
Module 1: Virtual-Machine State

Contents
Introduction 1

The module step by step 2
Pre-lab reading . 2
Pre-lab exercises . 2
Lab . 3

Introductions . 3
Coding . 3

Post-lab . 3
What and how to submit 4

Learning outcomes 4
How to claim the project points 5

Introduction
This week you’ll build your prototype virtual machine: you’ll de-
sign and implement a representation for virtual-machine state, and
you’ll validate your design with a simple vmrun function. Your vm-
run function needs to support only a few instructions.

This week is about learning basic VM concepts and getting immi-
grated back into C programing; you won’t write much new code.
The machine state and its functions took me about 30 lines, and a
simple vmrun with six instructions and no optimizations took an-
other 30 lines.

• What am I doing?

– You’ll design and implement header file <vmstate.h>,
which specifies your chosen representation for the state
of a running VM.

– You’ll build the very first prototype of function vmrun,
which runs VM code until it gets to a halt instruction.
Your prototype will support just enough instructions to
get the key ideas and run a simple test or two. (This
week, I provide the tests.)

• Why am I doing it?

– You’ll build the foundation and core for your Simple Vir-
tual Machine, i.e., the rest of the project.

– You’ll use C concepts, including pointers and local vari-
ables, to design code that provides fast access to themost
frequently used data.

– You’ll start learning the concepts of embedding and pro-
jection and how to use them to take advantage of existing
code. You’ll apply these concepts tomanipulation of val-
ues and to instruction decoding.

– You’ll refine (or develop) skills at translating formal in-
ference rules (in our case, operational semantics) into
code.

– You’ll get reacquainted with C programming and will
look at interfaces for doing basic tasks like print error
reports, manipulate bits, or work with hash tables—old
stuff from CS 15 and CS 40.

• How?

– In pre-lab you’ll review the recommended values and the
operational semantics for the VM. You’ll also download
course code and confirm that you can compile it.

1

– In lab you’ll define the representation of your VM state,
and you’ll start your vmrun function with just a few in-
structions.

– To prepare to implement more VM instructions, you’ll
study instruction formats and decoding, and you’ll find
the embedding and projection functions for values.

– At the end of the week you’ll deliver a <vmstate.h> and
a vmrun function, which will link with my code in an
svm-test binary. You’ll be running VM code!

The module step by step

Pre-lab reading
(1) Watch the short video on “Embedding and Projection”

Optional: Read about embedding in section 5.4 of Program-
ming Languages: Build, Prove, and Compare.

(2) Read the handout on “VM Semantics, part I.”

Pre-lab exercises
(3) Clone the student Git repository from https://gitlab.cs.tufts.

edu/cs106-staff/student-2023s. Every file is documented, but
you don’t need to look at the documentation just yet.

(4) In your clone, go to subdirectory src/svm, run make svm-
test, and confirm that the GNUMakefile builds a test binary
in the bin directory.

(5) Add the bin directory to your Unix PATH, run svm-test, and
confirm that it halts with an assertion failure.

(6) Think about how you to define a C struct that represents the
state of the virtual machine.

(7) Study the header file <value.h>, which is described in detail
in the overview of the code. Identify the five tags of values
used to represent S-expressions. Pick three of the tags, and for
each one, write down at least onemachine instruction that you
would like to have in the VM that either produces or consumes
a value of that tag. Start with the semantics of the instruction;
here are some examples:1

• An instruction that adds two registers and puts the result
in a third register

• An instruction that sets a register to zero

• An instruction that examines a value in a register and
projects that value to a Boolean—using some notion of
“truthiness”—and puts the Boolean in a register

• An instruction that allocates and initializes a cons cell

An instruction design works only if it can be coded within the
limitations of the 32-bit format. There are several instruction
formats available, but you’re always safe designing an instruc-
tion that operates on one, two, or three VM registers.

(8) Now study the short handout “Instruction Formats” and the
accompanying header file <iformat.h>. Choose a format for
each of your instructions in step 6, and identify the decoding
functions you will need to implement each instruction.

If any of your hoped-for instructions doesn’t fit any of the avail-
able formats, either redesign the instruction or choose another
instruction.

1Not all of the examples are good ideas, and not all of them are easy to implement,
but at least one example is both, and every example is either a good idea or easy to
implement.

2

01Aopsem.html
https://gitlab.cs.tufts.edu/cs106-staff/student-2023s
https://gitlab.cs.tufts.edu/cs106-staff/student-2023s
01Dcode.html
01Dcode.html#detailed-explanation-of-value.h
01Dcode.html
01Bformats.html
01Bformats.html

Come to lab preparedwith your list of instructions and the decoding
function you will need for each one.

(9) Finally, think about how you will answer these questions:

A. Do you like to start work as soon as it’s assigned, or do
you prefer to wait until later?

B. Do you prefer to work before dinner or after dinner?

C. What attitudes or skills do you bring to a programming
partnership?

D. What do you look for in a programming partner?

Lab
Introductions

(10) When instructed, count off (most likely by fours).

(11) Join the other students who have the same number as you. In-
troduce yourselves, and exchange answers to these questions:

A. Do you like to start work as soon as it’s assigned, or do
you prefer to wait until later?

B. Do you prefer to work before dinner or after dinner?

C. What attitudes or skills do you bring to a programming
partnership?

D. What do you look for in a programming partner?

Coding

You may work the coding problems as a single group, or if your
group seems to big, you may split into two subgroups.

(12) Using the suggestions in the handout on VM semantics, edit
vmstate.h to define struct VMState.

(13) Implement functions newstate and freestatep; for now,
skip literal_slot. A VM state is never garbage-collected, so
allocate space using malloc or calloc; free it with free. To
confirm that your code compiles, run make obj.

(14) Edit the template file vmrun.c and alter the vmrun function so
it runs a sequence of instructions. Implement just one instruc-
tion: Halt. The halt instruction tells vmrun to save any cached
VM state onto the heap and to return. (The idea of caching
is explained in the handout on efficient interpretation, so de-
pending on the choices you make, you may not have anything
cached during lab.)

(15) Using the Makefile, compile and run the svm-test binary.
You should get an output suggesting that the code passed one
test, something like this:

Test: halt
Test: print $r0; halt
Run-time error: Unknown opcode 17 in instruction 0x11000000

(16) If time permits, you can addmore instructions. (Over the next
17 weeks, you’ll be doing that a lot.) To pass my basic tests,
implement opcodes Print, Check, and Expect, and go back
to vmstate.c to implement literal_slot.

• Print prints the value in register X, followed
by a newline. If rx is the value, you can call
print("%v\n", rx);.

• Check calls function check from header file <check-
expect.h>. It has a register number in the X field and
literal index in the YZ field.

• Expect is just like check, except it calls expect.

Post-lab
(17) If necessary, complete your lab work.

(18) Implement the literal_slot function, which adds a Value
to the VM’s literal pool (and returns the index of the added
value).

(19) Rebuild svm-test, which should now pass all three of my ini-
tial tests. Good output looks like this:

Test: halt
Test: print $r0; halt
nil
Test: check $r0, ...; expect $r0, ...; halt
The only test passed.

(20) Extend your implementation with the three instructions you
chose in step 5. A simple ALU instruction generally requires
three or four lines of code: a case line for the opcode, one or
two lines for the δ semantics, and a line for break;.

(21) Read “Principles of Efficient Bytecode Interpretation” and if
needed, adjust your vmrun to make it efficient.

(22) Revisit the learning outcomes andmake sure you are in a good
position to claim as many as you can.

(23) As time permits, implement more VM instructions. The more
instructions you implement now, the fewer youwill have to do
later on.

• Each species of value can potentially be supported with
VM instructions. Instructions that support numbers are
the simplest and easiest. Lean on your embedding and
projection functions!

• You’ll want instructions thatmove data betweenVMreg-
isters and that move data between VM registers and VM
global variables.

• Any vScheme primitive function is a legitimate candi-
date to be implemented as a VM instruction.

• The semantics defines two control-flow instructions, if
and goto, which are both pretty easy to implement.

3

01Aopsem.html
01Cinterp.html
01Cinterp.html

Hold off on instructions that support function calls. We’ll do
functions in module 7.

What and how to submit
(24) OnMonday, submit your work. In the src/svm directory you’ll

find a file SUBMIT.01. That file needs to be edited to answer a
number of questions:

• Say who did the work. If the work was done by a pair or
group, one person should submit on behalf of the group.
All group members will be credited with the work.

• Say what work you were proud of, what you’d like help
with, and what you’d like the course staff to review.

• Say what code you’d like help with during code review.
If there are bugs that code review might help you find,
say what they are.

• If there’s any code you’d like the course staff to look at,
say what it is, and let us know why you’d like us to look
at it.

• For the first module, I will present at a plenary code re-
view. If any of you are willing to serve on the review
panel, let us know. And if there’s code you’d like me to
present, let us know that, too.

Run make clean.

To submit, you’ll need to copy your working tree to the de-
partment servers. We recommend using rsync, but scp also
works.

Now log into a department server, change to the src directory
of your working tree, and submit your entire svm directory:

provide cs106 hw01 svm

(25) On Tuesday, submit your reflection. Create a plain text file RE-
FLECTION, which will hold your claims for project points and
depth points.

For each project point you claim, write the number of the
point, plus whatever is called for in the section “How to claim
the project points”—usually a few sentences.

For point number 5, where you write a transition rule, please
use plain text with Unicode characters. As an example, here’s
the first transition rule in the operational-semantics handout:

i ∈ dom δ
--
⟨I1 • i ⋅ I2, R, L, G, σ⟩ → ⟨I1 ⋅ i • I2, R, L, G, δ(i, R, L, σ)

Now copy your REFLECTION file to a department server and
submit it using provide:

provide cs106 reflection01 REFLECTION

Learning outcomes
Learning outcomes for project points:

1. Completeness: The makefile builds svm-test, which passes
its three tests.

2. Embedding and projection of values: You can analyze 7 in-
structions (halt, print, check, expect, and the three youpro-
pose) and say which ones embed values, which project values,
which do both, and which do neither.

3. Embedding and projection of languages: a 32-bit word can
sometimes be projected into a machine instruction with one
8-bit opcode and up to three operands. You can identify, by file
names and function names, where in your code such projec-
tion is used. And you can identify, by line number, a decision
point (if statement, case in a switch statement, or ternary ex-
pression) where it is determined whether a given 32-bit word
can be projected into a machine instruction.

4. Reading formalism: In addition to the store σ, which is repre-
sented by the C heap, the operational semantics identifies four
other components of abstract-machine state: an instruction
stream with instruction pointer, a register file, a literal pool,
and a global-variable table. For each of these components, you
can say how it is represented in your struct VMState.

5. Writing formalism: You can write operational semantics for
VM states. To claim a project point for this outcome, write a
transition rule of operational semantics for an instruction that
does one of the following: set a global variable, read a global
variable, or copy a value from one VM register to another.

6. Performance: The state of a VM is stored in a struct that
is allocated on the heap, but during the execution of vmrun,
and with the help of the C compiler, some components may
be stored in real machine registers. You can identify which
components these are, you can name the C variables that store
them, and you can explain why you chose them.

7. Reuse of values: You can say which types from value.hwould
be useful and not useful for implementing another language
not in the Scheme family.

8. Reuse of code: You can say how you would reuse a C mod-
ule (.c file and accompanying .h file) to implement another
language not in the Scheme family.

Learning outcomes for depth points:

9. Depth (1 point), design: You can say what would constitute
a complete set of VM instructions suitable for implementing
vScheme. Expires when module 2 is delivered.

10. Depth (20 points), implementation: Add bignums to the SVM,
and change the UFT so that bignums are the default numeric
type. These points can be claimed any time before classes end

11. Depth (up to 5 points), tools: You use ChatGPT and/or Copilot
to write some of your code, and you demonstrate your under-
standing of what the tool did well and how to prompt it effec-

4

01Aopsem.html

tively. 1 point per module up to a maximum of 5. These points
can be claimed any time before classes end

How to claim the project points
Each of the numbered learning outcomes 1 to 8 is worth one point,
and the points can be claimed as follows:

1. Submit code that works.

2. List the instructions in each category.

3. Name all the functions you wrote that do such projection, with
the files in which they appear. Give the file name and line
number of one decision point.

4. Name each component of the semantic state and say what
parts of the struct VMState implement it and how.

5. Write a transition rule. Use Unicode characters.

6. Name the components and variables, and say briefly why you
chose them. A couple of sentences would be plenty.

7. To claim a project point for this outcome, choose one of the
following dynamically typed languages: Awk, Erlang, Icon,
JavaScript, Lua, Matlab, Perl, Python, Rexx, Tcl, or VBScript.2
Then say for each type of tag whether it would be useful, not
useful, or possibly useful. Finally, pick one tag in each cate-
gory (useful and not useful) and explain your answer. (Exam-
ple: “The Number tag would be useful in implementing Icon
because Icon has arithmetic.”)

8. To claim a project point for this outcome, choose one module
from the sets “Code youwill look at and understand” or “Code
you will look at eventually”. List three of the languages from
the previous outcome that you think the module could help
you implement. Pick one of the three and explain how you
would use the module to help implement that language.

To give you an idea of the recommended scope of your answers, I’ve
written a model reflection that addresses a related set of learning
outcomes.

2Ideally choose one that you know. If you prefer a language that’s not on this list,
ask the instructor’s approval on Slack.

5

01Dcode.html#code-you-will-look-at-and-understand
01Dcode.html#code-you-will-look-at-eventually-but-maybe-not-this-week
01Dcode.html#code-you-will-look-at-eventually-but-maybe-not-this-week
../model-reflection.html

	Introduction
	The module step by step
	Pre-lab reading
	Pre-lab exercises
	Lab
	Introductions
	Coding

	Post-lab
	What and how to submit

	Learning outcomes
	How to claim the project points

