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Class #02:  Types of Learning;
Information Theory

Machine Learning (COMP 135):  M. Allen, 09 Sept. 19

Defining a Learning Problem
} Suppose we have three basic components:

1. Set of tasks, T
2. A performance measure, P
3. Data describing some experience, E
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A computer program learns if its performance at tasks in 
T, as measured by P, improves based on E.

From: Tom M. Mitchell, Machine Learning (1997) 
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An Example Problem
} Suppose we want to build a system, like Siri or Alexa, that 

responds to voice commands
} What are our components?

1. Tasks, T
2. Performance measure, P
3. Experience, E
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Task:

Take system actions,
based upon speech

Performance:

How often correct action 
is taken during testing

Experience?

This is the tricky part!

The Expert Systems Approach
} One (older) approach used 

expert-generated rules:
1. Find someone with advanced 

knowledge of linguistics
2. Get them to devise the 

structural rules of language’s 
grammar and semantics

3. Encode those rules in program 
for parsing written language

4. Build another program to 
translate speech into written 
language, and tie that to 
another program for taking 
actions based upon the parsing
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Another Approach: Supervised Learning
} In supervised learning, we:
1. Provide a set of correct answers to a problem

2. Use algorithms to find (mostly) correct answers to 
similar problems

} We can still use experts, but their job is different:
} Don’t need to devise complex rules for understanding speech
} Instead, they just have to be able to tell what the correct 

results of understanding look like
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Another Approach: Supervised Learning
} Collect a large set of 

sample things a set of test 
users say to our system

} For each, map it to a 
correct outcome action 
the system should take
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“Call my wife”

“Set an alarm for 4:00 AM”
“Play Pod Save America”

…

call(555-123-4567)

alarm_set(04:00)

podcast_play(“Pod 
Save America”)

…

} A large set of such (speech, action) pairs can be created
} This can then form the experience, E, the system needs

Inductive Learning
} In its simplest form, induction is the task of learning a 

function on some inputs from examples of its outputs

} For a function, f, that we want to learn, each of these 
training examples is a pair

(x, f (x ))

} We assume that we do not yet know the actual form of the 
function f (if we did, we don’t need to learn)

} Learning problem: find a hypothesis function, h, such that 
h (x ) = f (x ) (at least most of the time), based on a 
training set of example input-output pairs
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Decisions to Make
} When collecting our training example pairs, (x, f (x )), we 

still have some decisions to make

} Example: Medical Informatics
} We have some genetic information about patients
} Some get sick with a disease and some don’t
} Patients live for a number of years (sick or not)

} Question: what do we want to learn from this data?
} Depending upon what we decide, we may use:

} Different models of the data
} Different machine learning approaches
} Different measurements of successful learning
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One Approach: Regression

Image source: https://aldro61.github.io/microbiome-summer-school-2017/sections/basics/

} We decide that we want 
to try to learn to predict 
how long patients will live

} We base this upon 
information about the 
degree to which they 
express a specific gene

} A regression problem: the 
function we learn is the 
“best (linear) fit” to the 
data we have
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Another Approach: Classification

Image source: https://aldro61.github.io/microbiome-summer-school-2017/sections/basics/

} We decide instead that we 
simply want to decide 
whether a patient will get 
the disease or not

} We base this upon 
information about 
expression of two genes

} A classification problem: 
learned function separates 
individuals into 2 groups 
(binary classes)
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Which is the Correct Approach?

} The approach we use depends upon what we want to achieve, and 
what works best based upon the data we have

} Much machine learning involves investigating different approaches
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Uncertainty and Learning
} Often, when learning, we deal with uncertainty:

} Incomplete data sets, with missing information
} Noisy data sets, with unreliable information
} Stochasticity: causes and effects related non-deterministically
} And many more…

} Probability theory gives us mathematics for such cases
} A precise mathematical theory of chance and causality
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Basic Elements of Probability
} Suppose we have some event, e : some fact about the world 

that may be true or false

} We write P (e ) for the probability that e occurs:

} We can understand this value as:
1 . P (e ) = 1: e will certainly happen
2 . P (e ) = 0: e will certainly not happen
3 . P (e ) = k, 0 < k < 1: over an arbitrarily long stretch of 

time, we will observe the fraction
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0  P (e)  1

Event e occurs

Total # of events
= k

Properties of Probability
} Every event must either occur, or not occur:

} Furthermore, suppose that we have a set of all possible 
events, each with its own probability:

} This set of probabilities is called a probability distribution, and 
it must have the following property: 

Monday, 9 Sep. 2019 Machine Learning (COMP 135) 14

P (e _ ¬e) = 1

P (e) = 1� p(¬e)

E = {e1, e2, . . . , ek}
P = {p1, p2, . . . , pk}

X

i

pi = 1

Probability Distributions
} A uniform distribution is one in which every event occurs with 

equal probability, which means that we have:

} Such distributions are common in games of chance, e.g. where 
we have a fair coin-toss:

} Not every distribution is uniform, and we might have a coin 
that comes up tails more often than heads (or even always!)
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P = {p1, p2, . . . , pk} ^ 8i, pi =
1

k

E = {Heads, Tails}
P1 = {0.5, 0.5}

P2 = {0.25, 0.75}
P3 = {0.0, 1.0}

Information Theory
} Claude Shannon created 

information theory in his 1948 
paper, “A mathematical theory 
of communication”

} A theory of the amount of 
information that can be carried 
by communication channels

} Has implications in networks, 
encryption, compression, and 
many other areas

} Also the source of the term 
“bit” (credited to John Tukey)
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Photo source: Konrad Jacobs

(https://opc.mfo.de/detail?photo_id=3807)
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Information Carried by Events
} Information is relative to our uncertainty about an event

} If we do not know whether an event has happened or not, 
then learning that fact is a gain in information

} If we already know this fact, then there is no information 
gained when we see the outcome

} Thus, if we have a fixed coin that always comes up tails, 
actually flipping it tells us nothing we don’t already know

} Flipping a fair coin does tell us something, on the other 
hand, since we can’t predict the outcome ahead of time
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Amount of Information
} From N. Abramson (1963): If an event ei occurs with 

probability pi , the amount of information carried is:

} (The base of the logarithm doesn’t really matter, but if we 
use base-2, we are measuring information in bits)

} Thus, if we flip a fair coin, and it comes up tails, we have 
gained information equal to:
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I(Tails) = log2
1

P (Tails)
= log2

1

0.5
= log2 2 = 1.0

I(ei) = log2
1

pi

Biased Data Carries Less Information
} While flipping a fair coin yields 1.0 bit of information, 

flipping one that is biased gives us less

} If we have a somewhat biased coin, then we get:

} If we have a totally biased coin, then we get:
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E = {Heads, Tails}
P2 = {0.25, 0.75}

I(Tails) = log2
1

P (Tails)
= log2

1

0.75
= log2 1.33 ⇡ 0.415

P3 = {0.0, 1.0}

I(Tails) = log2
1

P (Tails)
= log2

1

1.0
= log2 1.0 = 0.0

Entropy: Total Average Information
} Shannon defined the entropy of a probability distribution 

as the average amount of information carried by events:

} This can be thought of in a variety of ways, including:
} How much uncertainty we have about the average event
} How much information we get when an average event occurs
} How many bits on average are needed to communicate about 

the events (Shannon was interested in finding the most efficient 
overall encodings to use in transmitting information)
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P = {p1, p2, . . . , pk}

H(P) =
X

i

pi log2
1

pi
= �

X

i

pi log2 pi
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Entropy: Total Average Information
} For a coin, C, the formula for entropy becomes:

} A fair coin, {0.5, 0.5}, has maximum entropy:

} A somewhat biased coin, {0.25, 0.75}, has less:

} And a fixed coin, {0.0, 1.0}, has none:
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H(C) = �(P (Heads) log2 P (Heads) + P (Tails) log2 P (Tails))

H(C) = �(1.0 log2 1.0 + 0.0 log2 0.0) = 0.0

H(C) = �(0.5 log2 0.5 + 0.5 log2 0.5) = 1.0

H(C) = �(0.25 log2 0.25 + 0.75 log2 0.75) ⇡ 0.81

A Mathematical Definition

} It is easy to show that for any distribution, entropy is always 
greater than or equal to 0 (never negative)

} Maximum entropy occurs with a uniform distribution
} In such cases, entropy is log2 k , where k is the number of different 

probabilistic outcomes

} Thus, for any distribution possible, we have:
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P = {p1, p2, . . . , pk}
0  H(P)  log2 k

H(P) = �
X

i

pi log2 pi

This Week
} Information Theory & Decision Trees

} Some material in these slides drawn from Russel & Norvig, 
Artificial Intelligence:  A Modern Approach (Prentice Hal, 2010)

} Readings: 
} Blog post on Information Theory (linked from class schedule)
} Chapter 1 of the Daumé text (linked from class schedule)

} Office Hours:  237 Halligan
} Tuesday, 11:00 AM – 1:00 PM
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