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Class #04:  Linear Methods

Machine Learning (COMP 135):  M. Allen, 16 Sept. 19

The General Learning Problem
} We want to learn functions from inputs to outputs, 

where each input has n features:

} The type of learning problem we are solving really 
depends upon the type of the output domain, Y

1. If output Y ∈R (a real number), this is regression

2. If output Y is a finite discrete set, this is classification
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Inputs hx1, x2, . . . , xni, with each feature xi from domain Xi.

Outputs y from domain Y .

Function to learn: f : X1 ⇥X2 ⇥ · · ·⇥Xn ! Y

Linear Regression

} In general, we want to learn a hypothesis function h that minimizes 
our error relative to the actual output function f

} Often we will assume that this function h is linear, so the problem 
becomes finding a set of weights that minimize the error between f
and our function:
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Example: What hypothesis class should we pick?

x

y

x y

0.86 2.49

0.09 0.83

-0.85 -0.25

0.87 3.10

-0.44 0.87

-0.43 0.02

-1.10 -0.12

0.40 1.81

-0.96 -0.83

0.17 0.43

Linear hypothessis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1 + · · · + wnxn

• wi are called parameters or weights

• To simplify notation, we always add an attribute x0 = 1 to the

other n attributes (also called bias term or intercept term):

hw(x) =
n
X

j=0

wjxj = w · x

where w and x are vectors of size n + 1.

How should we pick w?

h(x1, x2, . . . , xn) = w0 + w1x1 + w2x2 + · · · + wnxn

An Error Function: Least Squared Error
} For a chosen set of weights, w, we can define an error function 

as the squared residual between what the hypothesis function 
predicts and the actual output, summed over all N test-cases:

} Learning is then the process of finding a weight-sequence that 
minimizes this loss:

} Note:  Other loss-functions are commonly used (but the basic 
learning problem remains the same)
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Loss(w) =
NX

j=1

(yj � hw(xj))
2

w? = argmin
w

Loss(w)
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An Example

} For the data given, the best fit for a simple linear function 
of x is as follows:
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

h(x)  � y = 1.05 + 1.60x

Finding Minimal-Error Weights

} We can in principle solve for the weight with least error analytically
1. Create data matrix with one training input example per row, one feature per 

column, and output vector of all training outputs

2. Solve for the minimal weights using linear algebra (for large data, requires 
optimized routines for finding matrix inverses, doing multiplications, etc., as well 
as for certain matrix properties to hold, which are not universal):
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X =

2

6664

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fN1 fN2 · · · fNn

3

7775
y =

2

6664

y1
y2
...
yN

3

7775

w? = (X>X)�1X>y

w? = argmin
w

Loss(w)

Finding Minimal-Error Weights

} Weights that minimize error can instead be found (or at least 
approximated) using gradient descent:

1. Loop repeatedly over all weights wi , updating them based on their 
“contribution” to the overall error:

2. Stop on convergence, when maximum update on any weight (D) drops 
below some threshold (Q);  alternatively, stop when change in error/loss 
grows small enough
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w? = argmin
w

Loss(w)

wi  wi + ↵
X

j

xj,i (yj � hw(xj))

Overall Error: difference 
between current and correct 

outputs for case j

Feature: normalized 
value of feature i of 

training input j

Learning rate: multiplying 
parameter for weight 

adjustments

h(x1, x2, . . . , xn) = w0 + w1x1 + w2x2 + · · · + wnxn

Updating Weights

} For each value i , the update equation takes into account:
1. The current weight-value, wi

2. The difference (positive or negative) between the current 
hypothesis for input j and the known output:

3. The i-th feature of the data, xj,i

} When doing this update, we must remember that for n data 
features, we have (n + 1) weights, including the bias, w0

} It is presumed that the related “feature” xj,0 = 1 in every case, 
and so the update for the bias weight becomes:
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wi  wi + ↵
X

j

xj,i (yj � hw(xj))

(yj � hw(xj))
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w0  w0 + ↵
X

j

(yj � hw(xj))

<latexit sha1_base64="9+1uaXVEozFi2/1CVduDzrznNjI="></latexit>
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Gradient Descent

} The loss function forms a contour (here shown for one-dimensional data)
} For any initial set of weights (w0) we are at some point on this contour
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Loss(w) =
NX

j=1

(yj � hw(xj))
2

L
os
s(
w
)
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Loss(w0)
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Gradient Descent

} The derivate of the loss function at the given weight settings “points uphill” along 
the slope of the function

} The gradient descent update moves along the function in the opposite direction 
toward the direction that decreases loss most significantly
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wi  wi + ↵
X

j

xj,i (yj � hw(xj))

@ Loss(w0)

@w0
<latexit sha1_base64="a3bWX7amDYwAaxB1lC6z7SEeJNQ="></latexit>

Convergence of Gradient Descent

} In the presence of large changes to the weights, the result can “ping pong” around the loss 
space in a way that never settles near a minimum

} The learning rate, 𝛼, can provide a control parameter for this process

1. This can be fixed to some small constant:  

2. Or, we may decay the parameter, making it smaller over time, decreasing it as a function of t, 
the number of iterations of the process:
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xj,i (yj � hw(xj))

↵ = 0.001
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↵0 = C ↵t =
C

t
(t � 1)
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Practical Use of Linear Regression

} A linear model can often radically simplify a data-set, isolating a relatively 
straightforward relationship between data-features and outcomes
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16 2. Statistical Learning
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ϵ. (2.1)

Here f is some fixed but unknown function ofX1, . . . , Xp, and ϵ is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ϵ. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

Ad sales vs. media expenditure (1000’s of units). From: James et al., Intro. to Statistical Learning (Springer, 2017)
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CHAPTER 4. NUMERICAL COMPUTATION
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 Figure 4.3: Approximate minimization. Optimization algorithms may fail to find a global

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 minimum when there are multiple local minima or plateaus present. In the context of

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 deep learning, we generally accept such solutions even though they are not truly minimal,

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 so long as they correspond to significantly low values of the cost function.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 critical points are points where every element of the gradient is equal to zero.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 The directional derivative in direction (a unit vector) is the slope of theu
function f  
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 f α( +x u) evaluates to u∇x  
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 fastest. We can do this using the directional derivative:

min
u u, u=1

u∇x  
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 cos θ (4.4)

where θ  
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 This is known as the method of steepest descent gradient descent, or .
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 f( )x (4.5)

Potential Issues in Gradient Descent

} When loss functions are complex, descending the gradient does not guarantee optimality

} Local minima in the loss function are possible

} Can be dealt with by a variety of techniques, e.g.  randomly repeating initial conditions

} Can often be tolerated, so long as a reasonable minimum is found
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Minima in the loss function. From: Goodfellow, Bengio & Courville., Deep Learning (MIT, 2016)

Accuracy of the Hypothesis Function

} Although we can generally find the best set of weights efficiently, the 
exact form of the equation, in terms of the degree of the 
polynomial used in that equation, can limit our accuracy

} Example:  if we try to predict time to tumor recurrence based on a 
simple linear function of its radius, this is likely to be very inaccurate
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

Higher Order Polynomial Regression
} Since not every data-set is best represented as a simple 

linear function, we will in general want to explore higher-
order hypothesis functions

} We can still keep these functions quasi-linear, in terms of 
a sum of weights over terms, but we will allow those 
terms to take more complex polynomial forms, like:
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h(x)  � y = w0 + w1x + w2x
2

Higher-Order Regression Solutions

} With an order-2 function, we can fit our data somewhat 
better than with the original, order-1 version
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h(x)  � y = 0.73 + 1.74x + 0.68x2

Data and curve y = 0.68x2 + 1.74x + 0.73
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

h(x)  � y = 1.05 + 1.60x
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Higher-Order Fitting

Order-3 Solution Order-4 Solution 

Data and curve y = 0.68x2 + 1.74x + 0.73
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Order-3 fit
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Order-4 fit
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Order-5 fit
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y
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Even Higher-Order Fitting
Order-5 Solution Order-6 Solution 
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Order-7 Solution Order-8 Solution 

Order-4 fit
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Order-5 fit
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Order-6 fit
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Order-7 fit
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Order-6 fit
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Order-7 fit
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Order-8 fit

x

y

Order-9 fit

x

yThe Risk of Overfitting
} An order-9 solution hits all 

the data points exactly, but is 
very “wild” at points that are 
not given in the data, with 
high variance

} This is a general problem for 
learning:  if we over-train, we 
can end up with a function 
that is very precise on the 
data we already have, but will 
not predict accurately when 
used on new examples
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Order-8 fit

x
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Order-9 fit

x
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Defining Overfitting
} To precisely understand overfitting, we distinguish between two 

types of error:
1. True error:  the actual error between the hypothesis and the true 

function that we want to learn
2. Training error:  the error observed on our training set of 

examples, during the learning process

} Overfitting is when:
1. We have a choice between hypotheses, h1 & h2
2. We choose h1 because it has lowest training error
3. Choosing h2 would actually be better, since it will have lowest 

true error, even if training error is worse

} In general we do not know true error (would essentially need to 
already know function we are trying to learn)
} How then can we estimate the true error?
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Cross-Validation
} We can estimate our true error by checking how well 

our function does (on average) when we leave some data 
out of the training set

} Leave-one-out cross-validation:  
1. For each degree d and k items, we train our classifier k

different times (a total of k * d tests).
2. For each of the k tests, we take out one example from 

the input set, and train on all the rest.
3. For each trained classifier, we test on the one example 

we left out, and measure the error.
4. We choose the degree d that gives us the lowest mean 

error on the k tests.
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An Example of Error Estimation
} For data-set of 10 (input, output) pairs, we estimate error using 10 tests:
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Data = {(x1, y1), (x2, y2), . . . , (x10, y10)}.

Iter Train-set Test-set Train-error Test-error
1 Data� {(x1, y1)} {(x1, y1)} 0.4928 0.0044
2 Data� {(x2, y2)} {(x2, y2)} 0.1995 0.1869
3 Data� {(x3, y3)} {(x3, y3)} 0.3461 0.0053
4 Data� {(x4, y4)} {(x4, y4)} 0.3887 0.8681
5 Data� {(x5, y5)} {(x5, y5)} 0.2128 0.3439
6 Data� {(x6, y6)} {(x6, y6)} 0.1996 0.1567
7 Data� {(x7, y7)} {(x7, y7)} 0.5707 0.7205
8 Data� {(x8, y8)} {(x8, y8)} 0.2661 0.0203
9 Data� {(x9, y9)} {(x9, y9)} 0.3604 0.2033
10 Data� {(x10, y10)} {(x10, y10)} 0.2138 1.0490

mean: 0.2188 0.3558

An Example of Error Estimation
} By comparing all possible degrees of our function (1–8), we can see that 

we get the optimal estimated function at degree 2, with overfitting seen at 
all degrees higher than that:
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Degree Mean Train-error Mean Test-error
1 0.2188 0.3558
2 0.1504 0.3095
3 0.1384 0.4764
4 0.1259 1.1770
5 0.0742 1.2828
6 0.0598 1.3896
7 0.0458 38.819
8 0.0000 6097.5

Optimal degree: 
minimizes the 

estimated error 
over new 
examples

Over-fitting: we have minimized the error over training 
data, but have larger estimated error over new examples

More General Cross-Validation
} Leave-one-out validation can be quite costly with large 

input sets, and so we often test machine learning 
algorithms in more approximate ways

} k-fold cross-validation is a more granular approach:
1. Divide the input into k different test sets.
2. On each run, remove one of the test sets.
3. Train on the remainder and test on the test set.

4. Average the k results to estimate true error.
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This Week
} Linear regression and classification

} Readings: 
} Book excerpts on linear methods and regression (posted to 

Piazza, linked from class schedule)

} Office Hours:  237 Halligan
} Tuesday, 11:00 AM – 1:00 PM
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