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Class #10:  
Kernel Functions and 
Support Vector Machines (SVMs)

Machine Learning (COMP 135):  M. Allen, 07 Oct. 19

Data Separation

} Linear classification with a perceptron or logistic function look for a dividing line in 
the data (or a plane, or other linearly defined structure) 
} Often multiple lines are possible
} Essentially, the algorithms are indifferent: they don’t care which line we pick
} In the example seen here, either classification line separates data perfectly well
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“Fragile” Separation

} As more data comes in, these classifiers may start to fail
} A separator that is too close to one cluster or the other now makes mistakes
} May happen even if new data follows same distribution seen in the training set
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New 
data

“Robust” Separation

} What we want is a large margin separator: a separation that has the 
largest distance possible from each part of our data-set

} This will often give much better performance when used on new data
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Large Margin Separation

} A new learning problem: find the separator with the largest margin
} This will be measured from the data points, on opposite sides, that 

are closest together
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This is sometimes called the 
“widest road” approach

A support vector machine (SVM) 
is a technique that finds this road.

The points that define the edges 
of the road are the support 

vectors.

SVM

Weight equation

Threshold function

Linear Classifiers and SVMs
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Linear

Weight equation

Threshold function

w · x = w0 + w1x1 + w2x2 + · · ·+ wnxn

hw =

(
1 w · x � 0

0 w · x < 0

hw =

(
+1 w · x � 0

�1 w · x < 0

w · x+ b = (w1x1 + w2x2 + · · ·+ wnxn) + b

Large Margin Separation

} Like a linear classifier, the SVM separates at the line where its learned 
vector of weights is zero
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w · x+ b = 0
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–1

A key difference: the SVM is going 
to do this without learning and 
remembering weight vector w.

Instead, it will use features of the 
data-items themselves.

Mathematics of SVMs

} It turns out that the weight-vector w for the largest margin separator 
has some important properties relative to the closest data-points on 
each side (x+ and x –)
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w · x+ + b = +1

w · x� + b = �1

w · (x+ � x�) = 2

w

||w|| · (x
+ � x�) =

2

||w||

||w|| =
q

w2
1 + w2

2 + · · ·+ w2
n
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Mathematics of SVMs
} Through the magic of mathematics (Lagrangian multipliers, to 

be specific), we can derive a quadratic programming problem

1. We start with our data-set:

2. We then solve the constrained optimization problem:
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{(x1, y1), (x2, y2), . . . , (xn, yn)} [ 8i, yi 2 {+1, �1} ]

W (↵) =
X

i

↵i �
1

2

X

i,j

↵i ↵j yi yj(xi · xj)

8i, ↵i � 0
X

i

↵i yi = 0

The goal: based on known values (            ) 
find the values we don’t know (𝛼i ) that:
1. Will maximize value W (𝛼i )
2. Satisfy the two numerical constraints

xi, yi

Mathematics of SVMs
} The details of how all this is done are a bit complicated, but a 

constrained optimization problem like this can be algorithmically 
solved to get all of the 𝛼i values needed:

} Once done, we can find the weight-vector and bias term if we want:
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W (↵) =
X

i

↵i �
1

2

X

i,j

↵i ↵j yi yj(xi · xj)

8i, ↵i � 0
X

i

↵i yi = 0

w =
X

i

↵i yi xi b = �1

2
( max
i | yi=�1

w · xi + min
j | yj=+1

w · xj)

The Dual Formulation
} It turns out that we don’t need to use the weights at all
} Instead, we can simply use the 𝛼i values directly:

} Now, if we had to sum over every data-point like we do 
on the right-hand side of this equation, this would look 
very bad for a large data-set

} It turns out that these 𝛼i values have a special property, 
however, that makes it feasible to use them as part of our 
classification function…
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w · xi + b =
X

j

↵j yj (xi · xj)� b

Sparseness of SVMs

} The 𝛼i values are 0 everywhere except at the support vectors 
(the points closest to the separator)
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𝛼i = 0

This means that when we do the 
classification calculation:

We only have to sum over points 
xj that are in the set of support 

vectors, ignoring all others.

Thus, an SVM need only 
remember and use the values for 

the few support vectors, not 
those for all the rest of the data.

X

j

↵j yj (xi · xj)� b
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Another Nice Trick

} The calculation uses dot-products of data-points with each 
other (instead of with weights)

} This will allow us to deal with data that is not linearly separable
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Using a kernel “trick”, we can find 
a function that transforms the 

data into another form, where it 
is actually possible to separate it 

in a linear manner. 

Transforming Non-Separable Data

} If data that is not linearly separable, we can transform it
} We change features used to represent our data
} Really, we don’t care what the data feature are, so long as we can get 

classification to work
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A transformation function:

maps data-vectors to new 
vectors, of either the same 

dimensionality (m = n ) or a 
different one (m ≠ n ) 

'(x) ' : Rn ! Rm

Transforming Non-Separable Data
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The “Kernel Trick”
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Figure 18.31 FILES: . (a) A two-dimensional training set with positive examples as black circles
and negative examples as white circles. The true decision boundary, x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space (x2
1, x

2
2,
√

2x1x2). The circular
decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives
a closeup of the separator in (b).

'(x1, x2) = (x2
1, x

2
2,

p
2x1x2)

Image source: Russel & Norvig, AI:  A 
Modern Approach (Prentice Hal, 2010)
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} We can derive a simpler (2-dimensional) equation, equivalent 
to the cross-product needed when doing SVM computations 
in the transformed (3-dimensional) space:

'(x) · '(z) = (x2
1, x

2
2,

p
2x1x2) · (z21 , z22 ,

p
2z1z2)

= x2
1z

2
1 + x2

2z
2
2 +

p
2x1x2

p
2z1z2

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= (x · z)2

Simplifying the Transformation Function
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10 multiplications
2 additions

3 multiplications
1 addition

Needed

Used instead

The Kernel Function

} This final function (right side) is what the SVM will 
actually use to compute dot-products in its equations

} This is called the kernel function

} To make SVMs really useful we look for a kernel that:
1. Separates the data usefully
2. Is relatively efficient to calculate
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k(x, z) = '(x) · '(z) = (x · z)2

This Week

} Today: Kernels and SVMs

} Readings: Linked from class website schedule page.

} Homework 03: due Wednesday, 16 October, 9:00 AM

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well
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