
Name:

Final
CS 121

Software Engineering
Fall 2022

December 15, 2022

Instructions

This exam contains 15 pages, including this one. Make sure you have all the pages. Write
your name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 25

3 26

4 17

5 12

Total 100

1

Question 1. Short Answer (20 points).

a. (4 points) Briefly explain why the autograder for a project may fail to compile against your code if you
add a throws clause to a method.

Answer: A throws clause lists the checked exceptions thrown by a method. Any caller of a
method with such a clause must either catch the exceptions or itself have a throws clause listing
any uncaught checked exceptions. So, if the autograder calls one of your methods and it’s not
expecting a throws clause, it won’t compile because it will do neither of those things.

b. (4 points) Briefly explain the role of the model in the model–view–controller architecture.

Answer: The model is the data storage (often a databaes) that the view and controller both
access. Separating out the model lets multiple views and controllers access the model concurrently
while always seeing the latest version of the shared state.

2

c. (4 points) Briefly explain what statement coverage and branch coverage (also known as condition
coverage) are in testing. Does full statement coverage imply full branch coverage? Explain briefly.

Answer: Statement coverage measures how many program statements are executed when a test
suite is executed. Branch coverage measures how many branches—i.e., edges in the control-flow
graph of a program—are executed when a test suite is executed. No, a test suite can have full
statement coverage without full branch coverage. For an example, see the testing slides.

d. (4 points) In his No Silver Bullet paper, Brooks discusses the accidental difficulties of software engi-
neering. Briefly explain what Brooks means by accidental difficulties and list two solutions that have been
developed for accidental difficulties of software engineering.

Answer: According to Brooks, accidental difficulties are those that don’t have to do with the
core of the problem being solved, but rather from the tools available to solve it. Example solu-
tions include high-level languages, time sharing, unified programming environments, high-level
language advances, object-oriented programming, expert systems, machine learning, program
synthesis, program verification, and more.

3

e. (4 points) Briefly explain what delta debugging is and why it may be useful.

Answer: Delta debugging is a method for simplifying a test input successively removing unnec-
essary circumstances from the input, at finer and finer granularities. It’s useful because when
trying to debug a failing test case, a smaller test has fewer things happening which makes it
easier to find the source of the problem.

4

Question 2. Verifying Logs (25 points). In this question, you will implement methods to help verify
that logs of events are correct. An event is an instance of the following class:

class Move {
// Represents a move of train from station start to station end

String train , start , end;

Move(String train , String start , String end) {
this . train = train ; this . start = start ; this .end = end;

} }

and a log is a List<Move>. You will write several methods that implement the following interface:

interface Prop {
// Returns true if the property holds for entry i of the log

// Returns false otherwise or if i ≥ log . size ()

boolean check(List<Move> log, int i);

}

Below, we say “Write a Prop C” to mean “Write a class C that implements Prop,” and we say “p holds at i”
for some Prop p to mean “calling p.check(log , i) returns true.”

a. (5 points) Write a Prop TuftsStart such that TuftsStart#check(log, i) is true if and only if the log entry
at position i is a move that starts at the station ”Tufts”.

Answer:

class TuftsStart implements Prop {
boolean check(List<Event> log, int i) {

return (i < log. size () && (log.get(i). start . equals(”Tufts”)));

}
}

b. (5 points) Write a Prop And with a constructor And(Prop p1, Prop p2) such that And#check(log, i) is
true if and only if both p1 and p2 hold at position i .

Answer:

class And implements Prop {
Prop p1, p2;

And(Prop p1, Prop p2) { this .p1 = p1; this .p2 = p2; }
boolean check(List<Event> log, int i) {

return p1.check(log , i) && p2.check(log, i);

}
}

5

c. (5 points) Write a Prop Next with a constructor Next(Prop p) such that Next#check(log, i) returns true
if and only if p holds at position i+1.

Answer:

class Next implements Prop {
Prop p;

Next(Prop p) { this .p = p; }
boolean check(List<Event> log, int i) {

return p.check(log , i+1);

}
}

d. (5 points)Write a Prop Eventually with a constructor Eventually (Prop p) such that Eventually#check(log, i)
returns true if and only if p holds at some position j ≥ i .

Answer:

class Eventually implements Prop {
Prop p;

Eventually (Prop p) { this .p = p; }
boolean check(List<Event> log, int i) {

for (j = i; j < log. size (); j++) {
if (p.check(log , j)) { return true; }

}
return false ;

}
}

6

e. (5 points) Using new to create instances of the classes from parts a–d above, write code that creates
a Prop object that checks that at position i , the log entry is a move that starts at Tufts, and there exists
some position j > i (notice greater than, not greater than or equal to) at which the log entry is also a move
that starts at Tufts.

Answer:

new And(new TuftsStart(), new Next(new Eventually(new TuftsStart())));

7

Question 3. Reflection and Testing (26 points). In this problem, you will use reflection to build a very
simple testing framework. Your framework will use the following two annotations, which will be explained
in the questions below.

@Retention(RetentionPolicy .RUNTIME)

@Target(ElementType.METHOD)

public @interface Test { }

@Retention(RetentionPolicy .RUNTIME)

@Target(ElementType.METHOD)

public @interface Expected {
public Class<?> expected() default null;

}

Here are some useful methods from the Reflection API; ignore checked exceptions thrown by these methods.

• Class<?> Class.forName(String s) - return the class named s.

• Constructor<?> Class#getConstructor(Class<?>... parameterTypes) - return the constructor with the
given parameter types.

• Method[] Class#getMethods() - return the methods of the class.

• boolean Class#isInstance(Object o) - return true if and only if o is an instance of the class.

• Object Constructor#newInstance(Object... args) - create a new instance using the constructor and the
given constructor arguments args.

• Annotation Method#getAnnotation(Class<?> annotationClass) - return the annotation of annotationClass
if present on the method, otherwise return null.

• Object Method#invoke(Object obj, Object... args) - call the method with obj as the receiver and argu-
ments args.

• boolean Method#isAnnotationPresent(Class<?> annotationClass) - return true if and only if an anno-
tation from annotationClass is present on the method.

a. (5 points) Write a method List<Methods> tests(Class<?> c) that returns all the methods of c that
have the @Test annotation.

Answer:

List<Method> tests(Class<?> c) {
List<Method> ms = new LinkedList<>();

for (Method m : c.methods()) {
if (m.isAnnotationPresent(Test. class)) { ms.add(m); }

}
return ms;

}

8

b. (5 points) Write a method Class<?> expected(Method m) that takes a method m and either returns
null if it does not have an @Expected annotation; or, if it does have an @Expected annotation, returns the
value of the expected field of that annotation.

Answer:

Class<?> expected(Method m) {
Expected e = (Expected) m.getAnnotation(Expected.class);

if (e == null) return e;

return e.expected();

}

9

c. (16 points) Write a method List<Method> runTests(String clazz) that creates an instance of class clazz
and invokes all its @Test methods, which you can assume take no arguments and return void. It returns a
list containing any @Test methods that failed, i.e., that raised an exception when run. However, if any @Test
method is also annotated @Expected(expected = exceptionClass), then it is considered to pass if it raises an
exception that is an instance of exceptionClass , and to fail otherwise. The @Test methods can be called in
any order. Your code may call the methods written in parts a and b above.

Answer:

List<Method> runTests(String clazz) {
Class<?> c = Class.forName(clazz);

Constructor<?> cons = c.getConstructor();

Object o = c.newInstance();

List<Method> failures = new LinkedList<>();

for (Method m : tests(c)) {
Class<?> exn = expected(m);

try {
m.invoke(o);

if (exn != null) {
failures .add(m);

}
}
catch (Exception e) {

if (exn == null || !exn. isInstance (e)) {
failures .add(m);

}
}

}
return m;

}

10

Question 4. Scheduling (17 points). In this question you will develop and use a class Scheduler that
can force a multi-threaded Java program to follow a particular schedule. The class should work as follows:

• Scheduler has a constructor Scheduler(List<Thread> sched), which creates a scheduler that runs threads
in the order given by sched.

• Scheduler has a method void yield (). Clients of a Scheduler must include code to call yield at the
start of their run method, at the end of their run method, and any time they are willing to let another
thread run.

• Each of the threads call yield , but initially the only thread that continues (i.e., for which yield returns
instead of blocks) is the one listed as the first element of sched. The rest of the threads block. That
first thread runs for a while and eventually calls yield , at which point it blocks and the second thread
in sched runs. That runs until it calls yield , at which point it blocks and the third thread in sched
runs, and so on.

• We won’t specify what happens when the end of sched is reached; handle it however you like.

• You’ll want to use locks and wait/ notifyAll or await/ signalAll for this problem. You can use
Thread Thread.currentThread() to get the current thread.

• This class sounds complicated but doesn’t need much code.

As an example, if Scheduler s = new Scheduler(List.of(t1, t1, t2, t1, t1, t2 , t2 , t2)) is shared between
threads t1 and t2, the code below will print A B D C E F and both run methods will exit.

// Thread t1

void run() {
s . yield ();

System.out. println (”A”);

s . yield ();

System.out. println (”B”);

s . yield ();

System.out. println (”C”);

s . yield ();

}

// Thread t2

void run() {
s . yield ();

System.out. println (”D”);

s . yield ();

System.out. println (”E”);

s . yield ();

System.out. println (”F”);

s . yield ();

}

11

a. (8 points) Write the class Scheduler as described above.

Answer:

class Scheduler {
List<Thread> sched;

Scheduler(List<Thread> sched) { this.sched = sched; }

synchronized void yield() {
notifyAll ();

while (sched.isEmpty() || sched.get(0) != Thread.currentThread()) {
wait ();

}
sched.remove(0);

}
}

// Note most correct solutions instead tracked an index i into sched and incremented it

// rather than remove elements from sched.

12

b. (9 points) In class, we showed how the following program has a data race, and therefore may sometimes
print 1 instead of 2. Modify the code below to use Scheduler to force the threads to execute with a certain
interleaving so the code always prints 1. Mark up the code below directly with your changes.

class Racer extends Thread {

static int cnt;

void run() {

int y = cnt;

cnt = y + 1;

}

}
class Main {

static void main(String [] args) {

Thread t1 = new Racer();

Thread t2 = new Racer();

t1 . start (); t2. start ();

try { t1. join (); t2 . join () } catch (InterruptedException e) { }

System.out. printlnt (Racer.cnt);

}
}

Answer:

class Racer extends Thread {
static int cnt;

Scheduler s ;

void sched(Scheduler s) { this . s = s; }
void run() {

s . yield ();

int y = cnt;

s . yield ();

cnt = y + 1;

s . yield ();

}
}
class Main {

public static void main(String [] args) {
Thread t1 = new Racer();

Thread t2 = new Racer();

List<Thread> l = List.of(t1, t2, t2, t2, t1, t1);

Scheduler s = new Scheduler(l);

t1 .sched(s); t2 .sched(s);

t1 . start (); t2 . start ();

try { t1. join (); t2 . join () } catch (InterruptedException e) { }
System.out. println (Racer.cnt);

}
}

13

Question 5. Concurrency (12 points). For each of the following code snippets and scenarios, briefly
explain any potential concurrency issues, or briefly explain why there are no such issues.

a. (3 points) Suppose the following class is used with multiple threads that call produce and consume:

class Buffer {
Object buf;

synchronized void produce(Object o) {
if (buf != null) { wait (); }
buf = o;

notifyAll ();

}
synchronized Object consume() {

if (buf == null) { wait(); }
Object tmp = buf; buf = null;

notifyAll ();

return tmp;

} }

Answer: This code may not work because the wait calls are not in a loop and signaling is done
with notifyAll . For example, a consumer may be woken up from a wait but the buffer may have
become empty in the meantime due to another consumer running.

b. (3 points) Suppose the fileAccess method is called from multiple threads.

Lock l = new ReentrantLock();

void fileAccess () throws IOException {
l . lock ();

// Files . readAllLines (Path path) throws IOException reads all the lines of a file

List<String> lines = Files . readAllLines (Path.of(”foo. txt”));

l .unlock ();

}

Answer: This code may fail to unlock if an exception is raised by readAllLines , which could lead
to a deadlock.

14

c. (3 points) Suppose an instance of C is created and its inc and dec methods are called by multiple
threads.

class C {
static int cnt;

void inc () { synchronized(this) { cnt++; } }
static synchronized void dec() { cnt−−; }

}

Answer: This code has a data race on cnt because it is thread shared and writable, but two
different locks are used to protect it (one named by the instance of C, the other named by C.class).

d. (3 points) Suppose an instance of D is created and its inc method is called by multiple threads.

class D {
int cnt;

Lock l = new ReentrantLock();

void inc () {
int y;

l . lock (); y = cnt; l .unlock ();

l . lock (); cnt = y+1; l.unlock ();

} }

Answer: This program does not have a data race—all accesses to the shared variable cnt are
protected by the same lock—but it has an insufficiently larger critical/atomic section. The lock
should not be released between the read of cnt and increment of cnt.

15

