Tufts
Class \#06:
Evaluating ML Algorithms

Machine Learning (COMP 135): M. Allen, 23 Sept. 19

Binary and Other Classification

- We will generally discuss binary classifiers, which divide data into one of two classes
- Recall: we label these classes 1 and 0 for convenience
- Many of the things we discuss can be applied to more than two classes, however
- Decision trees "don't care" how many class labels there are, and nothing in the information-theoretic heuristic, or many others, depends upon this
- Linear classifiers as presented in last lecture are inherently binary, defining the classes based on two regions, determined relative to a linear function
- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

One-Versus-All Classification (OVA)

- In the presence of more than two classes, a single basic linear classifier can't properly divide data
- Even if that data is linearly separable by class, any single line drawn must include elements of more than one class on at least one side
- We can combine multiple such classifiers, however...
- Monday, 23 Sep. 2019

Machine Learning (COMP 135) 3

- In an OVA scheme, with K different classes:
।. Train K different $1 / 0$ classifiers, one for each output class

2. On any new data-item, apply each classifier to it, and assign it the class corresponding to the classifier for which it receives a 1

D Monday, 23 Sep. 2019
Machine Learning (COMP 135) 4

Issues with OVA Classification

- The basic OVA idea requires that each linear classifier separate one class from all others
- As the number of classes increases, this added linear separability constraint gets harder to satisfy

- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

One-Versus-One Classification (OVO)

- Another idea is to train a separate classifier for each possible pair of output classes
, Only requires each such pair to be individually separable, which is somewhat more reasonable
, For K classes, it requires a larger number of classifiers:

$$
\binom{K}{2}=\frac{K(K-1)}{2}=\mathrm{O}\left(K^{2}\right)
$$

- Relative to the size of data sets, this is generally manageable, and each classifier is often simpler than in an OVA setting
- A new data-item is again tested against all of the classifiers, and given the class of the majority of those for which it is given a non-negative (1) value
- May still suffer from some ambiguities
- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

Evaluating a Classifier

- It is often useful to separate the results generated by a classifier, according to what it gets right or not:
- True Positives (TP): those that it identifies correctly as relevant
- False Positives (FP): those that if identifies wrongly as relevant
- False Negatives (FN): those that are relevant, but missed
- True Negatives (TN): those it correctly labels as non-relevant

		Classifier Output	
		Positive (1)	
Ground Truth	Negative (0)	TN	FP
	Positive (1)	FN	TP

- Monday, 23 Sep. 2019

Machine Learning (COMP 135)
8

Basic Accuracy

- The simplest measure of accuracy is just the fraction of correct classifications:

$$
\frac{\# \text { Correct }}{\mid \text { Data-set } \mid}=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}}
$$

- Basic accuracy treats both types of correctness-and therefore both types of error-as the same
- This isn't always what we want however; sometimes false positives and false negatives are quite different things

Basic Accuracy

- The simplest measure of accuracy can also be misleading, depending upon the data-set itself:

$$
\frac{\# \text { Correct }}{\mid \text { Data-set } \mid}=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}}
$$

- In a data-set of 100 examples, with 99 positive, and only a single negative example, any classifier that simply says positive (1) for everything would have 99% "accuracy"
- Such a classifier might be entirely useless for real-world classification problems, however!

D Monday, 23 Sep. 2019
Machine Learning (COMP 135)

Confusion Matrices

		Classifier Output	
		Positive (1)	
Ground Truth	Negative (0)	40	10
	Positive (1)	1	49

- In this data, the overall accuracy is $89 / 100=89 \%$
- However, we see that the accuracy over the two types of data is quite different:

1. For negative data, accuracy is just $40 / 50=80 \%$, with a 20% rate of false positives
2. For positive data, accuracy is $49 / 50=98 \%$, with only a 2% rate of false negatives

- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

$$
\text { Machine Learning (COMP 135) } \quad 12
$$

- Monday, 23 Sep. 2019 Machine Learning (COMP 135) $\quad 11$

Other Measures of Accuracy

- We can focus on a variety of metrics, depending upon what we care about , " $C=X$ " is "Classifier says X ", \& " $T=Y$ " is "Truth is Y "

Metric	Formula	How often...	Probability
True Positive Rate (Recall)	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$	positive examples are correctly labeled	$\mathrm{P}(\mathrm{C}=1 \mid \mathrm{T}=1)$
True Negative Rate (Specificity)	$\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}$	negative examples are correctly labeled	$\mathrm{P}(\mathrm{C}=0 \mid \mathrm{T}=0)$
Positive Predictive Value (Precision)	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$	examples labeled positive actually are positive	$\mathrm{P}(\mathrm{T}=1 \mid \mathrm{C}=1)$
Negative Predictive Value	$\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FN}}$	examples labeled negative actually are negative	$\mathrm{P}(\mathrm{T}=0 \mid \mathrm{C}=0)$
Monday, 23 Sep. 2019			

ROC Curves

Another way to look at classifier performance is the ratio of the rates of true positives and false ones

That is, we compare the percentage of the true positives the classifier gives the right result for, and the percentage of errors it makes by mistakenly classifying negative examples as positive

Image source: BOR, Wikipedia (CC ASA 3.0 license)

- Monday, 23 Sep. 2019

Machine Learning (COMP 135) 14

ROC Curves

Image source: $B O R, W_{\text {ikipedia }}$ (CC ASA 3.0 license)

- Monday, 23 Sep. 2019

Area Under ROC Curves (AUC)

The ROC curve can be very nuanced, and it is not always obvious from the curve itself how different algorithms measure up and compare
A metric for comparing multiple curves is the area under them
A larger area means the curve gets a higher true positive success rate earlier (i.e., with fewer false positives) than one of smaller area

Image source: BOR, Wikipedia
(CC ASA 3.0 license)

- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

Probabilistic Classifiers

- The decision tree and basic linear classifiers we have seen assign each data-item to a single specific class
- Other approaches generate probability distributions over the data: that is, they assign each data-item a probability of being in the positive class
- A probability of 1.0 means the data-item is definitely positive
- A probability of 0.0 means the data-item is definitely negative
- A probability $0.0<p<1.0$ means the data-item has some chance of being in either class
- Question: how can we turn the outputs of a probabilistic classifier back into a discrete $(1 / 0)$ classification?
- One possibility is a threshold: pick a probability T such that everything assigned a probability $p \geq T$ is assigned positive, all else negative
- Monday, 23 Sep. 2019

Machine Learning (COMP 135) 17

Log-Loss for Probabilistic Classification

- For any data-item x_{i} (of N total), let y_{i} be the correct classlabel $(1 / 0)$, and let p_{i} be the probability assigned by the classifier that the data-item is in fact 1
- We can then define the logarithmic loss (log-loss) for this classifier across the entire data-set:

$$
\mathcal{L}=-\frac{1}{N} \sum_{i=1}^{N} y_{i} \log p_{i}+\left(1-y_{i}\right) \log \left(1-p_{i}\right)
$$

- This measures cross entropy between the true distribution of labels in our data and the classifier's label distribution (that is, it measures the amount of extra noise introduced by the classifier, relative to the true noisiness of the data-set)
- Monday, 23 Sep. 2019

Machine Learning (COMP 135)

AUC for Probabilistic Classification

- If we are using a probabilistic classifier, then the area under the ROC curve for the classifier actually measures something else of real interest:

$$
\mathrm{AUC}=P\left(p_{i}>p_{j} \mid y_{i}=1 \text { AND } y_{j}=0\right)
$$

- Here, again, let p_{i} is the probability assigned by the classifier that the data-item is positive (1)
- This measures, for any given data-items x_{i} and x_{j}, one positive and one negative, the chance that the classifier gives the positive one a higher probability than then negative one
- Monday, 23 Sep. 2019

Machine Learning (COMP 135)
20

Other Measures of Performance

- There are numerous other things, beyond accuracy (however nuanced), that we might care about
- An interesting discussion, in the context of bank loans, can be found at the Google research site:
https://research.google.com/bigpicture/attacking-discrimination-in-ml/
- This site is based upon ideas from Hardt, Price, and Srebro, "Equality of Opportunity in Supervised Learning" https://arxiv.org/abs/1610.02413

This Week

- Evaluating classifiers, logistic regression
- Readings:
- Book excerpt on classifiers metrics (linked from schedule)
- Logistic regression reading (linked from schedule)
- Office Hours: 237 Halligan
- Tuesday, II:00 AM - I:00 PM

