

Linear Classi	fiers and SVMs
Linear	
Weight equation	$\mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
Threshold function	$h_{\mathbf{w}} = \begin{cases} 1 & \mathbf{w} \cdot \mathbf{x} \ge 0 \\ 0 & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$
SVM	
Weight equation	$\mathbf{w} \cdot \mathbf{x} + b = (w_1 x_1 + w_2 x_2 + \dots + w_n x_n) + b$
Threshold function	$h_{\mathbf{w}} = \begin{cases} +1 & \mathbf{w} \cdot \mathbf{x} \ge 0\\ -1 & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$
Monday, 7 Oct. 2019	Machine Learning (COMP 135) 6

The Dual Formulation

- It turns out that we don't need to use the weights at all
- Instead, we can simply use the α_i values **directly**:

$$\mathbf{w} \cdot \mathbf{x}_i + b = \sum_j \alpha_j \, y_j \, (\mathbf{x}_i \cdot \mathbf{x}_j) - b$$

- Now, if we had to sum over every data-point like we do on the right-hand side of this equation, this would look very bad for a large data-set
- It turns out that these α_i values have a special property, however, that makes it feasible to use them as part of our classification function...

Monday, 7 Oct. 2019

Machine Learning (COMP 135) 11

$k(\mathbf{x}, \mathbf{z}) = \varphi(\mathbf{z})$	$\mathbf{x}) \cdot arphi(\mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^2$
	side) is what the SVM will dot-products in its equations function
 To make SVMs really use Separates the data use Is relatively efficient to 	1