Tufts
 Class \#09:
 Uses of Nearest-Neighbors

Machine Learning (COMP 135): M. Allen, 02 Oct. 19

Measuring Distances for

Document Clustering \& Retrieval

- Suppose we want to rank documents in a data-base or on the web based on how similar they are
- We want a distance measurement that relates them
- We can do a nearest-neighbor query for any article to get a set of those that are the closest (and most similar)
- Searching for additional information based on a given document is equivalent to finding its nearest neighbors in the set of all document

D Wednesday, 2 Oct. 2019
Machine Learning (COMP 135) 3

Uses of Nearest Neighbors

- Once we have found the k-nearest neighbors of a point, we can use this information:
I. In and of itself: sometimes we just want to know what those nearest neighbors actually are (items that are similar to a given piece of data)

2. For additional classification purposes: we want to find the nearest neighbors in a set of already-classified data, and then use those neighbors to classify new data
3. For regression purposes: we want to find the nearest neighbors in a set of points for which we already know a functional (scalar) output, and then use those outputs to generate the output for some new data

- Wednesday, 2 Oct. 2019

Machine Learning (COMP 135)

The "Bag of Words" Document Model

, Suppose we have a set of documents $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

- Let $W=\left\{w \mid w\right.$ is a word in some document $\left.x_{i}\right\}$
- We can then treat each document x_{i} as a vector of word-counts (how many times each word occurs in the document):

$$
C_{i}=\left\{c_{i, 1}, c_{i, 2}, \ldots, c_{i,|W|}\right\}
$$

, Assuming some fixed order of the set of words W

- Not every word occurs in every document, so that some count values may be set to 0
- As previously noted, values tend to work better for purposes of classification if they are normalized, so we set each value to be between 0 and 1 by dividing on largest count seen for any word in any document:

$$
c_{i, j} \leftarrow \frac{c_{i, j}}{\max _{k, m} c_{k, m}}
$$

$$
\text { Machine Learning (COMP 135) } \quad 4
$$

Distances between Words

- We can now compute the distance function between any two documents (here we use the Euclidean):

$$
d\left(x_{i}, x_{j}\right)=\sqrt{\sum_{k=1}^{|W|}\left(c_{i, k}-c_{j, k}\right)^{2}}
$$

- We could then build a KD-Tree, using the vectors of words as our dimension values, and query for some set of most similar documents to any document we start with
- Problem: word counts turn out to be a lousy metric!
- Common every-day words dominate the counts, making most documents appear quite similar, and making retrieval poor

Wednesday, 2 Oct. 2019
Machine Learning (COMP 135)

Better Measures of Document Similarity

- We want to emphasize rare words over common ones:

Define word frequency: $t(w, x)$ as the (normalized) count of occurrences of word w in document x

$$
\begin{aligned}
c_{x}(w) & =\# \text { times word } w \text { occurs in document } x \\
c_{x}^{\star} & =\max _{w \in W} c_{x}(w) \\
t(w, x) & =\frac{c_{x}(w)}{c_{x}^{\star}}
\end{aligned}
$$

2. Define inverse document frequency of word w :

$$
i d(w)=\log \frac{|X|}{1+|\{x \in X \mid w \in x\}|}
$$

3. Use combined measure for each word and document:

$$
\operatorname{tid}(w, x)=t(w, x) \times i d(w)
$$

- Wednesday, 2 Oct. 2019

Machine Learning (COMP 135)

An Example

, The inverse document frequency of word w :

$$
i d(w)=\log \frac{|X|}{1+|\{x \in X \mid w \in x\}|}
$$

- Suppose we have 1,000 documents $(|X|=1000)$, and the word the occurs in every single one of them:

$$
i d(t h e)=\log \frac{1000}{1001} \approx-0.001442
$$

- Conversely, if the word banana only appears in 10 of them:

$$
i d(\text { banana })=\log \frac{1000}{10} \approx 6.644
$$

- Thus, when calculating normalized word-counts, banana gets treated as being about 4,600 times more important than the!
, If we threshold id (w) to a minimum of 0 (never negative) we then completely ignore words that are in every document

Wednesday, 2 Oct. 2019
Machine Learning (COMP 135)
8

Distances between Words

Given the threshold on the inverse document frequency, the distance between two documents is now proportional to that measure:

$$
\begin{aligned}
d\left(x_{i}, x_{j}\right) & =\sqrt{\sum_{k=1}^{|W|}\left(t i d\left(w_{k}, x_{i}\right)-\operatorname{tid}\left(w_{k}, x_{j}\right)\right)^{2}} \\
& =\sqrt{\sum_{k=1}^{|W|}\left(\left[t\left(w_{k}, x_{i}\right) \times i d\left(w_{k}\right)\right]-\left[t\left(w_{k}, x_{j}\right) \times i d\left(w_{k}\right)\right]\right)^{2}} \\
& =\sqrt{\sum_{k=1}^{|W|}\left(i d\left(w_{k}\right) \times\left[t\left(w_{k}, x_{i}\right)-t\left(w_{k}, x_{j}\right)\right]\right)^{2}}
\end{aligned}
$$

- Our KD-Tree can now efficiently find similar documents based upon this metric
- Mathematically, words for which frequency $i d(w)=0$ have no effect on the distance Obviously, in implementing this we can simply remove those words from word-set W in the first
place to skip useless clock-cycles...

Wednesday, 2 Oct. 2019
Machine Learning (COMP 135)

Nearest-Neighbor Clustering for Image Classification \qquad Image source: Hastie, et al., Elements of
Statistical Learning (Springer, 2017)

To predict the usage for a given pixel in a new image. In each band, get value of a pixel and 8 adjacent, for $(4 \times 9)=36$ features Find the 5 nearest neighbors of that feature-vector in labeled training set Assign the land use class of the majority of those 5 neighbors

- Achieved test error of 9.5% with a very simple algorithm

Wednesday, 2 Oct. 2019
Machine Learning (COMP 135) 11

Nearest-Neighbor Clustering for Image Classification

Image source:Hastie, et al., Elements of Statistical Learning (Springer, 2017

, The STATLOG project (Michie et al., 1994): given satellite imagery of land, predict its agricultural use for mapping purposes

- Training set: sets of images in 4 spectral bands, with actual use of land (7 soil/crop categories) based upon manual survey
bednesday, 2 Oct. 2019
Machine Learning (COMP 135)

Nearest-Neighbor Regression

- Given a data-set of various features of abalone (sex, size, weight, etc.), a regression classifier predicts shellfish age
- A training set of measurements, with real age determined by counting rings in the abalone shell, is analyzed and grouped into nearest neighbor units
- A predictor for new data is generated according to the average age value of neighbors
- Wednesday, 2 Oct. 2019

Machine Learning (COMP 135) 12

Nearest-Neighbor Regression

- Predictions for 100 points, given regression on shell length and age
- With one-nearest neighbor (left), the result has higher variability and predictions are noisier
- With five-nearest neighbors (right), results are smoothed out over multiple data-points
Wednesday, 2 Oct. 2019

This Week \& Next

- Today: Nearest Neighbors, Clustering and Regression

Next: Support Vector Machines
Readings: Linked from class website schedule page.
Homework 02: due Thursday, 03 October, 9:00 AM
Homework 03: due Wednesday, 16 October, 9:00 AM
Office Hours: 237 Halligan, Tuesday, I I:00 AM - I:00 PM

- TA hours can be found on class website as well

