

Data Separation

Linear classification with a perceptron or logistic function look for a dividing line in the data (or a plane, or other linearly defined structure)
Osten multiple lines are possible
Essentially, the algorithms are indifferent: they don't care which line we pick
In the example seen here either

- Monday, 7 Oct. 2019
"Fragile" Separation

- As more data comes in, these classifiers may start to fail
- A separator that is too close to one cluster or the other now makes mistakes

May happen even if new data follows same distribution seen in the training set

- Monday, 7 Oct. 2019

Machine Learning (COMP 135)

$$
3
$$

"Robust" Separation

- What we want is a large margin separator: a separation that has the largest distance possible from each part of our data-set
- This will often give much better performance when used on new data
- Monday, 7 Oct. 2019

Machine Learning (COMP 135)

Large Margin Separation

- A new learning problem: find the separator with the largest margin
- This will be measured from the data points, on opposite sides, that are closest together
- Monday, 7 Oct. 2019

Machine Learning (COMP 135) 5

Large Margin Separation

- Like a linear classifier, the SVM separates at the line where its learned vector of weights is zero
- Monday, 7 Oct. 2019

Machine Learning (COMP 135)

Linear Classifiers and SVMs

Linear	
Weight equation	$\mathbf{w} \cdot \mathbf{x}=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$
Threshold function	$h_{\mathbf{w}}=\left\{\begin{array}{ll\|}1 & \mathbf{w} \cdot \mathbf{x} \geq 0 \\ 0 & \mathbf{w} \cdot \mathbf{x}<0\end{array}\right.$

SVM	
Weight equation	$\mathbf{w} \cdot \mathbf{x}+b=\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}\right)+b$
Threshold function	$h_{\mathbf{w}}=\left\{\begin{array}{ll\|}+1 & \mathbf{w} \cdot \mathbf{x} \geq 0 \\ -1 & \mathbf{w} \cdot \mathbf{x}<0\end{array}\right.$
Monday, 7 Oct. 2019	Machine Learning (COMP 135)

$$
\text { Monday, } 7 \text { Oct. } 2019 \quad \text { Machine Learning (COMP 135) } \quad 6
$$

Mathematics of SVMs

- Through the magic of mathematics (Lagrangian multipliers, to be specific), we can derive a quadratic programming problem

।. We start with our data-set:
$\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$
$\left[\forall i, y_{i} \in\{+1,-1\}\right]$
2. We then solve the constrained optimization problem:
$W(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)$

$$
\begin{array}{l|l}
\forall i, \alpha_{i} \geq 0 & \begin{array}{l}
\text { The goal: based on known values }\left(\mathbf{x}_{i}, y_{i}\right) \\
\text { find the values we don't know }\left(\alpha_{i}\right) \text { that: } \\
\text { I. Will maximize value } W\left(\alpha_{i}\right) \\
\text { 2. Satisfy the two numerical constraints }
\end{array} \\
\text { Machine Learning (COMP 135) } \alpha_{i} y_{i}=0
\end{array}
$$

Monday, 7 Oct. 2019

Mathematics of SVMs

- The details of how all this is done are a bit complicated, but a constrained optimization problem like this can be algorithmically solved to get all of the α_{i} values needed:

$$
\begin{aligned}
W(\alpha)= & \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right) \\
& \forall i, \alpha_{i} \geq 0 \\
& \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Once done, we can find the weight-vector and bias term if we want:
$\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$
$b=-\frac{1}{2}\left(\max _{i \mid y_{i}=-1} \mathbf{w} \cdot \mathbf{x}_{i}+\min _{j \mid y_{j}=+1} \mathbf{w} \cdot \mathbf{x}_{j}\right)$

DMonday, 7 Oct. 2019
Machine Learning (COMP 135) 10

The Dual Formulation

- It turns out that we don't need to use the weights at all
- Instead, we can simply use the α_{i} values directly:

$$
\mathbf{w} \cdot \mathbf{x}_{i}+b=\sum_{j} \alpha_{j} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)-b
$$

- Now, if we had to sum over every data-point like we do on the right-hand side of this equation, this would look very bad for a large data-set
- It turns out that these α_{i} values have a special property, however, that makes it feasible to use them as part of our classification function...

D Monday, 7 Oct. 2019
Machine Learning (COMP 135) $\quad 11$

Sparseness of SVMs

This means that when we do the classification calculation:

$$
\sum \alpha_{j} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)-b
$$

We only have to sum over points x_{j} that are in the set of support vectors, ignoring all others.

Thus, an SVM need only remember and use the values for the few support vectors, not those for all the rest of the data.

- The α_{i} values are 0 everywhere except at the support vectors (the points closest to the separator)
- Monday, 7 Oct. 2019

Machine Learning (COMP 135) 12

Another Nice Trick

$\xrightarrow{ }$| $\sum_{j} \alpha_{j} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)-b$ |
| :---: |
| Using a kernel "trick", we can find
 a function that transforms the
 data into another form, where it
 is actually possible to separate it
 in a linear manner. |

- The calculation uses dot-products of data-points with each other (instead of with weights)
This will allow us to deal with data that is not linearly separable
> Monday, 7 Oct. 2019

Transforming Non-Separable Data

$\xrightarrow{\sim}$

$$
\begin{aligned}
& \text { A transformation function: } \\
& \varphi(\mathbf{x}) \quad \varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \text { maps data-vectors to new } \\
& \text { vectors, of either the same } \\
& \text { dimensionality }(m=n) \text { or a } \\
& \text { different one }(m \neq n)
\end{aligned}
$$

- If data that is not linearly separable, we can transform it
, We change features used to represent our data
- Really, we don't care what the data feature are, so long as we can get classification to work
- Monday, 7 Oct. 2019

Transforming Non-Separable Data

- Monday, 7 Oct. 2019

Machine Learning (COMP 135) 15

The "Kernel Trick"

 Image source: Russel \& Norvig, Al: A Modern Approach (Prentice Hal, 2010)

${ }^{x_{1}}$
(a)

(b)

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

- Monday, 7 Oct. 2019

Machine Learning (COMP 135) 16

Simplifying the Transformation Function

- We can derive a simpler (2-dimensional) equation, equivalent to the cross-product needed when doing SVM computations in the transformed (3-dimensional) space:
$\varphi(\mathbf{x}) \cdot \varphi(\mathbf{z})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \cdot\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right) \longleftarrow \quad$ Needed

Used instead

- Monday, 7 Oct. 2019
Machine Learning (COMP 135)

The Kernel Function

$$
k(\mathbf{x}, \mathbf{z})=\varphi(\mathbf{x}) \cdot \varphi(\mathbf{z})=(\mathbf{x} \cdot \mathbf{z})^{2}
$$

- This final function (right side) is what the SVM will actually use to compute dot-products in its equations
- This is called the kernel function
- To make SVMs really useful we look for a kernel that:
I. Separates the data usefully

2. Is relatively efficient to calculate

This Week

- Today: Kernels and SVMs
- Readings: Linked from class website schedule page.
- Homework 03: due Wednesday, 16 October, 9:00 AM
- Office Hours: 237 Halligan,Tuesday, I I:00 AM - 1:00 PM
- TA hours can be found on class website as well

