

Defining a Learning Problem

- Suppose we have three basic components:
. Set of tasks, T

2. A performance measure, P
3. Data describing some experience, E

A computer program learns if its performance at tasks in T, as measured by P, improves based on E.

From:Tom M. Mitchell, Machine Learning (1997)

An Example Problem

- Suppose we want to build a system, like Siri or Alexa, that responds to voice commands
- What are our components?

Tasks, T
2. Performance measure, P
3. Experience, E

Take system actions, based upon speech

Performance:

How often correct action is taken during testing

Experience?
This is the tricky part!

- Monday, 9 Sep. 2019

Machine Learning (COMP 135) 3

The Expert Systems Approach

- One (older) approach used expert-generated rules:

Find someone with advanced knowledge of linguistics
2. Get them to devise the structural rules of language's grammar and semantics
3. Encode those rules in program for parsing written language
4. Build another program to translate speech into written language, and tie that to another program for taking actions based upon the parsing

[^0]
Another Approach: Supervised Learning

- In supervised learning, we:

1. Provide a set of correct answers to a problem
2. Use algorithms to find (mostly) correct answers to similar problems

- We can still use experts, but their job is different:
- Don't need to devise complex rules for understanding speech
- Instead, they just have to be able to tell what the correct results of understanding look like

Another Approach: Supervised Learning

- Collect a large set of sample things a set of test users say to our system
- For each, map it to a correct outcome action the system should take
Set an alarm for 4:00 AM"
"Play Pod Save America"
 alarm_set (04:00) "Play Pod Save America" podcast_play("Pod
Save America")
- A large set of such (speech, action) pairs can be created
- This can then form the experience, E, the system needs
- Monday, 9 Sep. 2019

Machine Learning (COMP 135)

Inductive Learning

- In its simplest form, induction is the task of learning a function on some inputs from examples of its outputs
- For a function, f, that we want to learn, each of these training examples is a pair

$$
(x, f(x))
$$

- We assume that we do not yet know the actual form of the function f (if we did, we don't need to learn)
- Learning problem: find a hypothesis function, h, such that $h(x)=f(x)$ (at least most of the time), based on a training set of example input-output pairs

Decisions to Make

- When collecting our training example pairs, $(x, f(x))$, we still have some decisions to make
- Example: Medical Informatics
- We have some genetic information about patients
- Some get sick with a disease and some don't
- Patients live for a number of years (sick or not)
- Question: what do we want to learn from this data?
- Depending upon what we decide, we may use:
- Different models of the data
- Different machine learning approaches
- Different measurements of successful learning

One Approach: Regression

- We decide that we want to try to learn to predict how long patients will live
- We base this upon information about the degree to which they express a specific gene
A regression problem: the function we learn is the "best (linear) fit" to the data we have

Image source: https://aldro6l.github.io/microbiome-summer-school-2017/sections/basics/

- Monday, 9 Sep. 2019

Machine Learning (COMP 135)
9

Another Approach: Classification

- We decide instead that we simply want to decide whether a patient will get the disease or not
- We base this upon information about expression of two genes
- A classification problem: learned function separates individuals into 2 groups (binary classes)

Image source: https://aldro6l.github.io/microbiome-summer-school-20I7/sections/basics/
> Monday, 9 Sep. 2019
Machine Learning (COMP 135)

Which is the Correct Approach?

- The approach we use depends upon what we want to achieve, and what works best based upon the data we have
- Much machine learning involves investigating different approaches
- Monday, 9 Sep. 2019

Machine Learning (COMP 135)
11

Uncertainty and Learning

- Often, when learning, we deal with uncertainty:
- Incomplete data sets, with missing information
, Noisy data sets, with unreliable information
- Stochasticity: causes and effects related non-deterministically
- And many more..
- Probability theory gives us mathematics for such cases - A precise mathematical theory of chance and causality

Basic Elements of Probability

- Suppose we have some event, e : some fact about the world that may be true or false
- We write $P(e)$ for the probability that e occurs:

$$
0 \leq P(e) \leq 1
$$

- We can understand this value as:

1. $P(e)=1: e$ will certainly happen
2. $P(e)=0: e$ will certainly not happen
3. $P(e)=k, 0<k<1$: over an arbitrarily long stretch of time, we will observe the fraction

$$
\frac{\text { Event } e \text { occurs }}{\text { Total } \# \text { of events }}=k
$$

- Monday, 9 Sep. 2019

Machine Learning (COMP 135)

Properties of Probability

- Every event must either occur, or not occur:

$$
\begin{aligned}
P(e \vee \neg e) & =1 \\
P(e) & =1-p(\neg e)
\end{aligned}
$$

- Furthermore, suppose that we have a set of all possible events, each with its own probability:

$$
\begin{aligned}
\mathcal{E} & =\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \\
\mathcal{P} & =\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}
\end{aligned}
$$

- This set of probabilities is called a probability distribution, and it must have the following property:

$$
\sum_{i} p_{i}=1
$$

- Monday, 9 Sep. 2019

Probability Distributions

- A uniform distribution is one in which every event occurs with equal probability, which means that we have:

$$
\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \wedge \forall i, p_{i}=\frac{1}{k}
$$

- Such distributions are common in games of chance, e.g. where we have a fair coin-toss:

$$
\begin{aligned}
\mathcal{E} & =\{\text { Heads, Tails }\} \\
\mathcal{P}_{1} & =\{0.5,0.5\}
\end{aligned}
$$

- Not every distribution is uniform, and we might have a coin that comes up tails more often than heads (or even always!)

$$
\begin{aligned}
& \mathcal{P}_{2}=\{0.25,0.75\} \\
& \mathcal{P}_{3}=\{0.0,1.0\}
\end{aligned}
$$

- Monday, 9 Sep. 2019

Machine Learning (COMP 135) 15

Information Theory

- Claude Shannon created information theory in his 1948 paper,"A mathematical theory of communication"
- A theory of the amount of information that can be carried by communication channels
- Has implications in networks, encryption, compression, and many other areas
- Also the source of the term "bit" (credited to John Tukey)

Information Carried by Events

- Information is relative to our uncertainty about an event
- If we do not know whether an event has happened or not, then learning that fact is a gain in information
- If we already know this fact, then there is no information gained when we see the outcome
- Thus, if we have a fixed coin that always comes up tails, actually flipping it tells us nothing we don't already know
- Flipping a fair coin does tell us something, on the other hand, since we can't predict the outcome ahead of time

Biased Data Carries Less Information

- While flipping a fair coin yields 1.0 bit of information, flipping one that is biased gives us less
- If we have a somewhat biased coin, then we get:

$$
\begin{aligned}
\mathcal{E} & =\{\text { Heads, Tails }\} \\
\mathcal{P}_{2} & =\{0.25,0.75\} \\
I(\text { Tails }) & =\log _{2} \frac{1}{P(\text { Tails })}=\log _{2} \frac{1}{0.75}=\log _{2} 1.33 \approx 0.415
\end{aligned}
$$

- If we have a totally biased coin, then we get:

$$
\begin{aligned}
\mathcal{P}_{3} & =\{0.0,1.0\} \\
I(\text { Tails }) & =\log _{2} \frac{1}{P(\text { Tails })}=\log _{2} \frac{1}{1.0}=\log _{2} 1.0=0.0
\end{aligned}
$$

Amount of Information

- From N.Abramson (1963): If an event e_{i} occurs with probability p_{i}, the amount of information carried is:

$$
I\left(e_{i}\right)=\log _{2} \frac{1}{p_{i}}
$$

- (The base of the logarithm doesn't really matter, but if we use base-2, we are measuring information in bits)
- Thus, if we flip a fair coin, and it comes up tails, we have gained information equal to:

$$
I(\text { Tails })=\log _{2} \frac{1}{P(\text { Tails })}=\log _{2} \frac{1}{0.5}=\log _{2} 2=1.0
$$

Entropy: Total Average Information

- Shannon defined the entropy of a probability distribution as the average amount of information carried by events:

$$
\begin{aligned}
\mathcal{P} & =\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
H(\mathcal{P}) & =\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=-\sum_{i} p_{i} \log _{2} p_{i}
\end{aligned}
$$

- This can be thought of in a variety of ways, including:
- How much uncertainty we have about the average event
- How much information we get when an average event occurs
- How many bits on average are needed to communicate about the events (Shannon was interested in finding the most efficient overall encodings to use in transmitting information)

Entropy: Total Average Information

- For a coin, C, the formula for entropy becomes: $H(C)=-\left(P(\right.$ Heads $) \log _{2} P($ Heads $)+P($ Tails $) \log _{2} P($ Tails $\left.)\right)$
- A fair coin, $\{0.5,0.5\}$, has maximum entropy:
$H(C)=-\left(0.5 \log _{2} 0.5+0.5 \log _{2} 0.5\right)=1.0$
- A somewhat biased coin, \{0.25, 0.75$\}$, has less:
$H(C)=-\left(0.25 \log _{2} 0.25+0.75 \log _{2} 0.75\right) \approx 0.81$
- And a fixed coin, $\{0.0,1.0\}$, has none:
$H(C)=-\left(1.0 \log _{2} 1.0+0.0 \log _{2} 0.0\right)=0.0$
> Monday, 9 Sep. 2019
Machine Learning (COMP 135) 21

This Week

- Information Theory \& Decision Trees
- Some material in these slides drawn from Russel \& Norvig, Artificial Intelligence: A Modern Approach (Prentice Hal, 2010)
- Readings:
- Blog post on Information Theory (linked from class schedule)
- Chapter I of the Daumé text (linked from class schedule)
- Office Hours: 237 Halligan
- Tuesday, II:00 AM - I:00 PM

[^0]: - Monday, 9 Sep. 2019

