
Module 6: Code Generation

Contents
Introduction 1

The module step by step 1
Before lab (essential steps) 1
Before lab (recommended steps) 1
Lab . 2
After lab . 3

One more instruction 3
A pause for infrastructure 3
Code generation and testing 3
Primitives . 3

What and how to submit 4

Reading in depth 4

Learning outcomes 4
Outcomes available for points 4
How to claim the project points 4

Introduction
This week you’ll translate K-normal form into assembly language.
Then you’ll be able to run vScheme code—as long as it’s inK-normal
form and it calls only primitive functions.

• What am I doing?

– Define a utility function that will enable you to change
the representation of register names in K-normal form.

– Update the UFT driver so it can translate fromK-normal
form to assembly code, enabling new passes kn-vs and
kn-vo.

– Define two of the three code-generation functions that
translate K-normal form into assembly code.

• Why am I doing it?

– This translation is the most dramatic step in the UFT.
You’ll learn how to translate primitive operators as well
as control-flow constructs like if and while. And you’ll
start to identify contexts of translation, which is a key con-
cept in compilers and which will eventually enable you
to optimize tail calls.

– The utility function and the UFT-driver update will en-
able you to take vScheme code (in K-normal form) all
the way through your compiler to the SVM and run it.

You’ll also be able to run the exact same code using the
vscheme interpreter, so you can compare results.

• How?

– Before lab you’ll implement name-changing code for K-
normal form, which will enable you to pull K-normal
form with register names off of disk. You’ll also study
how K-normal form is translated to assembly code.

– In lab you’ll add the code-generation translation to the
UFT driver, which will enable you to run uft kn-vo,
taking K-normal form Scheme all the way to virtual ob-
ject code. You’ll also implement three cases for the code-
generation functions, so you can compile and run a sim-
ple Scheme expression.

– After lab, you’ll complete your code generator, you’ll test
every syntactic form, and you’ll make sure both lists of
primitives (UFT and SVM) are up to date. At the end
of the week, you’ll deliver a working Universal Forward
Translator that includes a kn-vo pass.

The module step by step
Before lab (essential steps)
In lab you’ll add your code generator to the UFT driver, and you’ll
take the first steps in implementing it. To get any of this done pro-
ductively, you’ll need to have the stubs for the code, and you’ll need
to understand how code generation works.

(1) Download updates. Update your git repository in two steps:

A. Be sure all your own code is committed. Confirm using
git status.

B. Update your working tree by running git pull (or you
might possibly need git pull origin main). Merge
conflicts are unlikely.

(2) Study code generation. Everything you need to generate assem-
bly language from K-normal form is described in a handout.
To be productive during lab, the most important sections are
the opening example, the translations of let bindings, and the
explanation of destinies. The equations of translation are also
super useful, but you won’t need them until the lab starts.

(3) Review the secrets of the UFT driver. In lab you’ll update a ma-
terializer function and use a reader function. Review the ma-
terializer function KN_text_of that you wrote last time, and
remind yourself of the type of the reader function KN_of_file.

1

05Cuft.html
06Atranslation.html
05Cuft.html
05Cuft.html
06Atranslation.html
06Atranslation.html#code-generation-example
06Atranslation.html#translations-of-let-bindings
06Atranslation.html#translation-guided-by-destiny
06Atranslation.html#equations-of-translation

If you don’t remember what materializer and reader functions
are or how they fit together, review the handout on the UFT
driver and the note on function composition with error types.

Before lab (recommended steps)
Tomaximize the value of your lab, I’m recommending that you com-
plete two more steps before the lab begins. If you complete these
steps, then by the end of the lab, you should be able to compile the
following expression to virtual object code and run it in your SVM:

(let ([r100 'victory]) (println r100))

Here’s the demo:

> echo "(let ([r100 'victory]) (println r100))" | uft kn-
vo | svm
victory

Tomake the demopossible, and to test whatever other code youmay
write in lab, your UFT needs to be able to translate that r100 into
register number 100. That’s this step:

(4) Change the representation of names in K-normal form. In or-
der to generate code, you need K-normal form in which each
name is identified with a particularmachine register: type Ob-
jectCode.reg KNormal.exp. But your projection function
produces a K-normal form in which a name is a string: type
string KNormal.exp. To get K-normal form of the right type,
you’ll implement a mapx function. Function mapx copies the
structure of a K-normal form expression while changing the
representation of each name. (If you think of K-normal form
as a tree, mapx changes some of the values at the leaves, but it
does not touch internal nodes.)

Not every string represents the name of a register, so the
change of names is a projection, which can fail. The
change of names is already defined for you as function Asm-
Lex.registerNum, and it has type string -> Object-
Code.reg Error.error. Your job is to lift the function on
names up to a function on expressions. The lifting function is
higher-order and polymorphic; you will define

val mapx : ('a -> 'b Error.error) ->
('a KNormalForm.exp -

> 'b KNormalForm.exp Error.error)

This function combines two skills you already have:

• The function requires the tedious copying of pro-
gram structure that you find in function Disam-
biguate.disambiguate.

• The function requires themanagement of projection fail-
ure that you find in function ProjectKN.def.

Once you have mastered the <$>, <*>, and succeed functions
from the Error interface, the coding will go quickly.

Your lab experience will also benefit if you know about two conve-
nience functions:

(5) Learn two functions in asmutil.sml. File asmutil.sml con-
tains the AsmGen interface, which exports a bunch of functions
that make it more convenient to write your code generator. Ev-
erything here can also be done using functions in the Prim-
itive, AssemblyCode, and ObjectCode interfaces, but with
more effort and with more opportunities for error.

Before lab, all you need to know is these two functions:

• Use effect to generate a println instruction.
• Use loadlit to generate a loadliteral instruction.

Lab
(6) Add a translation to the UFT driver. In this step you’ll make

the UFT driver aware of the translation you’re about to write
(and for which stub code already exists).

A. To complement the materializer KN_text_of that you
wrote last time, write a function KN_reg_of that mate-
rializes a program of type ObjectCode.reg KNormal-
Form.exp list.

When asked to materialize K-normal form from input
language KN, your KN_reg_of function should use the
reader KN_of_file, plus functions KNRename.mapx and
KNRename.regOfName from step (4). If you didn’t com-
plete step (4) before the lab, you can still write this code
and get it to typecheck, but when you run it the UFTwill
halt with an assertion failure.

Because function KN_of_file produces a list of ex-
pressions, but KNRename.mapx KNRename.regOfName
renames one expression, you will want to use Er-
ror.mapList. The easiest way to get this code right is
to define a helper function that does the renaming. The
benefit of defining a helper function is that you can give
it an explicit type signature, whichwill help the compiler
tell you what you need to do:

val KN_reg_of_KN_string :
string KNormalForm.exp list ->

ObjectCode.reg KNormalForm.exp list error
= ... fill in with a composition of functions ...

You can then compose this function with KN_of_file.
If you want guidance, consult the composition handout.
Once everything works, you can inline the helper func-
tion, or if you prefer, keep it as a named helper function.

When asked to materialize K-normal form from an in-
put language other than KN, your KN_reg_of function
should raise NoTranslationTo KN—the translation to
K-normal form is the topic of module 9.

B. Update function VS_of, which you first encountered in
module 5; the promised “main event” has arrived. Re-
place the NoTranslationTo exceptionwith a shortmate-
rialization pipeline: call KN_reg_of on inLang, and pipe

2

05Cuft.html
05Cuft.html
05Dcomposition.html
05Dcomposition.html
05Cuft.html#VS_of
05Cuft.html#VS_of

the result through a helper function with this type con-
straint:

val VS_of_KN : ObjectCode.reg KNormalForm.exp list -
>

AssemblyCode.instr list
= ... fill in with a composition of functions ...

To implement VS_of_KN, youwill find it useful to employ
List.concat.

Because code generation cannot fail, function VS_of_KN
does not have an error in its type. To compose it with
KN_of_file, which does have error in its result type,
you’ll need to use Error.map in the pipeline. I recom-
mend using the abbreviation !, which is already defined
in file uft.sml. For details, consult the composition
handout.

(7) Implement three cases for your code generator. To compile the
expression (let ([r100 'victory]) (println r100)), you
need to be able to compile the literal 'victory into a register
(function toReg'), and you need to be able to compile the let
expression and println call for side effect (function forEf-
fect').1 Implement these three cases, then test your system
at the Unix command line:

echo "(let ([r100 'victory]) (println r100))" | uft kn-
vs

echo "(let ([r100 'victory]) (println r100))" | uft kn-
vo | svm

After lab
After lab, youwill complete your code generator and test it. Youwill
also verify that your UFT and SVM agree on primitives.

One more instruction

(8) Generate code for computation. Using function setreg from
file asmutil.sml, extend your code generator so it can com-
pile and run

(let* ([r100 2] [r101 (+ r100 r100)]) (println r101))

A pause for infrastructure

(9) Learn the rest of the AsmGen interface. Return to the AsmGen
interface in file asmutil.sml and identify the other functions
that look useful.

(10) Implement register-register move. In file asmutil.sml, correct
the implementation of copyreg. Your SVM will need an op-
code for an instruction that copies a value from one register to
another. Just use that opcode with the internal regs function.

1The names of these functions are primed because they are internal functions
that use an efficient representation of lists: lists as functions.

Code generation and testing

(11) Test a simple check-expect. At this point your UFT ought to be
able to read in this K-normal form and translate it to virtual
object code:

(let* ([$r0 2] [$r1 2] [$r0 (+ $r0 $r1)])
(check $r0 'two-plus-two))

(let* ([$r0 5])
(expect $r0 'five))

If I put this code into file plustest.scm, I get the exact same
results from my UFT/SVM system as I do from the vscheme
interpreter:

> uft kn-vo plustest.scm | svm
Check-expect failed: expected two-plus-
two to evaluate to 5, but it's 4.
The only test failed.
> vscheme < plustest.scm
Check-expect failed: expected two-plus-
two to evaluate to 5, but it's 4.
The only test failed.

(12) Complete your code generator. Finish the cases for your two
code-generation functions toReg and forEffect. You should
be able to implement every syntactic form except function call.
(Youwon’t implement toReturn until module 8; I’ve provided
a placeholder that just runs the function body for side effect.)

(13) Test every syntactic form. Create file kntest.scm with test
cases for your code generator. The file should contain a se-
quence of Scheme expressions, in K-normal form, with hard-
ware register names. These expressions should eventually call
primitives check and expect. And there should be a distinct
check and expect for every syntactic form in your definition
of type KNormalForm.exp. As an example, the pair in step (11)
tests application of a VM primitive (the form @(x₁,…,xₙ)).

Ideally, every test successfully compiles to virtual object code
and all the tests pass. But as long as the input is valid K-normal
form, as verifed by uft kn-kn, and every syntactic form is
tested, you will get full credit for the work.

Primitives

(14) Make the UFT and SVM agree on primitives. I won’t ask you to
test primitives just yet, because the testing will be somuch eas-
ier inmodule 9, when you can test thembywriting and compil-
ing check-expect with function calls. But between now and
module 9 is two weeks worth of distraction, so this is the time
to ensure that the UFT and SVM agree on a set of primitive
operations.

As needed, modify both the SVM and the UFT:

• Confirm that every UFT primitive in file primi-
tives.sml has an entry in the SVM’s instruction table
(file instructions.c) and that the entry has the opcode
that the UFT is going to emit. If there is a UFT primitive

3

05Dcomposition.html
05Dcomposition.html

that is not in the SVM’s instruction table, add it to the
instruction table.

Pro tip: If your SVM uses different names for any primi-
tives, you don’t have to change any existing code. Just
add a new entry to the SVM’s instruction table, using
your old binary opcode and the new name in the virtual
object code. Multiple names for a single binary opcode
can coexist.

Take notes on anything you have to add or change.

• Confirm that every instruction in SVM’s instruction ta-
ble (file instructions.c) meets one of these three cri-
teria:

– The instruction implements a UFT primitive of the
same name, and the primitive is found in file prim-
itives.sml.

– The instruction implements a UFT primitive, but
under a different name than the one used in file
primitives.sml.

– The instruction is used only for control flow (e.g.,
if and goto).

If there is an entry in the SVM’s instruction table that
does not meet any of these criteria, add it as a UFT prim-
itive:

– Give it the proper arity.
– Mark whether the instruction sets a register or is ex-
ecuted for a side effect.2

Take notes on anything you have to add or change.

What and how to submit
(15) On Monday, submit the homework. In the src/uft directory

you’ll find a file SUBMIT.06. That file needs to be edited to
answer the same questions you answer every week.

To submit, you’ll need to copy your working tree to the de-
partment servers. We recommend using rsync, but scp also
works.

Now log into a department server, change to yourworking tree,
and submit your entire src directory:

provide cs106 hw06 src

(16) On Tuesday, submit your reflection. Create a plain text file RE-
FLECTION, which will hold your claims for project points and
depth points.

For each project point you claim,write the number of the point,
plus whatever is called for in the section “How to claim the
project points”—usually a few sentences.

2If you have created an instruction that is used both to set a register and also
for an important side effect, the UFT does not know how to generate code for it. The
instruction should not be added to theUFT; it can be used only in assembly language.

Now copy your REFLECTION file to a department server and
submit it using provide:

provide cs106 reflection06 REFLECTION

Reading in depth
Occasionally I’ll suggest reading that may enrich your view of
programming-language implementation or functional program-
ming. This week I suggest John Hughes’s classic 1986 paper on the
implementation of lists as functions, which we are using in code-
gen.sml. This paper builds on Tony Hoare’s foundational work on
abstract data types (with abstraction functions), shows how the lists-
as-functions representation can be used to calculate revapp from a
naïve reversal function, and even reports on the result of a couple of
experiments. All in three pages! (John is a super genius and is also
a coauthor of QuickCheck.)

Learning outcomes

Outcomes available for points
Learning outcomes available for project points:

1. Error monad. You can use the error monad effectively as an
applicative functor.

2. Function composition. You understand how to construct lists
by function composition.

3. Meaning of primitives. You understand why the UFT defines
two classes of primitives.

4. Common invariants. You can identify invariants that are com-
mon to K-normal form and assembly language.

5. Unique invariant. You can justify the translation of let into
assignment by appealing to a precondition that incoming K-
normal form must satisfy.

6. Unchecked run-time errors. You can use unchecked run-time
errors to simplify your compiler.

7. Systematic testing. You know how to test every syntactic form
of K-normal form.

8. Consistent primitives. Your SVM and UFT have a consistent
view of primitive operations.

9. Language extensions. You can say how the system you have
built so far would be extended to support new language fea-
tures.

Learning outcomes available for depth points:

10. Invariants and preconditions [1 point]. You have written
an ML function that checks the precondition in outcome 5,
thereby confirming that it is OK to translate let into assign-
ment. Your forEffect function checks the condition before
calling forEffect'.

4

https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/lists.pdf
https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/lists.pdf
https://www.cs.tufts.edu/comp/150FP/archive/john-hughes/quick.pdf

11. Intraprocedural control operators [2 points]. You add break
and continue to K-normal form and to everything upstream
of it, and you translate them into goto instructions. (The
vScheme parser already has hooks for break and continue;
you just need to add the abstract syntax.)

12. A-normal form [3 points]. A-normal form (Flanagan et al 13)
is like K-normal form, but withmore restrictions: in an expres-
sion of the form let x = e in e', expression e may not be
a let, if, or while form. Define a variant of A-normal form
suitable for the UFT, generate code from it, and in a future
module, convert first-order Scheme to it (either directly from
first-order Scheme or indirectly from K-normal form).

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth one point,
and the points can be claimed as follows:

1. To claim this point, submit a mapx that handles all cases and
typechecks without ever mentioning either of the two value
constructors Error.OK and Error.ERROR. (Using function
Error.succeed is good and necessary.) Moreover, achieve
this outcome without using the monadic bind operation >>=.
(Using the <$> and <*> functions is encouraged.)

2. To claim this point, identify a line number in file codegen.sml
where you wrote code that uses function composition to build
a list of instructions, and explain how the code would look
different if it instead used standard list operations like ::, @,
and List.concat.

3. To claim this point, identify the two classes of primitives,
show how they are treated differently in your code generator
(with line numbers), and give an example of what could go
wrong if the two classes of primitives were indistinguishable
in the UFT.

4. To claim this point, identify at least one invariant that is com-
mon to both K-normal form and assembly language, but not to
Scheme source code.

5. The translation equations in the translation handout pre-
serve semantics only if the input code satisfies a precondition.
To claim this point, specify the precondition. Your specifica-
tionmust appeal solely to properties of K-normal form; it must
not mention assembly code or translation.

6. The terms “unchecked run-time error” (Modula-3 specifica-
tion and others), “undefined behavior” (C specification and
others), and “getting stuck” (operational semantics) all mean
the same thing. This concept recurs in toomany contexts to be
an accident. To claim this point, identify one specific place in
your code (file name and line number) where your compiler
exploits this concept, and explain how things would change
if you were required to check for this error (at either compile
time or run time, your option).

7. To claim this point, ensure that your Monday submission in-
cludes test file kntest.scm with these properties:

• It is accepted as valid K-normal form by theUFT checker
uft kn-kn.

• Every syntactic form of K-normal form occurs in a posi-
tion that affects the result of primitives check and ex-
pect.

The point is for knowing how to test—you can earn it even if
the tests don’t pass.

8. Every primitive in file src/uft/primitives.sml should
have a corresponding entry in the instruction table in file
src/svm/instructions.c. And except for control-flow in-
structions, every entry in the instruction table should corre-
spond to a primitive in file primitives.sml.

To claim this point, submit the files with these properties, plus
one of the following two forms of supporting evidence:

• If you had to add or change anything to make the primi-
tives consistent, submit your notes from step (14).

• If you didn’t have to add or change anything in step (14),
explain whether you owe this happy outcome to good
luck or good management. Justify your answer.

9. To claim this point, answer three questions about each of three
language extensions that might be added to vScheme. The
questions are:

A. To implement the feature, which languages (in addition
to the source language) will have to change?

B. What translation is best qualified to implement the new
feature?

C. Roughly how will it work?

The extensions are:

• vScheme is extended with Lisp’s defconstant form,
which defines a name that afterward acts like a literal
value (a.k.a. a “compile-time constant”). Such a con-
stant behaves a lot like an enumeration literal in C, or
like a constant named with #define. (Attempts to as-
sign to or call a defined constant can be treated as calls
to the error primitive.)

• vScheme is extendedwith Perl’s (command unless con-
dition), which evaluates expression command, unless
the condition is satisfied, in which case it does nothing
and returns nil.

• vScheme is extended with two new forms of expression,
(break) and (continue), which respectively exit or
restart the innermost loop in which they appear—just
like the corresponding statements in C.

5

https://www.cs.tufts.edu/~nr/cs257/archive/cormac-flanagan/anormal.pdf
06Atranslation.html#equations-of-translation

	Introduction
	The module step by step
	Before lab (essential steps)
	Before lab (recommended steps)
	Lab
	After lab
	One more instruction
	A pause for infrastructure
	Code generation and testing
	Primitives

	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points

