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Class #03:  Decision Trees

Machine Learning (COMP 135):  M. Allen, 11 Sept. 19

Review: Entropy
} Shannon defined the entropy of a probability distribution 

as the average amount of information carried by events:

} This can be thought of in a variety of ways, including:
} How much uncertainty we have about the average event
} How much information we get when an average event occurs
} How many bits on average are needed to communicate about 

the events (Shannon was interested in finding the most efficient 
overall encodings to use in transmitting information)
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Entropy: Total Average Information
} For a coin, C, the formula for entropy becomes:

} A fair coin, {0.5, 0.5}, has maximum entropy:

} A somewhat biased coin, {0.25, 0.75}, has less:

} And a fixed coin, {0.0, 1.0}, has none:

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 3

H(C) = �(P (Heads) log2 P (Heads) + P (Tails) log2 P (Tails))

H(C) = �(1.0 log2 1.0 + 0.0 log2 0.0) = 0.0

H(C) = �(0.5 log2 0.5 + 0.5 log2 0.5) = 1.0

H(C) = �(0.25 log2 0.25 + 0.75 log2 0.75) ⇡ 0.81

Review: Inductive Learning
} In its simplest form, induction is the task of learning a 

function on some inputs from examples of its outputs

} For a target function, f, each training example is a pair

(x, f (x ))

} We assume that we do not yet know the actual form of the 
function f (if we did, we don’t need to learn)

} Learning problem: find a hypothesis function, h, such that 
h (x ) = f (x ) most of the time, based on a training set of 
example input-output pairs
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Decision Trees
} A decision tree leads us from a set of attributes (features of the input) to 

some output

} For example, we have a database of customer records for restaraunts
} These customers have made a number of decisions about whether to wait 

for a table, based on a number of attributes:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated wait time in minutes (0-10, 10-30, 30-60, >60)

} The function we want to learn is whether or not a (future) customer will 
decide to wait, given some particular set of attributes

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 5

Decisions Based on Attributes
} Training set: cases where patrons have decided to wait or not, along 

with the associated attributes for each case

} We now want to learn a tree that agrees with the decisions already 
made, in hopes that it will allow us to predict future decisions

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 6

Image source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)

Decision Tree Functions
} For the examples given, here is a “true” tree (one that will lead 

from the inputs to the same outputs)
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Figure 18.2 FILES: figures/restaurant-tree.eps (Tue Nov 3 16:23:29 2009). A decision tree for
deciding whether to wait for a table.

Image source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)

Decision Trees are Expressive

} Such trees can express any deterministic function we:
} For example, in boolean functions, each row of a truth-table will correspond to a 

path in a tree
} For any such function, there is always a tree:  just make each example a different 

path to a correct leaf output

} A Problem:  such trees most often do not generalize to new examples
} Another Problem:  we want compact trees to simplify inference

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 8

A B A && !B

T T F

T F T

F T F

F F F

A

B B

F T F F

FT

FT FT



3

Why Not Search for Trees?
} One thing we might consider would be to search through 

possible trees to find ones that are most compact and 
consistent with our inputs
} Exhaustive search is too expensive, however, due to the large 

number of possible functions (trees) that exist

} For n binary-valued attributes, and boolean decision 
outputs, there are 22n possibilities
} For 5 such attributes, we have 4,294,967,296 trees!
} Even restricting our search to conjunctions over 

attributes, it is easy to get 3n possible trees
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Building Trees Top-Down
} Rather than search for all trees, we build our trees by:

1. Choosing an attribute A from our set
2. Dividing our examples according to the values of A
3. Placing each subset of examples into a sub-tree below the 

node for attribute A

} This can be implemented in a number of ways, but is 
perhaps most easily understood recursively

} The main question becomes:  how do we choose the 
attribute A that we use to split our examples?
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Decision Tree Learning Algorithm
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function DecisionTreeTrain(data, remaining features, parent guess)
guess most frequent label in data
if (all labels in data same) or (remaining features = ;) then
return Leaf(guess)

else if data = ; then
return Leaf(parent guess)

else
F ?  MostImportant(remaining features, data)
Tree a new decision tree with root-feature F ?

for each value f of F ? do
dataf  {x 2 data |x has feature-value f}
subf  DecisionTreeTrain(dataf , remaining features� F ?, guess)
add a branch to tree with label-value f and subtree subf

endfor
return Tree

endif<latexit sha1_base64="nOpu9yxClTjP8pkm6lbpyBIfqXg="></latexit>

Base Cases

} The algorithm stops in three cases:
1. Perfect classification of data found: use it as a leaf-label

2. No features left: use most common class
3. No data left: use most common class of parent data
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function DecisionTreeTrain(data, remaining features, parent guess)
guess most frequent label in data
if (all labels in data same) or (remaining features = ;) then
return Leaf(guess)

else if data = ; then
return Leaf(parent guess)

...<latexit sha1_base64="MKAseyjvA83exL9uTviFAcMQQPo="></latexit>
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Recursive Case
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MOSTIMPORTANT():  rates features for importance in making decisions 
about given set of examples (only complex part)

function DecisionTreeTrain(data, remaining features, parent guess)
guess most frequent label in data

...
F ?  MostImportant(remaining features, data)
Tree a new decision tree with root-feature F ?

for each value f of F ? do
dataf  {x 2 data |x has feature-value f}
subf  DecisionTreeTrain(dataf , remaining features� F ?, guess)
add a branch to tree with label-value f and subtree subf

endfor
return Tree

<latexit sha1_base64="Qa6/IVAednpflwcqqsm6uBfj/WA="></latexit>

After this attribute is chosen, we divide the data according to the values of 
this feature, and recursively build subtrees out of each partial data-set.

Note: we remove the 
chosen feature, so it is 

never reused.

Choosing “Important” Attributes
} The precise tree we build will depend upon the order in which the 

algorithm chooses attributes and splits up examples
} Suppose we have the following training set of 6 examples, defined by 

the boolean attributes A, B, C, with outputs as shown:

} We will consider two possible orders for the attributes when we 
build our tree: {A, B, C} and {C, B, A}
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Case A B C Output
1 T F F T
2 F T T F
3 T T F T

4 F F T T
5 F F F F
6 F T F F

Choosing “Important” Attributes
} Suppose we use the order {A, B, C}: start by dividing up cases based on variable A

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 15

Case A B C Output

1 T F F T

2 F T T F

3 T T F T

4 F F T T

5 F F F F

6 F T F F

A?

1:T, 3:T 2:F, 4:T, 5:F, 6:F

T F

Each of these is a case for 
which attribute A has the 
right value, along with the 
appropriate Output value 

for that case.

Here, all Outputs are the 
same, so we can replace 
this with a simple leaf 
node with that value.

This is an example of the 
second base case 

stopping condition of the 
recursive algorithm.

Choosing “Important” Attributes
} Order {A, B, C}: next, divide un-decided cases based on variable B
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Case A B C Output

1 T F F T

2 F T T F

3 T T F T

4 F F T T

5 F F F F

6 F T F F

A?

T B?

T F

2:F, 6:F 4:T, 5:F

T F

Again, all Outputs are the 
same on this branch.
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Choosing “Important” Attributes
} Order {A, B, C}: last, divide un-decided cases based on variable C
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Case A B C Output

1 T F F T

2 F T T F

3 T T F T

4 F F T T

5 F F F F

6 F T F F

A?

T B?

T F

F C?

T F

Now, we can replace the 
last nodes with the 

relevant decision Output.

4:T 5:F

T F

Choosing “Important” Attributes
} Order {A, B, C}: the final decision tree for our data-set
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Case A B C Output

1 T F F T

2 F T T F

3 T T F T

4 F F T T

5 F F F F

6 F T F F

A?

T B?

T F

F C?

T F

T F

T F

Choosing “Important” Attributes
} If we reverse the order of attributes and do the same process, we get a different, 

somewhat larger tree (although both will give same decision results on our set)
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Choosing “Important” Attributes
} The Daumé text suggests one test for importance, based 

upon a simple counting method:
} Consider each remaining attribute:

1. Divide data-set according to possible values of that attribute

2. For each subset, assign all data the majority category
3. Count how many total correct you would get this way

} We will examine another approach, based on information 
theory (you will implement both in your first program)
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Another Approach

} Intuitively, a good choice of the attribute to use is one that gives us 
the most information about how output decisions are made
} Ideally, it would divide our outputs perfectly, telling us everything we 

needed to know to make our decision
} Often, a single attribute only tells us part of what we need to know, so 

we prefer those that tell us the most
} In the example, Patrons gives us more information than Type, since some 

values of the first attribute predict decision perfectly, while no values of 
second do the same
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

= waits

= doesn’t wait Entropy for Decision Trees
} For a binary (yes/no) decision problem, we can treat a training 

set with p positive examples and n negative examples as if it 
were a random variable with two values and probabilities:

} We can then use the definition of entropy to measure the 
information gained by finding out whether an example is 
positive or negative: 
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P (Pos) =
p

p + n
P (Neg) =

n

p + n

H(Examples) = �(P (Pos) log2 P (Pos) + P (Neg) log2 P (Neg))

= �(
p

p + n
log2

p

p + n
+

n

p + n
log2

n

p + n
)

Information Gain
} When we choose an attribute A with d values, we divide 

our training set into sub-sets E1, …, Ed
} Each set Ek has its own number of positive and negative 

examples, pk and nk , and entropy H (Ek)

} The total remaining entropy after dividing on A is thus:

} And the total information gain (entropy reduction) if we 
do choose to use A as the dividing-branch variable is:
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Remainder(A) =
dX

k=1

pk + nk

p + n
H(Ek)

Gain(A) = H(Examples)�Remainder(A)

Choosing Variables Using 
the Information Gain

} Now we can be precise about how Patrons gives us more information than Type:
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24
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Machine Learning (COMP 135)
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Choosing Variables Using 
the Information Gain

} Now we can be precise about how Patrons gives us more information than Type:
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

= waits

= doesn’t wait

Gain(Patrons) = H(Examples)�Remainder(Patrons)

= 1.0� (
2

12
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4

12
H(E2) +

6

12
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Thus, since we have:

H(E1) = �(
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2

6
log2
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6
+

4

6
log2

4

6
) ⇡ 0.918

Gain(Patrons) = 1.0� 0.918

2
= 0.541

Machine Learning (COMP 135)

Choosing Variables Using 
the Information Gain

} Now we can be precise about how Patrons gives us more information than Type:
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

= waits

= doesn’t wait

Gain(Type) = H(Examples)�Remainder(Type)

= 1.0� (
2

12
H(E1) +

2

12
H(E2) +

4

12
H(E3) +

4

12
H(E4))

Thus, since we have:

H(E1) = H(E2) = H(E3) = H(E4) = 1.0

Gain(Patrons) = 1.0� 1.0 = 0

And so we would choose to split on Patrons, since:

Gain(Patrons) = 0.541 > Gain(Type) = 0

Learning with Information Gain
} If we use this information gain concept of information to rate 

the IMPORTANCE of an attribute, and always split based on the 
one that gives us the greatest gain, we can learn the following, 
more compact tree for the restaurant example:

Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 27

201

None Some Full

Patrons?

No Yes

No  Yes

Hungry?

No

No  Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Figure 18.6 FILES: figures/induced-restaurant-tree.eps (Tue Nov 3 16:23:04 2009). The deci-
sion tree induced from the 12-example training set.

Image source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)

Performance of Learning

} If we start with a set of 100 random examples of the 
restaurant problem, we can see that the accuracy of the 
learning increases relative to the size of the training set
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202 Chapter 18. Learning from Examples

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Pr
op

or
tio

n 
co

rr
ec

t o
n 

te
st

 se
t

Training set size

Figure 18.7 FILES: . A learning curve for the decision tree learning algorithm on 100 randomly
generated examples in the restaurant domain. Each data point is the average of 20 trials.

Image source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)
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Information Gain and Other Heuristics
} A couple questions could be raised about the use of 

information gain to choose attributes in a tree:
} What do we do when there is a tie?
} Are there other measures we could use instead?

} For the first, there are any number of ways we might break ties 
between attributes with the same information gain:
} Deterministically (e.g.,  first attribute we consider)
} Non-deterministically (e.g., a “coin flip” in case of ties)
} Based upon some other heuristic (e.g. choosing those that give us 

the largest number of set decisions)

} For the second, it is important to note that information gain is 
only a measure that works in many cases—that doesn’t mean 
there might not be something else we could use in specific 
instances that would actually do better (indeed, Daumé
suggests another such heuristic)
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This Week
} Information Theory & Decision Trees

} Some material in these slides drawn from Russel & Norvig, 
Artificial Intelligence:  A Modern Approach (Prentice Hal, 2010)

} Readings: 
} Blog post on Information Theory (linked from class schedule)
} Chapter 1 of the Daumé text (linked from class schedule)

} Office Hours:  237 Halligan
} Tuesday, 11:00 AM – 1:00 PM
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