Tufts Class \#04: Linear Methods

Machine Learning (COMP 135): M. Allen, 16 Sept. 19

Linear Regression

- In general, we want to learn a hypothesis function h that minimizes our error relative to the actual output function f
- Often we will assume that this function h is linear, so the problem becomes finding a set of weights that minimize the error between f and our function.
$h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$
- Monday, 16 Sep. 2019

Machine Learning (COMP 135) 3

The General Learning Problem

- We want to learn functions from inputs to outputs, where each input has n features:

Inputs $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, with each feature x_{i} from domain X_{i}. Outputs y from domain Y.

Function to learn: $f: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow Y$

- The type of learning problem we are solving really depends upon the type of the output domain, Y
I. If output $Y \in R$ (a real number), this is regression

2. If output Y is a finite discrete set, this is classification

- Monday, 16 Sep. 2019

Machine Learning (COMP 135) 2

An Error Function: Least Squared Error

- For a chosen set of weights, w, we can define an error function as the squared residual between what the hypothesis function predicts and the actual output, summed over all N test-cases:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{j=1}^{N}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)^{2}
$$

- Learning is then the process of finding a weight-sequence that minimizes this loss:

$$
\mathbf{w}^{\star}=\arg \min _{w} \operatorname{Loss}(\mathbf{w})
$$

- Note: Other loss-functions are commonly used (but the basic learning problem remains the same)
- Monday, 16 Sep. 2019

Machine Learning (COMP 135) 4

An Example

- For the data given, the best fit for a simple linear function of x is as follows:

$$
h(x) \longleftarrow y=1.05+1.60 x
$$

- Monday, 16 Sep. 2019

Finding Minimal-Error Weights

$$
\mathbf{w}^{\star}=\arg \min _{w} \operatorname{Loss}(\mathbf{w})
$$

, We can in principle solve for the weight with least error analytically Create data matrix with one training input example per row, one feature per Create data matrix with one training input examp
column, and output vector of all training outputs

$$
\mathbf{X}=\left[\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{N 1} & f_{N 2} & \cdots & f_{N n}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

2. Solve for the minimal weights using linear algebra (for large data, requires optimized routines for finding matrix inverses, doing multiplications, etc., as well as for certain matrix properties to hold, which are not universal):

$$
\mathbf{w}^{\star}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- Monday, 16 Sep. 2019

Machine Learning (СОMP 135) $\quad 6$

Updating Weights

$$
w_{i} \leftarrow w_{i}+\alpha \sum_{j} x_{j, i}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

- For each value i, the update equation takes into account: The current weight-value, w_{i}

2. The difference (positive or negative) between the current The difference (positive or negative) between the current
hypothesis for input j and the known output: $\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)$ The i-th feature of the data, $x_{j, i}$

- When doing this update, we must remember that for n data features, we have $(n+1)$ weights, including the bias, w_{0}
$h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$
- It is presumed that the related "feature" $x_{j, 0}=1$ in every case, and so the update for the bias weight becomes:

$$
w_{0} \leftarrow w_{0}+\alpha \sum_{j}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

- Monday, 16 Sep. 2019

Machine Learning (COMP 135)

MP 135) 8

Gradient Descent

$$
\operatorname{Loss}(\mathbf{w})=\sum_{j=1}^{N}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)^{2}
$$

- The loss function forms a contour (here shown for one-dimensional data)
, For any initial set of weights $\left(\mathbf{w}_{0}\right)$ we are at some point on this contour

Convergence of Gradient Descent

- In the presence of large changes to the weights, the result can "ping pong" around the loss space in a way that never settles near a minimum

The learning rate, α, can provide a control parameter for this process
This can be fixed to some small constant: $\alpha=0.001$
2. Or, we may decay the parameter, making it smaller over time, decreasing it as a function of t, the number of iterations of the process: $\alpha_{0}=C \quad \alpha_{t}=\frac{C}{t} \quad(t \geq 1)$

- Monday, 16 Sep. 2019 Machine Learning (COMP 135) 11

Gradient Descent

- The derivate of the loss function at the given weight settings "points uphill" along the slope of the function
- The gradient descent update moves along the function in the opposite direction toward the direction that decreases loss most significantly

$$
w_{i} \leftarrow w_{i}+\alpha \sum_{j} x_{j, i}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

- Monday, 16 Sep. 2019

Machine Learning (COMP 135)

Practical Use of Linear Regression

Ad sales vs. media expenditure (1000 's of units). From: James et al., Intro. to Statistical Leorning (Springer, 2017)

- A linear model can often radically simplify a data-set, isolating a relatively straightforward relationship between data-features and outcomes
- Monday, 16 Sep. 2019

Machine Learning (COMP 135)

Potential Issues in Gradient Descent

Minima in the loss function. From: Goodfellow, Bengio \& Courville., Deep Learning (MIT, 2016)

- When loss functions are complex, descending the gradient does not guarantee optimality
, Local minima in the loss function are possible
- Can be dealt with by a variety of techniques, e.g. randomly repeating initial conditions

Can often be tolerated, so long as a reasonable minimum is found

- Monday, 16 Sep. 201

Machine Learning (COMP 135) 13

Higher Order Polynomial Regression

- Since not every data-set is best represented as a simple linear function, we will in general want to explore higherorder hypothesis functions
- We can still keep these functions quasi-linear, in terms of a sum of weights over terms, but we will allow those terms to take more complex polynomial forms, like:

$$
h(x) \longleftarrow y=w_{0}+w_{1} x+w_{2} x^{2}
$$

- Monday, 16 Sep. 2019

Machine Learning (COMP 135) 15

Accuracy of the Hypothesis Function

- Although we can generally find the best set of weights efficiently, the exact form of the equation, in terms of the degree of the polynomial used in that equation, can limit our accuracy
- Example: if we try to predict time to tumor recurrence based on a Example: if we try to predict time to tumor recurrence based on a
simple linear function of its radius, this is likely to be very inaccurate
- Monday, 16 Sep. 2019

Machine Learning (COMP 135) 1

Higher-Order Regression Solutions

$h(x) \longleftarrow y=1.05+1.60 x$

$h(x) \longleftarrow y=0.73+1.74 x+0.68 x^{2}$

- With an order-2 function, we can fit our data somewhat better than with the original, order-1 version
Monday, 16 Sep. 2019
Machine Learning (COMP 135) $\quad 16$

Higher-Order Fitting

Order-3 Solution

Order-4 Solution

Machine Learning (COMP 135) 17

Even Higher-Order Fitting

- Monday, 16 Sep. $2019{ }^{\text {x }}$

The Risk of Overfitting

- An order-9 solution hits all the data points exactly, but is very "wild" at points that are not given in the data, with high variance
- This is a general problem for learning: if we over-train, we can end up with a function
 that is very precise on the data we already have, but will not predict accurately when used on new examples
- Monday, 16 Sep. 2019

Defining Overfitting

- To precisely understand overfitting, we distinguish between two types of error:

1. True error: the actual error between the hypothesis and the true function that we want to learn
2. Training error: the error observed on our training set of examples, during the learning process

- Overfitting is when:

We have a choice between hypotheses, $\mathrm{h}_{1} \& \mathrm{~h}_{2}$
2. We choose h_{1} because it has lowest training error
3. Choosing h_{2} would actually be better, since it will have lowest true error, even if training error is worse

- In general we do not know true error (would essentially need to already know function we are trying to learn)
- How then can we estimate the true error?
- Monday, 16 Sep. 2019

Machine Learning (COMP 135)
20

Cross-Validation

- We can estimate our true error by checking how well our function does (on average) when we leave some data out of the training set

Leave-one-out cross-validation:

I. For each degree d and k items, we train our classifier k different times (a total of $k * d$ tests).
2. For each of the k tests, we take out one example from the input set, and train on all the rest.
3. For each trained classifier, we test on the one example we left out, and measure the error.
4. We choose the degree d that gives us the lowest mean error on the k tests.

- Monday, 16 Sep. 201

Machine Learning (COMP 135)
21

An Example of Error Estimation

- For data-set of 10 (input, output) pairs, we estimate error using 10 tests

$$
\text { Data }=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{10}, y_{10}\right)\right\} .
$$

Iter	Train-set	Test-set	Train-error	Test-error
1	Data $-\left\{\left(\mathbf{x}_{1}, y_{1}\right)\right\}$	$\left\{\left(\mathbf{x}_{1}, y_{1}\right)\right\}$	0.4928	0.0044
2	Data $-\left\{\left(\mathbf{x}_{2}, y_{2}\right)\right\}$	$\left\{\left(\mathbf{x}_{2}, y_{2}\right)\right\}$	0.1995	0.1869
3	Data $-\left\{\left(\mathbf{x}_{3}, y_{3}\right)\right\}$	$\left\{\left(\mathbf{x}_{3}, y_{3}\right)\right\}$	0.3461	0.0053
4	Data $-\left\{\left(\mathbf{x}_{4}, y_{4}\right)\right\}$	$\left\{\left(\mathbf{x}_{4}, y_{4}\right)\right\}$	0.3887	0.8681
5	Data $-\left\{\left(\mathbf{x}_{5}, y_{5}\right)\right\}$	$\left\{\left(\mathbf{x}_{5}, y_{5}\right)\right\}$	0.2128	0.3439
6	Data $-\left\{\left(\mathbf{x}_{6}, y_{6}\right)\right\}$	$\left\{\left(\mathbf{x}_{6}, y_{6}\right)\right\}$	0.1996	0.1567
7	Data $-\left\{\left(\mathbf{x}_{7}, y_{7}\right)\right\}$	$\left\{\left(\mathbf{x}_{7}, y_{7}\right)\right\}$	0.5707	0.7205
8	Data $-\left\{\left(\mathbf{x}_{8}, y_{8}\right)\right\}$	$\left\{\left(\mathbf{x}_{8}, y_{8}\right)\right\}$	0.2661	0.0203
9	Data $-\left\{\left(\mathbf{x}_{9}, y_{9}\right)\right\}$	$\left\{\left(\mathbf{x}_{9}, y_{9}\right)\right\}$	0.3604	0.2033
10	Data $-\left\{\left(\mathbf{x}_{10}, y_{10}\right)\right\}$	$\left\{\left(\mathbf{x}_{10}, y_{10}\right)\right\}$	0.2138	1.0490
mean:				
0.2188				

More General Cross-Validation

- Leave-one-out validation can be quite costly with large input sets, and so we often test machine learning algorithms in more approximate ways
- k-fold cross-validation is a more granular approach:
I. Divide the input into k different test sets.

2. On each run, remove one of the test sets.
3. Train on the remainder and test on the test set.
4. Average the k results to estimate true error.

This Week

- Linear regression and classification
- Readings:
- Book excerpts on linear methods and regression (posted to Piazza, linked from class schedule)
- Office Hours: 237 Halligan
- Tuesday, II:00 AM - I:00 PM

