Tufts Class \#03: Decision Trees

Machine Learning (COMP 135): M. Allen, 11 Sept. 19

$$
\begin{aligned}
& \text { Entropy: Total Average Information } \\
& \text { For a coin, } C \text {, the formula for entropy becomes: } \\
& H(C)=-\left(P(\text { Heads }) \log _{2} P(\text { Heads })+P(\text { Tails }) \log _{2} P(\text { Tails })\right) \\
& \text { A fair coin, }\{0.5,0.5\} \text {, has maximum entropy: } \\
& H(C)=-\left(0.5 \log _{2} 0.5+0.5 \log _{2} 0.5\right)=1.0 \\
& \text { A somewhat biased coin, }\{0.25,0.75\} \text {, has less: } \\
& H(C)=-\left(0.25 \log _{2} 0.25+0.75 \log _{2} 0.75\right) \approx 0.81 \\
& \text { And a fixed coin, }\{0.0,1.0\} \text {, has none: } \\
& H(C)=-\left(1.0 \log _{2} 1.0+0.0 \log _{2} 0.0\right)=0.0 \\
& \text { Wednesday, 11 Sep. 2019 }
\end{aligned}
$$

Review: Entropy

- Shannon defined the entropy of a probability distribution as the average amount of information carried by events:

$$
\begin{aligned}
\mathcal{P} & =\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
H(\mathcal{P}) & =\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=-\sum_{i} p_{i} \log _{2} p_{i}
\end{aligned}
$$

- This can be thought of in a variety of ways, including:
- How much uncertainty we have about the average event
- How much information we get when an average event occurs
- How many bits on average are needed to communicate about the events (Shannon was interested in finding the most efficient overall encodings to use in transmitting information)
- Wednesday, 11 Sep. 2019

Machine Learning (COMP 135)
2

Review: Inductive Learning

- In its simplest form, induction is the task of learning a function on some inputs from examples of its outputs
- For a target function, f, each training example is a pair

$$
(x, f(x))
$$

- We assume that we do not yet know the actual form of the function f (if we did, we don't need to learn)
- Learning problem: find a hypothesis function, h, such that $h(x)=f(x)$ most of the time, based on a training set of example input-output pairs

Wednesday, 11 Sep. 2019
Machine Learning (COMP 135) 4

Decision Trees

- A decision tree leads us from a set of attributes (features of the input) to some output

For example, we have a database of customer records for restaraunts

- These customers have made a number of decisions about whether to wait for a table, based on a number of attributes:

Alternate: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
FrilSat: is today Friday or Saturday?
Patrons: pire we hungry?
Price: price range ($\$, \$ \$, \$ \$$)
Raining: is it raining outside?
R Reservation: have we made a reservation?
2. Type: kind of restaurant (French, Italian, Thai, Burger)

WaitEstimate: estimated wait time in minutes ($0-10,10-30,30-60,>60$)

- The function we want to learn is whether or not a (future) customer will decide to wait, given some particular set of attributes
- Wednesday, 11 Sep. 201

Machine Learning (COMP 135)
5

Decisions Based on Attributes

- Training set: cases where patrons have decided to wait or not, along with the associated attributes for each case

Example	Attributes										$\begin{aligned} & \text { Target } \\ & \text { Wait } \end{aligned}$
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	958	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	s	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	s	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$58	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$8	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$5	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	SS5	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	s	F	F	Burger	30-60	T

Image source: Russel \& Norvig, Al: A Modern Approach (Prentice Hal, 2010)

- We now want to learn a tree that agrees with the decisions already made, in hopes that it will allow us to predict future decisions
(Wednesday, 11 Sep. 2019

Decision Trees are Expressive

A	B	A \&\& !
T	T	F
T	F	T
F	T	F
F	F	F

- Such trees can express any deterministic function we:

For example, in boolean functions, each row of a truth-table will correspond to a path in a tree
For any such function, there is always a tree: just make each example a different path to a correct leaf output

- A Problem: such trees most often do not generalize to new examples

Another Problem: we want compact trees to simplify inference

- Wednesday, 11 Sep. 2019

Machine Learning (COMP 135)

Why Not Search for Trees?

- One thing we might consider would be to search through possible trees to find ones that are most compact and consistent with our inputs
(Exhaustive search is too expensive, however, due to the large number of possible functions (trees) that exist
- For n binary-valued attributes, and boolean decision outputs, there are 2^{2} possibilities
. For 5 such attributes, we have 4,294,967,296 trees!
, Even restricting our search to conjunctions over attributes, it is easy to get 3^{n} possible trees

Wednesday, 11 Sep. 201

Decision Tree Learning Algorithm

function DecisionTreetrain(data, remaining_features, parent_guess)
guess \leftarrow most frequent label in data
if (all labels in data same) or (remaining_features $=\emptyset$) then
return Leaf(guess)
else if $d a t a=\emptyset$ then
return LeAF(parent_guess)
else
$F^{\star} \leftarrow$ MOSTIMPORTANT(remaining_features, data)
Tree \leftarrow a new decision tree with root-feature F
for each value f of F^{\star} do
data $_{f} \leftarrow\{x \in$ data $\mid x$ has feature-value $f\}$
$s_{u} b_{f} \leftarrow$ DecisionTreeTrain (data ${ }_{f}$, remaining_features $-F^{\star}$, guess)
add a branch to tree with label-value f and subtree $s u b_{f}$
endfor
return Tree
endif

Wednesday, 11 Sep. 2019
Machine Learning (COMP 135)
11

Building Trees Top-Down

- Rather than search for all trees, we build our trees by: Choosing an attribute A from our set

2. Dividing our examples according to the values of A
3. Placing each subset of examples into a sub-tree below the node for attribute A

- This can be implemented in a number of ways, but is perhaps most easily understood recursively
- The main question becomes: how do we choose the attribute A that we use to split our examples?

Base Cases

function DecisionTreeTrain(data, remaining_features, parent_guess) guess \leftarrow most frequent label in data
if (all labels in data same) or (remaining_features $=\emptyset$) then return LEAF (guess)
return LEAF(parent_guess)

- The algorithm stops in three cases:
I. Perfect classification of data found: use it as a leaf-label

2. No features left: use most common class
3. No data left: use most common class of parent data

Recursive Case

function DecisionTreetrain(data, remaining_features, parent_guess) guess \leftarrow most frequent label in data
$F^{\star} \leftarrow$ MostImportant(remaining_features, data)
Tree \leftarrow a new decision tree with root-feature F^{\star}
for each value f of F^{\star} do
data $_{f} \leftarrow\{x \in$ data $\mid x$ has feature-value $f\}$
sub $_{f} \leftarrow$ DecisionTreeTrain $\left(\right.$ data $_{f}$, remaining_features $-F^{\star}$, guess)
add a branch to tree with label-value f and subtree sub $_{f}$
endfor
return Tree
MOSTIMPORTANT(): rates features for importance in making decisions about given set of examples (only complex part)

After this attribute is chosen, we divide the data according to the values of this feature, and recursively build subtrees out of each partial data-set.

- Wednesday, 11 Sep. 2019

Machine Learning (COMP 135) 13

Choosing "Important" Attributes

- The precise tree we build will depend upon the order in which the algorithm chooses attributes and splits up examples
- Suppose we have the following training set of 6 examples, defined by the boolean attributes A, B, C, with outputs as shown:

Case	A	B	C	Output
1	T	F	F	T
2	F	T	T	F
3	T	T	F	T
4	F	F	T	T
5	F	F	F	F
6	F	T	F	F

- We will consider two possible orders for the attributes when we build our tree: $\{A, B, C\}$ and $\{C, B, A\}$
\Rightarrow Wednesday, 11 Sep. 2019 Machine Learning (COMP 135)

Choosing "Important" Attributes

- Order $\{A, B, C\}$: next, divide un-decided cases based on variable B

Choosing "Important" Attributes

- $\operatorname{Order}\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$: last, divide un-decided cases based on variable CMachine Learning (COMP 135)
Now, we can replace th last nodes with the
relevant decision Output.

17

Choosing "Important" Attributes

- Order $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$: the final decision tree for our data-set

Case	A	B	C	Output
1	T	F	F	T
2	F	T	T	F
3	T	T	F	T
4	F	F	T	T
5	F	F	F	F
6	F	T	F	F

Choosing "Important" Attributes

- If we reverse the order of attributes and do the same process, we get a different, somewhat larger tree (although both will give same decision results on our set)

$\{A, B, C\}$

$\{C, B, A\}$

Wednesday, 11 Sep. $2019 \quad$ Machine Learning (COMP 135) 19

Choosing "Important" Attributes

- The Daumé text suggests one test for importance, based upon a simple counting method:
- Consider each remaining attribute:

Divide data-set according to possible values of that attribute
For each subset, assign all data the majority category
Count how many total correct you would get this way

- We will examine another approach, based on information theory (you will implement both in your first program)

- Intuitively, a good choice of the attribute to use is one that gives us the most information about how output decisions are made
- Ideally, it would divide our outputs perfectly, telling us everything we
needed to know to make our decision

Often, a single attribute only tells us part of what we need to know, so we prefer those that tell us the most
In the example, Patrons gives us more information than Type, since some values of the first attribute predict decision perfectly, while no values of second do the same

Wednesday, 11 Sep. 2019
Machine Learning (COMP 135)

Entropy for Decision Trees

- For a binary (yes/no) decision problem, we can treat a training set with p positive examples and n negative examples as if it were a random variable with two values and probabilities:

$$
P(P o s)=\frac{p}{p+n} \quad P(N e g)=\frac{n}{p+n}
$$

- We can then use the definition of entropy to measure the information gained by finding out whether an example is positive or negative:
$H($ Examples $)=-\left(P(\right.$ Pos $) \log _{2} P($ Pos $\left.)+P(N e g) \log _{2} P(N e g)\right)$

$$
=-\left(\frac{p}{p+n} \log _{2} \frac{p}{p+n}+\frac{n}{p+n} \log _{2} \frac{n}{p+n}\right)
$$

- Wednesday, 11 Sep. 2019
Machine Learning (COMP 135)

Choosing Variables Using

the Information Gain

- Now we can be precise about how Patrons gives us more information than Type:

$$
\begin{aligned}
H(\text { Examples }) & =-\left(\frac{6}{12} \log _{2} \frac{6}{12}+\frac{6}{12} \log _{2} \frac{6}{12}\right) \\
& =-\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{2} \log _{2} \frac{1}{2}\right) \\
& =-\left(-\frac{1}{2}+-\frac{1}{2}\right)=1.0
\end{aligned}
$$

Machine Learning (COMP 135)

- Wednesday, 11 Sep. 2019
ednesday, 11 Sep. 2019
Choosing Variables Using the Information Gain

- Now we can be precise about how Patrons gives us more information than Type:
Gain(Patrons) $=H($ Examples $)-$ Remainder $($ Patrons $)$

$$
=1.0-\left(\frac{2}{12} H\left(E_{1}\right)+\frac{4}{12} H\left(E_{2}\right)+\frac{6}{12} H\left(E_{3}\right)\right)
$$

Thus, since we have:

$$
H\left(E_{1}\right)=-\left(\frac{0}{2} \log _{2} \frac{0}{2}+\frac{2}{2} \log _{2} \frac{2}{2}\right)=0
$$

$$
H\left(E_{2}\right)=-\left(\frac{4}{4} \log _{2} \frac{4}{4}+\frac{0}{4} \log _{2} \frac{0}{4}\right)=0
$$

$$
H\left(E_{3}\right)=-\left(\frac{2}{6} \log _{2} \frac{2}{6}+\frac{4}{6} \log _{2} \frac{4}{6}\right) \approx 0.918
$$

$$
\operatorname{Gain}(\text { Patrons })=1.0-\frac{0.918}{2}=0.541
$$

Wednesday, 11 Sep. 2019
Machine Learning (COMP 135) 2

Choosing Variables Using the Information Gain

- Now we can be precise about how Patrons gives us more information than Type:

$$
\begin{aligned}
\text { Gain(Type }) & =H(\text { Examples })-\text { Remainder }(\text { Type }) \\
& =1.0-\left(\frac{2}{12} H\left(E_{1}\right)+\frac{2}{12} H\left(E_{2}\right)+\frac{4}{12} H\left(E_{3}\right)+\frac{4}{12} H\left(E_{4}\right)\right)
\end{aligned}
$$

Thus, since we have:

$$
H\left(E_{1}\right)=H\left(E_{2}\right)=H\left(E_{3}\right)=H\left(E_{4}\right)=1.0
$$

$$
\operatorname{Gain}(\text { Patrons })=1.0-1.0=0
$$

And so we would choose to split on Patrons, since:

$$
\operatorname{Gain}(\text { Patrons })=0.541>\operatorname{Gain}(\text { Type })=0
$$

Wednesday, 11 Sep. $2019 \quad$ Machine Learning (COMP 135)

Performance of Learning

- If we start with a set of 100 random examples of the restaurant problem, we can see that the accuracy of the learning increases relative to the size of the training set
- Wednesday, 11 Sep. 2019

Machine Learning (COMP 135)

Information Gain and Other Heuristics

- A couple questions could be raised about the use of information gain to choose attributes in a tree:
b What do we do when there is a tie?
- Are there other measures we could use instead?
- For the first, there are any number of ways we might break ties between attributes with the same information gain:
, Deterministically (e.g., first attribute we consider)
"Non-deterministically (e.g., a "coin flip" in case of ties)
, Based upon some other heuristic (e.g. choosing those that give us the largest number of set decisions)
- For the second, it is important to note that information gain is only a measure that works in many cases-that doesn't mean there might not be something else we could use in specific instances that would actually do better (indeed, Daumé suggests another such heuristic)
- Wednesday, 11 Sep. 2019

Machine Learning (COMP 135)
29

This Week

- Information Theory \& Decision Trees
- Some material in these slides drawn from Russel \& Norvig, Artificial Intelligence: A Modern Approach (Prentice Hal, 2010)
- Readings:
b Blog post on Information Theory (linked from class schedule)
- Chapter I of the Daumé text (linked from class schedule)
- Office Hours: 237 Halligan
- Tuesday, II:00 AM - I:00 PM
- Wednesday, 11 Sep. 2019

