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Class #08:  
Non-Parametric Learning: 
Clustering with Neighbors

Machine Learning (COMP 135):  M. Allen, 30 Sept. 19

Parametric Learning Methods
} So far, the regression/classification methods we have seen 

are all parametric
} Each method assumes that there is some fixed set of 

weights that is to be learned:

1. Linear weights in linear/logistic regression/classification:

2. Non-linear weights in polynomial regression
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Non-Parametric Learning Methods
} In a parametric process, once the learning is done, the 

weight parameters are saved, and we are effectively done
} We can throw out training data, and just record weights

} Not every problem has this feature:  in some, learning is 
always continuing, and is based on all examples so far

} These non-parametric methods have no fixed set of 
weights (or other numbers) to memorize
} As data continues to come in, we continue to adjust the model, 

in the middle of our classification task
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Clustering Problems
} The other techniques we have seen are all supervised

} We have training data for which we know the appropriate 
output, and minimize some loss function based on this

} In many cases, we want to work with unlabeled data
} We want to take data and group them together
} Data should end up in a group with other “similar” data
} We want to find clusters, without knowing the correct answer 

ahead of time

} This requires us to give precise meaning to similarity
} We also need efficient ways to do the grouping
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Examples of Clustering

} One use of clustering might be for document processing
} We have many, many different documents in a database
} We want to organize them into groups based on subject matter
} We don’t know what the different subjects are ahead of time
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Examples of Clustering

} Another use of clustering might be for image processing
} We have many, many different images of flowers
} We want to organize them into groups of specific flowers
} We don’t know what the different flowers are ahead of time
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Nearest Neighbor Models

} One idea:  classify inputs so any input x has same class as its k
nearest neighbors

} Depending upon the size of k, we may get over-fitting
} We can do techniques similar to those for linear regression to 

figure out what the best value of k might be
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Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, with k =1. Overfitting is
apparent. (b) With k =5, the overfitting problem goes away for this data set.

Image source: Russel & Norvig, AI:  A 
Modern Approach (Prentice Hal, 2010) Nearest Neighbor Models
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Here, the classes are set so that each point is in 
the same set as its nearest single neighbor.  

This is very likely to be over-fitting on data.  
New inputs will often end up in the wrong class 

in the future due to the odd contours of the 
boundary between classes.

Here, the classes for each point in the problem 
space is set to have the same class as the 

majority of its nearest 5 neighbors.  
Using more neighbors likely to under-fit data.

Obviously, if we use value k = N (the total 
number of examples), then we just lump 

everything into a single category.
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Measuring Distance between Neighbors
} Suppose we have two inputs, each with n features

} Each can be regarded as a point in an n-dimensional space 

} We can measure the distance between those points using the 
Minkowski distance (aka L p norm):

} This works best if we normalize each dimension xi,n
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xi = hxi,1, xi,2, . . . , xi,ni
xj = hxj,1, xj,2, . . . , xj,ni

Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

Geometrical Distance Metrics

} The Minkowski distance extends certain intuitive distance numbers 
to different numbers of dimensions, n
} Depending upon the power, p, we get different measures

} When p = 1, this is the Manhattan Distance:

} In a two dimensional (x, y ) space this is:
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Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

L1(xi,xj) =
nX

k=1

|xi,k � xj,k|

|xi � xj |+ |yi � yj |

|yi – yj|

i

j

|xi – xj|

Geometrical Distance Metrics

} Minkowski distance extends certain intuitive distance numbers to 
different numbers of dimensions, n
} Depending upon the power, p, we get different measures

} When p = 2, this is the Euclidean Distance:

} In a two dimensional (x,y ) space this is:
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Lp(xi,xj) = (
nX

k=1

|xi,k � xj,k|p)1/p

L2(xi,xj) =

vuut
nX

k=1

|xi,k � xj,k|2

q
|xi � xj |2 + |yi � yj |2

|yi – yj|

i

j

|xi – xj|

L2(i,j )

Comparative Distance Metrics

} The Euclidean distance can be 
extended to 3 or more dimensions

} Computationally, we can actually make 
our lives somewhat easier…
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q
|xi � xj |2 + |yi � yj |2

|yi – yj|

i

j

|xi – xj|

L2(i,j )

} To do clustering, we only care about relative distances
} Doesn’t matter what the actual distance is

} We really only care about which things are closest together
} This means we can skip the square root computation entirely
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Finding Nearest Neighbors
} Naïve implementations of these measures can be problematic
} For n dimensions each comparison of two points requires 

O(n ) operations, which is often reasonable

} However, the classifications work best when we have large 
amounts of data, relative to the number of dimensions
} Ideally, we have O(2n ) input points
} Much smaller numbers tend to lead to poor classifications, due to 

large numbers of outliers

} However, if we simply compare all pairs of points, we have 
O(|X|2) such operations, where |X| is full size of data-set
} This can be much too cumbersome for large data-sets
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KD-Trees:  Efficient Neighbor Calculation

} We can build a data-structure to search for nearest neighbors efficiently

} A recursive algorithm, called on original data set, X :
BUILD-TREE(X, 0)
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function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X|  S :

return : Node(X), a tree-node containing all elements of X

else :

�  (dmodn) + 1 (the dimension for splitting inputs)

m�  the median for dimension � in X

X� ✓ X  the set of all data-points xi  m� for dimension �

X+ ✓ X  the set of all data-points xj > m� for dimension �

N�  Node(m�), a tree-node containing median-value m�

N�
left  Build-Tree (X�, d+ 1)

N�
right  Build-Tree (X+, d+ 1)

return : N�

K-D Trees:  Efficient Neighbor Calculation

} Input parameter d sets the feature we use to divide data into separate subsets

} We cycle through these features:  x1 → x2 → ⋯ → xn -1 → xn → x1 → ⋯
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function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X|  S :

return : Node(X), a tree-node containing all elements of X

else :

�  (dmodn) + 1 (the dimension for splitting inputs)

m�  the median for dimension � in X

X� ✓ X  the set of all data-points xi  m� for dimension �

X+ ✓ X  the set of all data-points xj > m� for dimension �

N�  Node(m�), a tree-node containing median-value m�

N�
left  Build-Tree (X�, d+ 1)

N�
right  Build-Tree (X+, d+ 1)

return : N�

Each time we go 
deeper down the tree, 
we cycle to the next 

data feature

K-D Trees:  Efficient Neighbor Calculation

} Once a feature is chosen, we find the median value for that feature, and 
divide all data in two at that median point
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function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X|  S :

return : Node(X), a tree-node containing all elements of X

else :

�  (dmodn) + 1 (the dimension for splitting inputs)

m�  the median for dimension � in X

X� ✓ X  the set of all data-points xi  m� for dimension �

X+ ✓ X  the set of all data-points xj > m� for dimension �

N�  Node(m�), a tree-node containing median-value m�

N�
left  Build-Tree (X�, d+ 1)

N�
right  Build-Tree (X+, d+ 1)

return : N�

Data divides along 
the median value of 
the chosen feature
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K-D Trees:  Efficient Neighbor Calculation

} Recursively builds a binary tree, with sub-tree roots each containing a median value
} Recursion terminates whenever we hit a pre-determined minimum data-set size
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function Build-Tree (X, d) returns a tree

inputs: X = {x1 . . . ,xm}, a set of n-dimensional data-points, and depth d

local variables: S � 1, a pre-set size limit for sets

if |X|  S :

return : Node(X), a tree-node containing all elements of X

else :

�  (dmodn) + 1 (the dimension for splitting inputs)

m�  the median for dimension � in X

X� ✓ X  the set of all data-points xi  m� for dimension �

X+ ✓ X  the set of all data-points xj > m� for dimension �

N�  Node(m�), a tree-node containing median-value m�

N�
left  Build-Tree (X�, d+ 1)

N�
right  Build-Tree (X+, d+ 1)

return : N�

Recursive calls 
build a binary tree, 
branch by branch

Recursion ends 
when data subsets 
are small enough

A 2-Dimensional Example
} We start with a set of 2-dimensional data-points, pi = (xi , yi )

} Split along x-dimension median to start building our tree

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 18

13 

KD-Tree Construction 

Pt X Y 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

!  Start with a list of d-dimensional points. 

25 ©Emily Fox 2013 

KD-Tree Construction 

Pt X Y 
1 0.00 0.00 
3 0.13 2.85 
… … … 

X>.5!

Pt X Y 
2 1.00 4.31 
… … … 

YES!NO!

!  Split the points into 2 groups by: 
"  Choosing dimension dj and value V (methods to be discussed…) 

"  Separating the points into       > V and      <= V. 

26 ©Emily Fox 2013 
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mx:
0.5

data with 
x ≤ 0.5

data with 
x > 0.5

A 2-Dimensional Example
} We then split each group along y-dimension median separately

} We repeat on the other branch, and continue in each case, splitting again 
on dimensions x, y, x, y, x, y, …
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data with 
y ≤ 0.5

mx:
0.5

data with 
x > 0.5

my:
0.5

data with 
y > 0.5

} We stop when we have small enough subsets, each of which is stored in 
and represented by a leaf-node of our tree

} Interior nodes store median values

A 2-Dimensional Example

Monday, 30 Sep. 2019 Machine Learning (COMP 135) 20

13 

KD-Tree Construction 

Pt X Y 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

!  Start with a list of d-dimensional points. 

25 ©Emily Fox 2013 

KD-Tree Construction 

Pt X Y 
1 0.00 0.00 
3 0.13 2.85 
… … … 

X>.5!

Pt X Y 
2 1.00 4.31 
… … … 

YES!NO!

!  Split the points into 2 groups by: 
"  Choosing dimension dj and value V (methods to be discussed…) 

"  Separating the points into       > V and      <= V. 

26 ©Emily Fox 2013 

xi
dj

xi
dj

Split on:

x

y

x

y



6

} Interior nodes store median values
} Each node (leaf or interior) also stores information about the least 

(tightest) bounding box of all points below it in its sub-tree

A 2-Dimensional Example
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} Suppose we want to find the nearest neighbor of a new data-point (red)

} We start by isolating what sub-set it belongs to, following branches 
according to the median values (like a binary search tree)

Querying the Tree for the Nearest Neighbor
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} Once we have found the proper subset, we measure all distances within it
} The closest neighbor may be in this set, but it may not

Querying the Tree for the Nearest Neighbor
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} We need to check any data-point that could be closer to our new point

} The tree helps us here, as we can do some pruning as we go backwards up 
the tree towards the root

Querying the Tree for the Nearest Neighbor
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} As we back-track up the tree, we check any branch where the stored 
bounding box intersects our current bounds

Querying the Tree for the Nearest Neighbor
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Backtrack

Nearest

} When this happens, we compute distances to all required nodes, and 
update distance measure if necessary

Querying the Tree for the Nearest Neighbor
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} When we see a sub-tree with a bounding box that does not intersect our 
current bound, we can ignore it, saving time overall

Querying the Tree for the Nearest Neighbor
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Backtrack
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} When we see a sub-tree with a bounding box that does not intersect our 
current bound, we can ignore it, saving time overall

} Once we are at the root, we have found the overall nearest neighbor

Querying the Tree for the Nearest Neighbor
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} The data-structure may allow us to prune off large numbers of nodes, 
restricting those that we need to measure distance from new point

} Although it is possible that we still have to do O(N) comparisons, under many 
distributions of data-points, we get O(log N), significantly speeding up our 
algorithm for classification

Querying the Tree for the Nearest Neighbor
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Pruned and 
ignored

} If what we want is not the single nearest neighbor point, but some set of k
such points (for better classification), the exact same approach can be used

} Works the same way, but the distance measure is set to use the full set of 
neighbors (i.e., distance to farthest one of the k nearest)

K-D Trees for k-Nearest Neighbors
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distance for k = 5

Nearest

Uses of Nearest Neighbors
} Once we have found the k-nearest neighbors of a point, 

we can use this information:
1. In and of itself:  sometimes we just want to know what 

those nearest neighbors actually are (items that are 
similar to a given piece of data)

2. For additional classification purposes: we want to 
find the nearest neighbors in a set of already-classified
data, and then use those neighbors to classify new data

3. For regression purposes: we want to find the nearest 
neighbors in a set of points for which we already know a 
functional (scalar) output, and then use those outputs to 
generate the output for some new data
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This Week

} Nearest Neighbors: Clustering and Regression

} Readings: 
} Linked from class website schedule page.

} Homework 02: due Wednesday, 02 October, 9:00 AM

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well
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