

Amount of Information

From N.Abramson (1963): If an event e_i occurs with probability p_i, the amount of information carried is:

$$I(e_i) = \log_2 \frac{1}{p}$$

- (The base of the logarithm doesn't really matter, but if we use base-2, we are measuring information in bits)
- Thus, if we flip a fair coin, and it comes up tails, we have gained information equal to:

$$I(Tails) = \log_2 \frac{1}{P(Tails)} = \log_2 \frac{1}{0.5} = \log_2 2 = 1.0$$

Machine Learning (COMP 135) 18

This Week

Machine Learning (COMP 135) 23