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Introduction
This week you’ll design your assembly language and im-
plement an unparser for it. And you’ll start learning
about parsing combinators and about the Universal For-
ward Translator. The parsing stuff is a lot to swallow, but
you’ll have two weeks to assimilate it; your full parser isn’t
due until module 4.

The theme for the week is designing concrete syntax that
promotes readability.

• What am I doing?

– Learn the representation of assembly code that is
used inside the Universal Forward Translator (it’s
a superset of virtual object code).

– Design your own concrete syntax for the assembly
language.

– Unparse internal representations into your con-
crete syntax.

– Start learning to program with monads: an error
monad and a parsing monad.

• Why am I doing it?

– You’ll tighten your grip on our layered design
strategy for language implementation: assembly
language is one more language layer. It adds just
two new features: readable concrete syntax plus
the ability to use labels.

– You’ll prepare your system to be easy to debug:
the concrete syntax you choose will be what you
read as you enhance and debug your translator in
modules 5 through 10. By designing a syntax that
you find easy to read, you will help your future
self.

– You’ll deepen your parsing skills by generalizing
them to the higher-order, monadic setting.

∗ Unless parsing performance is critical,
monadic functions for parsing will be all you
will ever need.

∗ Monadic parsers are powerful and fun to use.

∗ After the course, you will be able to use
monadic parsers for any task that involves
textual data, not just programming lan-
guages. And you won’t be dependent on
somebody else’s parsing library—at need,
you’ll be able to create your own library of
parsing combinators. All you need is �!

– Throughout your translator, a transformation
that might fail will return a result in the error
monad. That means that unlike with exceptions
or assertions, the possibility of failure is explicit
in the type. Programming with the error monad
will raise your functional-programming game.

• How will I do it?

– You’ll spend substantial time studying concepts
of error management and combinator parsing.
You’ll also learn a number of representations and
interfaces inside the UFT. You’ll write a little bit
of code, not a lot.

– Before lab, you’ll be introduced to interfaces for
two monads: an error monad and a parsing
monad. Because they are both monads, these
interfaces have important functions in common.
For the error monad, you’ll have a short handout;
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Talk code Our code
pure succeed
(:) curry op ::
runParser produce (roughly)
some many1
satisfy sat

• Watch a my short demonstration video made for
you.

• Watch a lightning introduction made for a profes-
sional audience.

The professional video, which starts at 28:14, needs a
little explanation:

• Although higher-order functions have been used
for parsing for almost thirty years, new techniques
are still being developed. This presentation, from
the 2020 International Conference on Functional
Programming, describes a new technique that is
used to make combinator parsers very, very effi-
cient.

• The talk begins with a great, accessible introduc-
tion, which runs for about three and a half min-
utes. Then around 31:44 it accelerates into hyper-
space (a parsing machine based on continuations).
In my opinion, the typed machine at 35:00 is very
cool.

• If you want to follow along with the talk, here is
a translation table:

(5) Learn how parsing combinators work. Read my hand-
out on how parsing combinators work.

Lab
Lab proceeds in three parts. I will keep time and will move
people along in lock step.

(6) Combinators as functions. From the parsing handout,
review the type of 'a producer and the three possible
forms of its result type:

• Failure: NONE
• Success: SOME (OK a, remaining_inputs)
• Error: SOME (ERROR msg, remaining_inputs)

Now define the parsing combinator for choice:

val <|> : 'a producer * 'a producer -> 'a producer

You may define an ML function using fun, or you may
complete this algebraic law:

(p1 <|> p2) ts == ...

Plan on writing one case for each form of result from
p1 ts.

If you finish before I move the group to step (7),
define the parsing combinator for satisfaction:

val sat : ('a -> bool) -> 'a producer -> 'a producer

Again you may write code or you may complete this
law:

sat predicate p ts = ...

Again you will have to consider all possible forms of
p ts.

(7) Combinators as abstractions. Although an 'a producer
is represented as an ML function, we usually treat a
producer as an abstraction. In the next part of the lab,
you will define higher-order functions that make new
combinators from old combinators. Your code will not
acknowledge that a parsing combinator is a function.
Instead, you will build new combinators using opera-
tions like <$>, <*>, and <|>. Function curry will also
be useful.

The first group of producers you will define are the ones
that implement classic notations of extended BNF:
“zero or one,” “zero or more,” and “one or more.” You’ll
also implement a notation found in Internet protocols
and other odd corners: “exactly N.”

val optional : 'a producer -
> 'a option producer (* zero or one *)

Remember the definition of 'a option:

datatype 'a option = SOME of 'a | NONE

To show optional in action, I use it to get the optional
else clause in a C if statement:

the "if" >> curry3 C_IF <$>
(the "(" >> exp <~> the ")") <*>
statement <*>
optional (the "else" >> statement)

Now write algebraic laws for optional:

optional p == ...

The next two combinators recognize lists:

val many : 'a producer -
> 'a list producer (* zero or more *)
val many1 : 'a producer -
> 'a list producer (* one or more *)

For example, a Scheme function application is an ex-
pression followed by zero or more arguments, all in
brackets:1

1Examples not typechecked!
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the "(" >> curry APPLY <$> exp <*> many exp <~> the ")"

The algebraic laws for many and many1 are analogous to
the structure of the outputs they produce. You may
recognize some laws from CS 105:

• Parser many p may succeed by reading no input
and producing the empty list, or it may succeed
by producing a single input from p, followed by a
list of zero or more p’s.

• Parser many1 p may succeed by producing a single
input from p, followed by a list of zero or more p’s.

Complete these algebraic laws:

many p == ...

many1 p == ...

If you finish before I move the group on to
step (8), try one of the following:

• Analogously with many and many1, define a count
combinator that produces a list of exactly 𝑁 val-
ues of type 'a:

val count : int -> 'a producer -
> 'a list producer (* exactly N *)
count 0 p == ...
count (n+1) p == ...

• Define two more combinators that help deal with
concrete syntax that must be parsed, but that
does not contribute anything to a result of type 'a
in an 'a producer. Such syntax usually includes
keywords as well as syntactic particles like brack-
ets and commas. This kind of syntax can be ig-
nored by using the following combinators:

val <~> : 'a producer * 'b producer -
> 'a producer
val >> : 'a producer * 'b producer -
> 'b producer

In the first combinator, the result from the
'a producer is used and the result from the
'b producer is ignored; in the second combina-
tor, the result from the 'b producer is used and
the result from the 'a producer is ignored. Us-
ing <$>, <*>, and curry, among other functions,
complete the following algebraic laws:

p <~> q == ...

p >> q == ...

• Define a combinator

val bracketed : 'a producer -> 'a producer

where bracketed p recognizes whatever p recog-
nizes, but enclosed in the matching brackets of
your choice.

(8) Writing parsers. The last step of lab is to use what
you’ve written, together with what I provide, to write
a very simple parser.

Each token of assembly language can be recognized by
a parser dedicated to that token. The parsers I provide
for this lab recognize, register numbers, literals, and
names. Plus the can recognize any single given token,
like a comma or a bracket.

type reg = int
val reg : reg producer (* parses a register number *)
val int : int producer (* parses an integer literal *)
val string : string producer (* parses a string literal *)
val name : string producer (* parses a name *)
val the : string -
> unit producer (* one token, like a comma or bracket *)

As functions you can use with <$>, I provide these en-
coders:

type opcode = string
type instr (* instruction *)
val eR0 : opcode -> instr
val eR1 : opcode -> reg -> instr
val eR2 : opcode -> reg -> reg -> instr
val eR3 : opcode -> reg -> reg -> reg -> instr

The parsers and functions above are meant to be
combined with <$>, <*>, <~>, <|>, and the other
parsing combinators. As an example, here’s a
parser that recognizes the assembly-language instruc-
tion r3 := r1 + r2:

eR3 "add" <$> reg <~> the ":=" <*> reg <~> the "+" <*> reg

Emulating this example, write a parser for one of the
syntactic forms you defined before lab in step (3).

After lab
Setup

(9) Set up your computer for ML programming. Read the
handout on “Software development in Standard ML”,
and get set up with some ML compilers. (It sounds
crazy, but I recommend that you use a mix of three
ML compilers. If this sounds awful, you can limp along
with just Moscow ML or MLton.)

If you’re comfortable working on the department
servers, you can skip this step.

(10) Download infrastructure for universal forward transla-
tion. Update your git repository in two steps:

1. Be sure all your own code is committed. Confirm
using git status.
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2. Update your working tree by running git pull (or
you might possibly need git pull origin main).

If git gives you trouble, please post on the #git-fu
channel in Slack.

(11) Verify that the code builds. Assuming you have
Moscow ML, change to the src/uft directory, run make,
then ../../bin/uft. Running the UFT should name
seven languages, of which only two are implemented
so far:

> make
...
> ../../bin/uft
Usage:

../../bin/uft <from>-<to> [file]
where <from> and <to> are one of these languages:

ho! Higher-order vScheme with mutation
ho Pure, higher-order vScheme
fo Pure, first-order vScheme

cl Pure, first-
order vScheme with closure and capture forms

kn K-Normal form
vs VM assembly language
vo VM object code

If you don’t have Moscow ML but you do have MLton,
try make mlton and then run ../../bin/uft.opt.

If you haven’t done so already, add the project bin
directory to your Unix PATH.

(12) Verify that the Universal Forward Translator behaves
as expected. Close study of the UFT is going to wait
until we have more languages to work with. For now,
confirm that you can activate two translations:

• Verify that you can use my escape-hatch parser
to translate some assembly code into object code:

> echo '@ print 33' | uft vs-vo | svm
.load module 1
print 33

• Verify that you can unparse code from the escape-
hatch parser, but that unparsed assembly lan-
guage is just a placeholder.

> echo '@ print 33' | uft vs-vs
an unknown assembly-code instruction

If you compiled with MLton, you’ll use uft.opt instead
of uft.

(13) Familiarize yourself with the big picture. Still in the
src/uft directory, have a quick look at these files:

all.cm List of all source files (except main.sml)

object-code.sml and asm.sml Internal representa-
tions of object code and assembly code.

asmparse.sml Toy parser and unparser for assembly
code, including example cases for three demon-
stration instructions

More details can be found in the code overview.

Syntax design

(14) Decide on concrete syntax for register names. I ship a
lexical analyzer that accepts both $rk and rk as regis-
ter numbers, where k is an integer literal in the range
0 to 255. If that works for you, you’re done. Other-
wise, you’ll have to edit asmlex.sml (the registerNum
function, the token parser, or both).

(15) Decide if you want floating-point literals. If so, you’ll
need to extend asmlex.sml. If not, you can live nicely
without them.

(16) Finish your grammar. In this step, which can be in-
terleaved with with step (17), you finish designing the
assembly-language syntax you started in step (3).

• Make sure there is concrete syntax for each of
the five forms of assembly-language instruction
defined in file asm.sml.

• Make sure the concrete syntax for LOADFUNC does
not require a count of the instructions in the body
(instr list). Instead, make sure that the con-
crete syntax includes some sort of unambiguous
terminator, so a parser can tell where the body
of the function stops. (The terminator must look
different from an instruction!)

• Make sure there is concrete syntax for each of the
instructions your VM recognizes (all of which will
take the OBJECT_CODE form in asm.sml).

• Follow the design guidelines.

Unparsing

(17) Write unparsers for your assembly language. Using
the grammar you defined in steps (3) and (16), and
possibly concurrently with step (16), define unparsing
functions so that every instruction and every assembly-
language form can be rendered in the concrete syntax
you have chosen.

In file asmparse.sml, you will find a prototype unparser
unparse1, which is meant to unparse any instruction
except LOADFUNC. The prototype knows how to unparse
three VM instructions:

• Opcode + adds two registers and places the sum
in a third.

• Opcode swap swaps the contents of two registers.
• Opcode +imm adds a register and an immediate

constant and places the sum in a register. The im-
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mediate constant is “offset-coded”; an 8-bit byte
𝑧 codes for the number 𝑧 − 128.

The concrete syntax I use for these instructions is de-
scribed in step (18).

File asmparse.sml also includes a prototype unparse,
but once LOADFUNC enters the picture, this prototype
will have to be rewritten.

Complete both steps:

A. In file asmparse.sml, replace prototypes unparse
and unparse1 with a real unparser for assembly
code.

• Write unparse1, which should handle every
form except LOADFUNC. (Each of those cases
produces one line of output.)

• Write unparse, which handles both forms of
LOADFUNC.2 A function load generally requires
multiple lines of assembly code to express the
body of the function. Those lines should be
indented.

Function unparse1 requires a ton of case analy-
sis: pattern matching on opcode names. Every
instruction your VM accepts must unparse to a
readable assembly-language syntax.

B. Test your unparser by creating a test file un-
parse.vs. In this file, using my “passthrough
parser”, or using your own parser if you have
completed step (18), write at least half the in-
structions that your VM recognizes. (If you use
my passthrough parser, you will be limited to in-
structions in formats R0 through R3, like halt and
print but not loadliteral or check.) Test that
these instructions unparse correctly by running

uft vs-vs unparse.vs

and comparing the output with what you expect
from your grammar.

The other half of your instructions should be im-
plemented in your unparser, but they can remain
untested until next week.

One step toward parsing

(18) Extend my placeholder parser with at least one new
syntactic form. In file asmparse.sml, I define a sim-
ple parser for assembly instructions. This parser,
one_line_instr, recognizes these forms:

• From the form @ opcode { int }, it generates
an object-code instruction with the given opcode

2There is not only Asm.LOADFUNC, but also Asm.OBJECT_CODE applied
to ObjectCode.LOADFUNC.

and registers. This form basically works as a
“passthrough” to be able to write some virtual ob-
ject code after the @ sign.

• From the form reg := reg + reg, it generates an
add instruction (opcode +).

• From the form reg := reg + int, it generates an
add-immediate instruction (opcode +imm).

• From the form reg := reg - int, it also gener-
ates an add-immediate instruction—subtracting
a small integer is the same as adding a negative
small integer.

• From the form reg, reg' := reg', reg, it gener-
ates a swap instruction (opcode swap). The con-
crete syntax is “multiple assignment,” which is
found in Python, Lua, and other languages.

Extend one_line_instr with at least one case of con-
crete syntax in your assembly language. A good case
to implement would be concrete syntax for loading a
literal value into a register. You’ll add more cases next
week.

(19) That’s it! Next week you’ll complete your parser, and
you’ll write the label-elimination pass that translates
assembly code to virtual object code. But for now,
you’re done.

What and how to submit
(20) On Monday, submit the homework. In the src/uft di-

rectory you’ll find a file SUBMIT.03. That file needs
to be edited to answer the same questions you answer
every week.

From now on, you’ll be submitting your full src
tree, including both the UFT and the SVM.

To submit, you’ll need to copy your working tree to
the department servers. We recommend using rsync,
but scp also works.

Now log into a department server, change to your work-
ing tree, and submit your entire src directory:

provide cs106 hw03 src

(21) On Tuesday, submit your reflection. Create a plain text
file REFLECTION, which will hold your claims for project
points and depth points.

For each project point you claim, write the number
of the point, plus whatever is called for in the section
“How to claim the project points”—usually a few sen-
tences.

Now copy your REFLECTION file to a department server
and submit it using provide:

provide cs106 reflection03 REFLECTION
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Reading in depth
Occasionally I’ll suggest reading that may enrich your view
of programming-language implementation. This week I sug-
gest three works on combinator parsing:

• Graham Hutton, Higher-Order Functions for Parsing
(1992). The work is somewhat primitive, and the no-
tation is obsolete, but It’s a good paper. Plus Hutton
was first, and in academia, we honor those who came
first.

• Graham Hutton and Erik Miejer, Monadic Parser
Combinators (1996). Parsing brought up to date
with Haskell. Also a decent introduction to monads.
A shorter version was published in the Journal of Func-
tional Programming in 1998.

• Doaitse Swierstra, Combinator Parsing: A Short Tuto-
rial (2008). Swierstra has done more than anyone else
to develop the art and science of combinator parsing.

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Algebraic laws. You can write algebraic laws for par-
ticular monads.

2. Parsing combinators. You can write new parsing com-
binators.

3. Syntax design. You can explain how the design of your
concrete syntax promotes readability.

4. Costs of design. You can argue whether a well-designed
concrete syntax is unreasonably expensive.

5. Unparsing. At least half the instructions your VM rec-
ognizes can be unparsed by your UFT.

6. Parsing in theory. You understand when your parser
needs to see multiple tokens before making a choice.

7. Parsing in practice. Using a parser you wrote your-
self, your UFT can successfully parse one assembly-
language instruction.

8. Embedding and projection. You understand how
assembly-language abstract syntax and concrete syn-
tax are related by embedding and projection.

Learning outcome available for depth points:

9. Assembler macro [1 point]. You make check-expect
look like a single assembly instruction, but it expands
to multiple VM instructions. You can assemble and
run a .vs file that contains a check-expect. The point
can be redeemed with this module or the next module;
after that, it expires.

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth
one point, and the points can be claimed as follows:

1. In lab you wrote algebraic laws for Kleisli composition
using the baby error monad. To claim this point, write
algebraic laws for Kleisli composition using the full er-
ror monad.

2. To claim this point, define this parsing combinator:

val commaSep : 'a producer -> 'a list producer
(* `commaSep p` returns a parser that parses a sequence

of zero or more p's separated by commas *)

You may include the definition in your REFLECTION file
or in your Monday night submission (in which case,
please point to it).

3. To claim this point, identify examples of two differ-
ent syntactic forms of virtual object code, and compare
those examples side by side with the corresponding
forms of your assembly language. Explain why you
believe that the assembly-language examples are more
readable.

4. It’s good if the assembly language is easy to read and
write, but it’s also good if the code inside the UFT is
short. To claim this point, argue at least one of the
following positions:

• These are competing concerns.
• Both can be accomplished in a single design.

To earn the point, every argument must be supported
by pointing to specific line numbers within your un-
parser.

5. To claim this point, make sure your Monday night sub-
mission includes test file unparse.vs and that it passes
the test described in step (17)B above.

6. To claim this point, identify a choice point in your
grammar (that is, an alternative between two syntactic
forms), where making the choice requires looking at
more than one token. If all your choices can be made
by looking at a single token—that is, if your grammar
is LL(1)—then explain what you did to make that so.

7. To claim this point, you will show assembly syntax
that your UFT successfully parses and unparses, using
code you wrote yourself (or with a partner). You may
use the parser you wrote in lab in step (8), or you may
use another parser of your choice. Demonstrate that
it works with your unparser by feeding an assembly
language instruction to the UFT, parsing it, and un-
parsing it back to the original string, as in this example
from my own code:

> echo "r1 := r2 + r3" | uft vs-vs
r1 := r2 + r3
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8. To claim this point,

• Explain whether and how the embed-
ding/projection concept applies to the abstract
syntax and concrete syntax of assembly language.

• Point to where in your code embedding and/or
projection are implemented.

• If projection is implemented, say how projection
failure is manifested.

Concrete syntax of the week
Your most interesting design choice will probably be the
notation you want to use for global variables. Here are
your options:

• A global variable is just a name. This is a lovely choice,
but it’s hard to make work. What if some joker gives
you a Scheme program with a global variable called
$r0? How are you going to distinguish it from regis-
ter 0?

• A global variable is a name with a prefix. This choice
was used in C compilers and linkers for many years:
the C compiler slapped an underscore in front of every
global name, and that made sure that a global name
wouldn’t conflict with other things. You could consider
some other character as a prefix or “sigil,” like Perl’s
@ or % characters. Or you could just stick a special
token before the name of a global variable.

• A global variable is a table lookup. At run time, the
SVM indexes into a table of global variables, so if
you’re comfortable having a global variable look like
a table reference, all you need is to invent a concrete
syntax for table references.

Choose wisely!
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