

Review: Entropy• Shannon defined the entropy of a probability distribution
as the average amount of information carried by events:
 $\mathcal{P} = \{p_1, p_2, \dots, p_k\}$
 $\mathcal{H}(\mathcal{P}) = \sum_i p_i \log_2 \frac{1}{p_i} = -\sum_i p_i \log_2 p_i$ • This can be thought of in a variety of ways, including:
• How much uncertainty we have about the average event
• How much information we get when an average event occurs
• How many bits on average are needed to communicate about
the events (Shannon was interested in finding the most efficient
overall encodings to use in transmitting information)

Entropy: Total Average Information For a coin, *C*, the formula for entropy becomes: $H(C) = -(P(Heads) \log_2 P(Heads) + P(Tails) \log_2 P(Tails))$ A fair coin, {0.5, 0.5}, has *maximum* entropy: $H(C) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1.0$ A somewhat biased coin, {0.25, 0.75}, has *less*: $H(C) = -(0.25 \log_2 0.25 + 0.75 \log_2 0.75) \approx 0.81$ And a fixed coin, {0.0, 1.0}, has *none*: $H(C) = -(1.0 \log_2 1.0 + 0.0 \log_2 0.0) = 0.0$ Wednesday, 11 Sep. 2019 Machine Learning (COMP 135) 3

- One thing we might consider would be to search through possible trees to find ones that are most compact and consistent with our inputs
- Exhaustive search is too expensive, however, due to the large number of possible functions (trees) that exist
- For *n* binary-valued attributes, and boolean decision outputs, there are 2^{2^n} possibilities
- For 5 such attributes, we have 4,294,967,296 trees!
- Even restricting our search to conjunctions over attributes, it is easy to get 3ⁿ possible trees

Wednesday, 11 Sep. 2019

Machine Learning (COMP 135) 9

Building Trees Top-Down Rather than search for all trees, we build our trees by: Choosing an attribute A from our set Dividing our examples according to the values of A Placing each subset of examples into a sub-tree below the node for attribute A This can be implemented in a number of ways, but is perhaps most easily understood recursively The main question becomes: how do we choose the attribute A that we use to split our examples?

 A couple questions could l information gain to choose What do we do when there Are there other measures 	be raised about the use of e attributes in a tree: e is a tie? we could use instead?
 For the first, there are any between attributes with th Deterministically (e.g., first Non-deterministically (e.g., i Based upon some other here the largest number of set determined 	number of ways we might break ties the same information gain: attribute we consider) a "coin flip" in case of ties) uristic (e.g. choosing those that give us ecisions)
 For the second, it is impor only a measure that works there might not be someth instances that would actua suggests another such heu 	tant to note that information gain is in many cases —that doesn't mean ning else we could use in specific lly do better (indeed, Daumé ristic)
Wednesday, 11 Sep. 2019	Machine Learning (COMP 135) 29

This Week

Information Theory & Decision Trees

- Some material in these slides drawn from Russel & Norvig, Artificial Intelligence: A Modern Approach (Prentice Hal, 2010)
- Readings:
 - Blog post on Information Theory (linked from class schedule)
 - Chapter I of the Daumé text (linked from class schedule)

• Office Hours: 237 Halligan

▶ Tuesday, 11:00 AM - 1:00 PM

Machine Learning (COMP 135) 30