
1

Class #05:
Linear Classification

Machine Learning (COMP 135): M. Allen, 18 Sept. 19

Review: The General Learning Problem
} We want to learn functions from inputs to outputs,

where each input has n features:

} The type of learning problem we are solving really
depends upon the type of the output domain, Y

1. If output Y ∈R (a real number), this is regression

2. If output Y is a finite discrete set, this is classification

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 2

Inputs hx1, x2, . . . , xni, with each feature xi from domain Xi.

Outputs y from domain Y .

Function to learn: f : X1 ⇥X2 ⇥ · · ·⇥Xn ! Y

Classification Problems

} Often, we don’t want a real-valued hypothesis function
} Instead, we want to divide inputs into distinct, discrete types, for

example dividing images into dogs, cats, and hippopotami

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 3

From Regression to Classification

} Suppose we have two classes of data, defined by a single
attribute x

} We seek a decision boundary that splits the data in two
} When such a boundary can be defined using a linear function,

it is called a linear separator

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 4

x

2

Threshold Functions
1. We have data-points with n features:

2. We have a linear function defined by n+1 weights:

3. We can write this linear function as:

4. We can then find the linear boundary, where:

5. And use it to define our threshold between classes:

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 5

x = (x1, x2, . . . , xn)

w = (w0, w1, w2, . . . , wn)

w · x

w · x = 0

hw =

(
1 w · x � 0

0 w · x < 0

Outputs 1 and 0 here are
arbitrary labels for one
of two possible classes

From Regression to Classification

} Data is linearly separable if it can be divided into classes using
a linear boundary:

} Such a boundary, in 1-dimensional space, is a threshold value

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 6

x

w · x = 0

From Regression to Classification

} Data is linearly separable if it can be divided into classes
using a linear boundary:

} Such a boundary, in 2-dimensional space, is a line

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 7

w · x = 0

From Regression to Classification

} Data is linearly separable if it can be divided into classes using a
linear boundary:

} Such a boundary, in 3-dimensional space, is a plane
} In higher dimensions, it is a hyper-plane

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 8

w · x = 0

Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 +wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?

Urtasun & Zemel (UofT) CSC 411: 03-Classification Sep 21, 2015 11 / 21

Image: R. Urtasun (U. of Toronto)

3

The Geometry of Linear Boundaries
} Suppose we have 2-

dimensional inputs

} The “real” weights

define a vector
} The boundary where our

linear function is zero,

is an orthogonal line,
parallel to

} Its offset from origin is
determined by w0 (which is
called the bias weight)

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 9

x1

x 2

w = (w1, w2)

w · x = w0 + w · (x1, x2) = 0

w · (x1, x2) = 0

x = (x1, x2)

w · (x1, x2) = 0

w · x = w0 + w · (x1, x2) = 0

w

�w0/w1

�
w

0
/w

2
The Geometry of Linear Boundaries

} For example, with “real” weights:

we get the vector shown
as a green arrow

} Then, for a bias weight

the boundary where our
linear function is zero,

is the line shown in red,
crossing origin at (2,0) & (0,1)

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 10

x1

x 2

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0
w = (w1, w2) = (0.5, 1.0)

w0 = �1.0

w · x = w0 + w · (x1, x2) = 0

w · x = w0 + w · (x1, x2) = 0

The Geometry of Linear Boundaries
} Once we have our linear

boundary, data points are
classified according to our
threshold function

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 11

x1

x 2

w · x = 0

hw =

(
1 w · x � 0

0 w · x < 0

hw = 0

(w · x < 0)

hw = 1

(w · x � 0)

Zero-One Loss
} For a training set made up of

input/output pairs,

we could define the
zero/one loss

} Summed for the entire set,
this is simply the count of
examples that we get wrong

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 12

x1

x 2

{(x1, y1), (x2, y2), . . . , (xk, yk)}

L(hw(xi), yi) =

(
0 if hw(xi) = yi
1 if hw(xi) 6= yi

} In this example, if data-points marked should be in class 0
(below the line) and those marked should be in class 1 (above
the line) the loss would be equal to 3

4

Minimizing Zero/One Loss
} Sadly, it is not easy to compute weights that minimize zero/one loss

} It is a piece-wise constant function of weights
} It is not continuous, however, and gradient descent won’t work

} E.g., for the following one-dimensional data, we get loss shown below:

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 13

x1
0 1 2 3 4 5 6 7

Loss

x1
0 1 2 3 4 5 6

0

1

2

7

Perceptron Loss
} Instead, we define the perceptron loss on a training item:

} For example, suppose we have a 2-dimensional element in our
training set for which the correct output is 0, but our
threshold function says 1:

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 14

xi = (xi,1, xi,2, . . . , xi,n)

L⇡(hw(xi), yi) =
nX

j=0

(yi � hw(xi))⇥ xi,j

xi = (0.5, 0.4) yi = 1 hw(xi) = 0

L⇡(hw(xi), yi) = (1� 0)(1 + 0.5 + 0.4) = 1.9

The difference between what output
should be, and what our weights make it

Sum of input attributes (1 is the “dummy”
attribute that is multiplied by bias weight w0)

Perceptron Learning
} To minimize perceptron loss we can start from initial weights—

perhaps chosen uniformly from interval [-1,1]—and then:
1. Choose an input xi from our data set that is wrongly classified.
2. Update vector of weights, , as follows:

3. Repeat until no classification errors remain.

} The update equation means that:
1. If correct output should be below the boundary (yi = 0) but our

threshold has placed it above (hw(xi) = 1) then we subtract each
feature (xi,j) from the corresponding weight (wi)

2. If correct output should be above the boundary (yi = 1) but our
threshold has placed it below (hw(xi) = 0) then we add each
feature (xi,j) to the corresponding weight (wi)

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 15

w = (w0, w1, w2, . . . , wn)

wj wj + ↵(yi � hw(xi))⇥ xi,j

Perceptron Updates

} The perceptron update rule shifts the weight vector positively or negatively,
trying to get all data on the right side of the linear decision boundary

} Again, supposing we have an error as before, with weights as given below:

} This means we add the value of each attribute to its matching weight
(assuming again that “dummy” xi,0 = 1, and that parameter 𝛼 = 1):

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 16

wj wj + ↵(y � hw(xi))⇥ xi,j

xi = (0.5, 0.4) w = (0.2, �2.5, 0.6) yi = 1

w · xi = 0.2 + (�2.5⇥ 0.5) + (0.6⇥ 0.4) = �0.81 hw(xi) = 0

w0 (w0 + xi,0) = (0.2 + 1) = 1.2

w1 (w1 + xi,1) = (�2.5 + 0.5) = �2.0
w2 (w2 + xi,2) = (0.6 + 0.4) = 1.0

w · xi = 1.2 + (�2.0⇥ 0.5) + (1.0⇥ 0.4) = 0.6 hw(xi) = 1

After adjusting weights,
our function is now
correct on this input

5

Progress of Perceptron Learning
} For an example like this, we:
1. Choose a mis-classified item

(marked in green)
2. Compute the weight updates,

based on the “distance” away
from the boundary (so weights
shift more based upon errors in
boundary placement that are
more extreme)

} Here, this adds to each weight,
changing the decision boundary

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 17

x1

x 2

} In this example, data-points marked should be in class 0 (below
the line) and those marked should be in class 1 (above the line)

Progress of Perceptron Learning
} Once we get a new boundary, we

repeat the process
1. Choose a mis-classified item

(marked in green)
2. Compute the weight updates,

based on the “distance” away
from the boundary (so weights
shift more based upon errors in
boundary placement that are
more extreme)

} Here, this subtracts from each
weight, changing the decision
boundary in the other direction

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 18

x1

x 2

} In this example, data-points marked should be in class 0 (below
the line) and those marked should be in class 1 (above the line)

Linear Separability
} The process of adjusting

weights stops when there is
no classification error left

} A data-set is linearly separable
if a linear separator exists for
which there will be no error

} It is possible that there are
multiple linear boundaries
that achieve this

} It is also possible that there is
no such boundary!

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 19

x1

x 2

Linearly Inseparable Data
} Some data can’t be separated

using a linear classifier
} Any line drawn will always leave

some error

} The perceptron update
method is guaranteed to
eventually converge to an
error-free boundary if such a
boundary really exists
} If it doesn’t exist, then the most

basic version of the algorithm
will never terminate

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 20

x1

x 2

6

Linearly Inseparable Data

} Unfortunately, data that can’t be separated linearly is very common…

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 21

Image source: Russel & Norvig, AI: A Modern Approach (Prentice Hal, 2010)

Modifying Perceptron Learning
} To minimize error, we can modify the algorithm slightly:
1. Choose an input xi from our data set that is wrongly classified.

2. Update vector of weights, , as follows:

3. Repeat until no classification errors remain.

3. Repeat until weights no longer change; modify learning parameter 𝛼 over
time to guarantee this.

} If we make 𝛼 smaller and smaller over time, then as ,
the weights will quit changing, and the algorithm converges

} To get down to a least-error possible final separator, we do this
slowly, e.g., setting , where t is the
current iteration of the update algorithm

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 22

w = (w0, w1, w2, . . . , wn)

wj wj + ↵(yi � hw(xi))⇥ xi,j

↵ ! 0

↵(t) = 1000/(1000 + t)

Modifying Perceptron Learning

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 23

Image source: Russel & Norvig, AI: A Modern Approach (Prentice Hal, 2010)

The History of the Perceptron

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 24

196 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
illuminated by powerful lights, and an image focussed onto a 20 × 20 array of cadmium sulphide photocells,
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not pro-
vide probabilistic outputs, nor does it generalize readily to K > 2 classes. The most
important limitation, however, arises from the fact that (in common with all of the
models discussed in this chapter and the previous one) it is based on linear com-
binations of fixed basis functions. More detailed discussions of the limitations of
perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implementations of the perceptron were built by Rosenblatt,
based on motor-driven variable resistors to implement the adaptive parameters wj .
These are illustrated in Figure 4.8. The inputs were obtained from a simple camera
system based on an array of photo-sensors, while the basis functions φ could be
chosen in a variety of ways, for example based on simple fixed functions of randomly
chosen subsets of pixels from the input image. Typical applications involved learning
to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related
system called the adaline, which is short for ‘adaptive linear element’, was being
explored by Widrow and co-workers. The functional form of the model was the same
as for the perceptron, but a different approach to training was adopted (Widrow and
Hoff, 1960; Widrow and Lehr, 1990).

4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. In Section 1.5.4, we discussed the distinction between the discriminative
and the generative approaches to classification. Here we shall adopt a generative

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1 , a ! 0
−1 , a < 0 . (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1 . In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0 , 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0 , whereas patterns xn in class C2

have wTφ(xn) < 0 . Using the t ∈ {−1 , +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0 . The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

From: C. Bishop, Pattern
Recognition and Machine

Learning. Springer (2006).

7

Next Week
} Evaluating classifiers, logistic regression

} Readings:
} Book excerpt on classifiers metrics (linked from schedule)
} Logistic regression reading (linked from schedule)

} Office Hours: 237 Halligan
} Tuesday, 11:00 AM – 1:00 PM

Wednesday, 18 Sep. 2019 Machine Learning (COMP 135) 25

