Once everything works,
you can inline the helper function, or if you prefer, keep it as a named
helper function.

When asked to materialize K-normal form from an input language
other than KN, your KN_reg_of function should raise NoTrans-
lationTo KN—the translation to K-normal form is the topic of
module 9.

B. Update function VS_of, which you first encountered in module 5; the
promised “main event” has arrived. Replace the NoTranslationTo
exception with a short materialization pipeline: call KN_reg_of on
inLang, and pipe the result through a helper function with this type
constraint:

val VS_of_KN : ObjectCode.reg KNormalForm.exp list ->
AssemblyCode.instr list

= ... fill in with a composition of functions ...

To implement VS_of_KN, you will find it useful to employ List.concat.

4

05Dcomposition.html
05Cuft.html#VS_of


Because code generation cannot fail, function VS_of_KN does not have
an error in its type. To compose it with KN_of_file, which does have
error in its result type, you’ll need to use Error.map in the pipeline.
I recommend using the abbreviation !, which is already defined in
file uft.sml. For details, consult the composition handout.

(7) Implement three cases for your code generator. To compile the expression
(let ([r100 'victory]) (println r100)), you need to be able to compile
the literal 'victory into a register (function toReg'), and you need to be
able to compile the let expression and println call for side effect (function
forEffect').1 Implement these three cases, then test your system at the
Unix command line:

echo "(let ([r100 'victory]) (println r100))" | uft kn-vs

echo "(let ([r100 'victory]) (println r100))" | uft kn-vo | svm

After lab
After lab, you will complete your code generator and test it. You will also verify
that your UFT and SVM agree on primitives.

One more instruction

(8) Generate code for computation. Using function setreg from file asmu-
til.sml, extend your code generator so it can compile and run

(let* ([r100 2] [r101 (+ r100 r100)]) (println r101))

A pause for infrastructure

(9) Learn the rest of the AsmGen interface. Return to the AsmGen interface in
file asmutil.sml and identify the other functions that look useful.

(10) Implement register-register move. In file asmutil.sml, correct the imple-
mentation of copyreg. Your SVM will need an opcode for an instruction
that copies a value from one register to another. Just use that opcode
with the internal regs function.

Code generation and testing

(11) Test a simple check-expect. At this point your UFT ought to be able to
read in this K-normal form and translate it to virtual object code:

(let* ([$r0 2] [$r1 2] [$r0 (+ $r0 $r1)])
(check $r0 'two-plus-two))

(let* ([$r0 5])

1The names of these functions are primed because they are internal functions that use an
efficient representation of lists: lists as functions.

5

05Dcomposition.html


(expect $r0 'five))

If I put this code into file plustest.scm, I get the exact same results from
my UFT/SVM system as I do from the vscheme interpreter:

> uft kn-vo plustest.scm | svm
Check-expect failed: expected two-plus-two to evaluate to 5, but it's 4.
The only test failed.
> vscheme < plustest.scm
Check-expect failed: expected two-plus-two to evaluate to 5, but it's 4.
The only test failed.

(12) Complete your code generator. Finish the cases for your two code-
generation functions toReg and forEffect. You should be able to
implement every syntactic form except function call. (You won’t imple-
ment toReturn until module 8; I’ve provided a placeholder that just runs
the function body for side effect.)

(13) Test every syntactic form. Create file kntest.scm with test cases for your
code generator. The file should contain a sequence of Scheme expres-
sions, in K-normal form, with hardware register names. These expressions
should eventually call primitives check and expect. And there should be
a distinct check and expect for every syntactic form in your definition of
type KNormalForm.exp. As an example, the pair in step (11) tests applica-
tion of a VM primitive (the form @(x₁,…,xₙ)).

Ideally, every test successfully compiles to virtual object code and all the
tests pass. But as long as the input is valid K-normal form, as verifed by
uft kn-kn, and every syntactic form is tested, you will get full credit for
the work.

Primitives

(14) Make the UFT and SVM agree on primitives. I won’t ask you to test primi-
tives just yet, because the testing will be so much easier in module 9, when
you can test them by writing and compiling check-expect with function
calls. But between now and module 9 is two weeks worth of distraction,
so this is the time to ensure that the UFT and SVM agree on a set of
primitive operations.

As needed, modify both the SVM and the UFT:

• Confirm that every UFT primitive in file primitives.sml has an entry
in the SVM’s instruction table (file instructions.c) and that the
entry has the opcode that the UFT is going to emit. If there is a
UFT primitive that is not in the SVM’s instruction table, add it to
the instruction table.

Pro tip: If your SVM uses different names for any primitives, you
don’t have to change any existing code. Just add a new entry to the

6



SVM’s instruction table, using your old binary opcode and the new
name in the virtual object code. Multiple names for a single binary
opcode can coexist.

Take notes on anything you have to add or change.

• Confirm that every instruction in SVM’s instruction table (file in-
structions.c) meets one of these three criteria:

– The instruction implements a UFT primitive of the same name,
and the primitive is found in file primitives.sml.

– The instruction implements a UFT primitive, but under a differ-
ent name than the one used in file primitives.sml.

– The instruction is used only for control flow (e.g., if and goto).

If there is an entry in the SVM’s instruction table that does not meet
any of these criteria, add it as a UFT primitive:

– Give it the proper arity.
– Mark whether the instruction sets a register or is executed for a

side effect.2

Take notes on anything you have to add or change.

What and how to submit
(15) On Monday, submit the homework. In the src/uft directory you’ll find a

file SUBMIT.06. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw06 src

(16) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

2If you have created an instruction that is used both to set a register and also for an
important side effect, the UFT does not know how to generate code for it. The instruction
should not be added to the UFT; it can be used only in assembly language.

7



provide cs106 reflection06 REFLECTION

Reading in depth
Occasionally I’ll suggest reading that may enrich your view of programming-
language implementation or functional programming. This week I suggest John
Hughes’s classic 1986 paper on the implementation of lists as functions, which
we are using in codegen.sml. This paper builds on Tony Hoare’s foundational
work on abstract data types (with abstraction functions), shows how the lists-
as-functions representation can be used to calculate revapp from a naïve reversal
function, and even reports on the result of a couple of experiments. All in three
pages! (John is a super genius and is also a coauthor of QuickCheck.)

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Error monad. You can use the error monad effectively as an applicative
functor.

2. Function composition. You understand how to construct lists by function
composition.

3. Meaning of primitives. You understand why the UFT defines two classes
of primitives.

4. Common invariants. You can identify invariants that are common to K-
normal form and assembly language.

5. Unique invariant. You can justify the translation of let into assignment
by appealing to a precondition that incoming K-normal form must satisfy.

6. Unchecked run-time errors. You can use unchecked run-time errors to
simplify your compiler.

7. Systematic testing. You know how to test every syntactic form of K-normal
form.

8. Consistent primitives. Your SVM and UFT have a consistent view of
primitive operations.

9. Language extensions. You can say how the system you have built so far
would be extended to support new language features.

Learning outcomes available for depth points:

10. Invariants and preconditions [1 point]. You have written an ML function
that checks the precondition in outcome 5, thereby confirming that it is

8

https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/lists.pdf
https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/lists.pdf
https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/quick.pdf


OK to translate let into assignment. Your forEffect function checks the
condition before calling forEffect'.

11. Intraprocedural control operators [2 points]. You add break and continue
to K-normal form and to everything upstream of it, and you translate
them into goto instructions. (The vScheme parser already has hooks for
break and continue; you just need to add the abstract syntax.)

12. A-normal form [3 points]. A-normal form (Flanagan et al 13) is like K-
normal form, but with more restrictions: in an expression of the form
let x = e in e', expression e may not be a let, if, or while form. Define
a variant of A-normal form suitable for the UFT, generate code from it,
and in a future module, convert first-order Scheme to it (either directly
from first-order Scheme or indirectly from K-normal form).

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth one point, and the
points can be claimed as follows:

1. To claim this point, submit a mapx that handles all cases and typechecks
without ever mentioning either of the two value constructors Error.OK and
Error.ERROR. (Using function Error.succeed is good and necessary.) More-
over, achieve this outcome without using the monadic bind operation >>=.
(Using the <$> and <*> functions is encouraged.)

2. To claim this point, identify a line number in file codegen.sml where you
wrote code that uses function composition to build a list of instructions,
and explain how the code would look different if it instead used standard
list operations like ::, @, and List.concat.

3. To claim this point, identify the two classes of primitives, show how they
are treated differently in your code generator (with line numbers), and
give an example of what could go wrong if the two classes of primitives
were indistinguishable in the UFT.

4. To claim this point, identify at least one invariant that is common to both
K-normal form and assembly language, but not to Scheme source code.

5. The translation equations in the translation handout preserve semantics
only if the input code satisfies a precondition. To claim this point, specify
the precondition. Your specification must appeal solely to properties of
K-normal form; it must not mention assembly code or translation.

6. The terms “unchecked run-time error” (Modula-3 specification and others),
“undefined behavior” (C specification and others), and “getting stuck” (op-
erational semantics) all mean the same thing. This concept recurs in too
many contexts to be an accident. To claim this point, identify one spe-
cific place in your code (file name and line number) where your compiler
exploits this concept, and explain how things would change if you were

9

https://www.cs.tufts.edu/~nr/cs257/archive/cormac-flanagan/anormal.pdf
06Atranslation.html#equations-of-translation


required to check for this error (at either compile time or run time, your
option).

7. To claim this point, ensure that your Monday submission includes test file
kntest.scm with these properties:

• It is accepted as valid K-normal form by the UFT checker uft kn-kn.

• Every syntactic form of K-normal form occurs in a position that
affects the result of primitives check and expect.

The point is for knowing how to test—you can earn it even if the tests
don’t pass.

8. Every primitive in file src/uft/primitives.sml should have a correspond-
ing entry in the instruction table in file src/svm/instructions.c. And
except for control-flow instructions, every entry in the instruction table
should correspond to a primitive in file primitives.sml.

To claim this point, submit the files with these properties, plus one of the
following two forms of supporting evidence:

• If you had to add or change anything to make the primitives consis-
tent, submit your notes from step (14).

• If you didn’t have to add or change anything in step (14), explain
whether you owe this happy outcome to good luck or good manage-
ment. Justify your answer.

9. To claim this point, answer three questions about each of three language
extensions that might be added to vScheme. The questions are:

A. To implement the feature, which languages (in addition to the source
language) will have to change?

B. What translation is best qualified to implement the new feature?

C. Roughly how will it work?

The extensions are:

• vScheme is extended with Lisp’s defconstant form, which defines a
name that afterward acts like a literal value (a.k.a. a “compile-time
constant”). Such a constant behaves a lot like an enumeration literal
in C, or like a constant named with #define. (Attempts to assign
to or call a defined constant can be treated as calls to the error
primitive.)

• vScheme is extended with Perl’s (command unless condition), which
evaluates expression command, unless the condition is satisfied, in
which case it does nothing and returns nil.

10



• vScheme is extended with two new forms of expression, (break) and
(continue), which respectively exit or restart the innermost loop in
which they appear—just like the corresponding statements in C.

11


	Introduction
	The module step by step
	Before lab (essential steps)
	Before lab (recommended steps)
	Lab
	After lab
	One more instruction
	A pause for infrastructure
	Code generation and testing
	Primitives

	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points


