
1

Class #08:
Non-Parametric Learning:
Clustering with Neighbors

Machine Learning (COMP 135): M. Allen, 30 Sept. 19

Parametric Learning Methods
} So far, the regression/classification methods we have seen

are all parametric
} Each method assumes that there is some fixed set of

weights that is to be learned:

1. Linear weights in linear/logistic regression/classification:

2. Non-linear weights in polynomial regression

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 2

w0 + w1 x1 + w2 x2 + · · ·+ wn xn

w0 + w1 x1 + w2 x
2
1 + · · ·+ w2n�1 xn + w2n x

2
n

Non-Parametric Learning Methods
} In a parametric process, once the learning is done, the

weight parameters are saved, and we are effectively done
} We can throw out training data, and just record weights

} Not every problem has this feature: in some, learning is
always continuing, and is based on all examples so far

} These non-parametric methods have no fixed set of
weights (or other numbers) to memorize
} As data continues to come in, we continue to adjust the model,

in the middle of our classification task

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 3

Clustering Problems
} The other techniques we have seen are all supervised

} We have training data for which we know the appropriate
output, and minimize some loss function based on this

} In many cases, we want to work with unlabeled data
} We want to take data and group them together
} Data should end up in a group with other “similar” data
} We want to find clusters, without knowing the correct answer

ahead of time

} This requires us to give precise meaning to similarity
} We also need efficient ways to do the grouping

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 4

2

Examples of Clustering

} One use of clustering might be for document processing
} We have many, many different documents in a database
} We want to organize them into groups based on subject matter
} We don’t know what the different subjects are ahead of time

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 5

Examples of Clustering

} Another use of clustering might be for image processing
} We have many, many different images of flowers
} We want to organize them into groups of specific flowers
} We don’t know what the different flowers are ahead of time

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 6

Nearest Neighbor Models

} One idea: classify inputs so any input x has same class as its k
nearest neighbors

} Depending upon the size of k, we may get over-fitting
} We can do techniques similar to those for linear regression to

figure out what the best value of k might be
Monday, 30 Sep. 2019 Machine Learning (COMP 135) 7

218 Chapter 18. Learning from Examples

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

(k =1) (k = 5)

Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, with k =1. Overfitting is
apparent. (b) With k =5, the overfitting problem goes away for this data set.

Image source: Russel & Norvig, AI: A
Modern Approach (Prentice Hal, 2010) Nearest Neighbor Models

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 8

218 Chapter 18. Learning from Examples

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

(k =1) (k = 5)

Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, with k =1. Overfitting is
apparent. (b) With k =5, the overfitting problem goes away for this data set.

218 Chapter 18. Learning from Examples

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x
1

x
2

(k =1) (k = 5)

Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, with k =1. Overfitting is
apparent. (b) With k =5, the overfitting problem goes away for this data set.

Here, the classes are set so that each point is in
the same set as its nearest single neighbor.

This is very likely to be over-fitting on data.
New inputs will often end up in the wrong class

in the future due to the odd contours of the
boundary between classes.

Here, the classes for each point in the problem
space is set to have the same class as the

majority of its nearest 5 neighbors.
Using more neighbors likely to under-fit data.

Obviously, if we use value k = N (the total
number of examples), then we just lump

everything into a single category.

3

Measuring Distance between Neighbors
} Suppose we have two inputs, each with n features

} Each can be regarded as a point in an n-dimensional space

} We can measure the distance between those points using the
Minkowski distance (aka L p norm):

} This works best if we normalize each dimension xi,n

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 9

xi = hxi,1, xi,2, . . . , xi,ni
xj = hxj,1, xj,2, . . . , xj,ni

Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

Geometrical Distance Metrics

} The Minkowski distance extends certain intuitive distance numbers
to different numbers of dimensions, n
} Depending upon the power, p, we get different measures

} When p = 1, this is the Manhattan Distance:

} In a two dimensional (x, y) space this is:

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 10

Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

L1(xi,xj) =
nX

k=1

|xi,k � xj,k|

|xi � xj |+ |yi � yj |

|yi – yj|

i

j

|xi – xj|

Geometrical Distance Metrics

} Minkowski distance extends certain intuitive distance numbers to
different numbers of dimensions, n
} Depending upon the power, p, we get different measures

} When p = 2, this is the Euclidean Distance:

} In a two dimensional (x,y) space this is:

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 11

Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

L2(xi,xj) =

vuut
nX

k=1

|xi,k � xj,k|2

q
|xi � xj |2 + |yi � yj |2

|yi – yj|

i

j

|xi – xj|

L2(i,j)

Comparative Distance Metrics

} The Euclidean distance can be
extended to 3 or more dimensions

} Computationally, we can actually make
our lives somewhat easier…

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 12

q
|xi � xj |2 + |yi � yj |2

|yi – yj|

i

j

|xi – xj|

L2(i,j)

} To do clustering, we only care about relative distances
} Doesn’t matter what the actual distance is

} We really only care about which things are closest together
} This means we can skip the square root computation entirely

4

Finding Nearest Neighbors
} Naïve implementations of these measures can be problematic
} For n dimensions each comparison of two points requires

O(n) operations, which is often reasonable

} However, the classifications work best when we have large
amounts of data, relative to the number of dimensions
} Ideally, we have O(2n) input points
} Much smaller numbers tend to lead to poor classifications, due to

large numbers of outliers

} However, if we simply compare all pairs of points, we have
O(|X|2) such operations, where |X| is full size of data-set
} This can be much too cumbersome for large data-sets

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 13

KD-Trees: Efficient Neighbor Calculation

} We can build a data-structure to search for nearest neighbors efficiently

} A recursive algorithm, called on original data set, X :
BUILD-TREE(X, 0)

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 14

function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X| S :

return : Node(X), a tree-node containing all elements of X

else :

� (dmodn) + 1 (the dimension for splitting inputs)

m� the median for dimension � in X

X� ✓ X the set of all data-points xi m� for dimension �

X+ ✓ X the set of all data-points xj > m� for dimension �

N� Node(m�), a tree-node containing median-value m�

N�
left Build-Tree (X�, d+ 1)

N�
right Build-Tree (X+, d+ 1)

return : N�

K-D Trees: Efficient Neighbor Calculation

} Input parameter d sets the feature we use to divide data into separate subsets

} We cycle through these features: x1 → x2 → ⋯ → xn -1 → xn → x1 → ⋯

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 15

function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X| S :

return : Node(X), a tree-node containing all elements of X

else :

� (dmodn) + 1 (the dimension for splitting inputs)

m� the median for dimension � in X

X� ✓ X the set of all data-points xi m� for dimension �

X+ ✓ X the set of all data-points xj > m� for dimension �

N� Node(m�), a tree-node containing median-value m�

N�
left Build-Tree (X�, d+ 1)

N�
right Build-Tree (X+, d+ 1)

return : N�

Each time we go
deeper down the tree,
we cycle to the next

data feature

K-D Trees: Efficient Neighbor Calculation

} Once a feature is chosen, we find the median value for that feature, and
divide all data in two at that median point

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 16

function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X| S :

return : Node(X), a tree-node containing all elements of X

else :

� (dmodn) + 1 (the dimension for splitting inputs)

m� the median for dimension � in X

X� ✓ X the set of all data-points xi m� for dimension �

X+ ✓ X the set of all data-points xj > m� for dimension �

N� Node(m�), a tree-node containing median-value m�

N�
left Build-Tree (X�, d+ 1)

N�
right Build-Tree (X+, d+ 1)

return : N�

Data divides along
the median value of
the chosen feature

5

K-D Trees: Efficient Neighbor Calculation

} Recursively builds a binary tree, with sub-tree roots each containing a median value
} Recursion terminates whenever we hit a pre-determined minimum data-set size

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 17

function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X| S :

return : Node(X), a tree-node containing all elements of X

else :

� (dmodn) + 1 (the dimension for splitting inputs)

m� the median for dimension � in X

X� ✓ X the set of all data-points xi m� for dimension �

X+ ✓ X the set of all data-points xj > m� for dimension �

N� Node(m�), a tree-node containing median-value m�

N�
left Build-Tree (X�, d+ 1)

N�
right Build-Tree (X+, d+ 1)

return : N�

Recursive calls
build a binary tree,
branch by branch

Recursion ends
when data subsets
are small enough

A 2-Dimensional Example
} We start with a set of 2-dimensional data-points, pi = (xi , yi)

} Split along x-dimension median to start building our tree

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 18

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

mx:
0.5

data with
x ≤ 0.5

data with
x > 0.5

A 2-Dimensional Example
} We then split each group along y-dimension median separately

} We repeat on the other branch, and continue in each case, splitting again
on dimensions x, y, x, y, x, y, …

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 19

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

data with
y ≤ 0.5

mx:
0.5

data with
x > 0.5

my:
0.5

data with
y > 0.5

} We stop when we have small enough subsets, each of which is stored in
and represented by a leaf-node of our tree

} Interior nodes store median values

A 2-Dimensional Example

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 20

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Split on:

x

y

x

y

6

} Interior nodes store median values
} Each node (leaf or interior) also stores information about the least

(tightest) bounding box of all points below it in its sub-tree

A 2-Dimensional Example

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 21

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Split on:

x

y

x

y

} Suppose we want to find the nearest neighbor of a new data-point (red)

} We start by isolating what sub-set it belongs to, following branches
according to the median values (like a binary search tree)

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 22

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Split on:

x

y

x

y

} Once we have found the proper subset, we measure all distances within it
} The closest neighbor may be in this set, but it may not

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 23

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Split on:

x

y

x

y

} We need to check any data-point that could be closer to our new point

} The tree helps us here, as we can do some pruning as we go backwards up
the tree towards the root

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 24

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Split on:

x

y

x

y

7

} As we back-track up the tree, we check any branch where the stored
bounding box intersects our current bounds

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 25

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Backtrack

Nearest

} When this happens, we compute distances to all required nodes, and
update distance measure if necessary

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 26

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Backtrack

Nearest

} When we see a sub-tree with a bounding box that does not intersect our
current bound, we can ignore it, saving time overall

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 27

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Backtrack

Nearest

} When we see a sub-tree with a bounding box that does not intersect our
current bound, we can ignore it, saving time overall

} Once we are at the root, we have found the overall nearest neighbor

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 28

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Backtrack

Nearest

8

} The data-structure may allow us to prune off large numbers of nodes,
restricting those that we need to measure distance from new point

} Although it is possible that we still have to do O(N) comparisons, under many
distributions of data-points, we get O(log N), significantly speeding up our
algorithm for classification

Querying the Tree for the Nearest Neighbor

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 29

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

Nearest

Pruned and
ignored

} If what we want is not the single nearest neighbor point, but some set of k
such points (for better classification), the exact same approach can be used

} Works the same way, but the distance measure is set to use the full set of
neighbors (i.e., distance to farthest one of the k nearest)

K-D Trees for k-Nearest Neighbors

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 30

13

KD-Tree Construction

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

!  Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y
1 0.00 0.00
3 0.13 2.85
… … …

X>.5!

Pt X Y
2 1.00 4.31
… … …

YES!NO!

!  Split the points into 2 groups by:
"  Choosing dimension dj and value V (methods to be discussed…)

"  Separating the points into > V and <= V.

26 ©Emily Fox 2013

xi
dj

xi
dj

distance for k = 5

Nearest

Uses of Nearest Neighbors
} Once we have found the k-nearest neighbors of a point,

we can use this information:
1. In and of itself: sometimes we just want to know what

those nearest neighbors actually are (items that are
similar to a given piece of data)

2. For additional classification purposes: we want to
find the nearest neighbors in a set of already-classified
data, and then use those neighbors to classify new data

3. For regression purposes: we want to find the nearest
neighbors in a set of points for which we already know a
functional (scalar) output, and then use those outputs to
generate the output for some new data

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 31

This Week

} Nearest Neighbors: Clustering and Regression

} Readings:
} Linked from class website schedule page.

} Homework 02: due Wednesday, 02 October, 9:00 AM

} Office Hours: 237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 32

