
1

Class #18: Back-Propagation;
Tuning Hyper-Parameters

Machine Learning (COMP 135): M. Allen, 04 Nov. 19

1

Learning in Neural Networks

} A neural network can learn a classification function by
adjusting its weights to compute different responses

} This process is another version of gradient descent: the
algorithm moves through a complex space of partial
solutions, always seeking to minimize overall error

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 2

213

w3,5

3,6w

4,5w

4,6w

5

6

w1,3

1,4w

2,3w

2,4w

1

2

3

4

w1,3

1,4w

2,3w

2,4w

1

2

3

4

(b)(a)

Figure 18.20 FILES: figures/neural-net.eps (Wed Nov 4 11:08:22 2009). (a) A perceptron net-
work with two inputs and two output units. (b) A neural network with two inputs, one hidden layer of
two units, and one output unit. Not shown are the dummy inputs and their associated weights.

2

43

function BACK-PROP-LEARNING(examples ,network) returns a neural network
inputs: examples , a set of examples, each with input vector x and output vector y

network , a multilayer network with L layers, weights wi,j , activation function g
local variables: ∆, a vector of errors, indexed by network node

repeat
for each weight wi,j in network do

wi,j← a small random number
for each example (x, y) in examples do

/* Propagate the inputs forward to compute the outputs */
for each node i in the input layer do

ai← xi

for ℓ = 2 to L do
for each node j in layer ℓ do

inj←
P

i wi,j ai

aj← g(inj)
/* Propagate deltas backward from output layer to input layer */
for each node j in the output layer do

∆[j]← g ′(inj) × (yj − aj)
for ℓ = L− 1 to 1 do
for each node i in layer ℓ do

∆[i]← g ′(ini)
P

j wi,j ∆[j]
/* Update every weight in network using deltas */
for each weight wi,j in network do

wi,j←wi,j + α × ai × ∆[j]
until some stopping criterion is satisfied
return network

Figure 18.23 The back-propagation algorithm for learning in multilayer networks.

Back-Propagation (Hinton, et al.)

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 3

Initial random weights

Loop over all training
examples, generating the
output, and then updating
weights based on error

Stop when weights converge
or error is minimized

Source: Russel & Norvig,
AI: A Modern Approach

(Prentice Hal, 2010)

3

43

function BACK-PROP-LEARNING(examples ,network) returns a neural network
inputs: examples , a set of examples, each with input vector x and output vector y

network , a multilayer network with L layers, weights wi,j , activation function g
local variables: ∆, a vector of errors, indexed by network node

repeat
for each weight wi,j in network do

wi,j← a small random number
for each example (x, y) in examples do

/* Propagate the inputs forward to compute the outputs */
for each node i in the input layer do

ai← xi

for ℓ = 2 to L do
for each node j in layer ℓ do

inj←
P

i wi,j ai

aj← g(inj)
/* Propagate deltas backward from output layer to input layer */
for each node j in the output layer do

∆[j]← g ′(inj) × (yj − aj)
for ℓ = L− 1 to 1 do
for each node i in layer ℓ do

∆[i]← g ′(ini)
P

j wi,j ∆[j]
/* Update every weight in network using deltas */
for each weight wi,j in network do

wi,j←wi,j + α × ai × ∆[j]
until some stopping criterion is satisfied
return network

Figure 18.23 The back-propagation algorithm for learning in multilayer networks.

Propagating Output Values Forward

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 4

At first (“top”) layer, each
neuron input is set to the

corresponding feature value

Go down layer-by-layer,
calculating weighted input sums
for each neuron, and computing

output function g

4

2

43

function BACK-PROP-LEARNING(examples ,network) returns a neural network
inputs: examples , a set of examples, each with input vector x and output vector y

network , a multilayer network with L layers, weights wi,j , activation function g
local variables: ∆, a vector of errors, indexed by network node

repeat
for each weight wi,j in network do

wi,j← a small random number
for each example (x, y) in examples do

/* Propagate the inputs forward to compute the outputs */
for each node i in the input layer do

ai← xi

for ℓ = 2 to L do
for each node j in layer ℓ do

inj←
P

i wi,j ai

aj← g(inj)
/* Propagate deltas backward from output layer to input layer */
for each node j in the output layer do

∆[j]← g ′(inj) × (yj − aj)
for ℓ = L− 1 to 1 do
for each node i in layer ℓ do

∆[i]← g ′(ini)
P

j wi,j ∆[j]
/* Update every weight in network using deltas */
for each weight wi,j in network do

wi,j←wi,j + α × ai × ∆[j]
until some stopping criterion is satisfied
return network

Figure 18.23 The back-propagation algorithm for learning in multilayer networks.

Propagating Error Backward

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 5

At output (“bottom”)
layer, each delta-value is
set to the error on that
neuron, multiplied by the
derivative of function g

Go bottom-up and set
delta to derivative value

multiplied by sum of
deltas at the next layer
down (weighting each

such value appropriately)

After all the delta values are computed,
update weights on every node in the

network

5

Hyperparameters for Neural Networks
} Multi-layer (deep) neural networks involve a number of

different possible design choices, each of which can affect
classifier accuracy:
} Number of hidden layers
} Size of each hidden layer
} Activation function employed
} Regularization term (controls over-fitting)

} This is not unique to neural networks
} Logistic regression: regularization (C parameter in sklearn), class

weights, etc.
} SVM: kernel type, kernel parameters (like polynomial degree), error

penalty (C again), etc.

} Question is often how we can tune these model control
parameters effectively to find best combinations

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 6

6

Heldout Cross-Validation
} We can use k-fold cross-validation techniques to estimate the

real effectiveness of various parameter settings:

1. Divide labeled data into k folds, each of size 1/k
2. Repeat k times:

a. Hold aside one of the folds; train on the remaining (k – 1); test on
the heldout data

b. Record classification error for both training and heldout data
3. Average over the k trials

} This can give us a more robust estimate of real effectiveness

} It can also allow us to better detect over-fitting: when average
heldout error is significantly worse than average training error,
model has grown too complex or otherwise problematic

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 7

7

Modifying Model Parameters
} Using heldout validation techniques, we can begin to

explore various parts of the hyperparameter-space
} In each case, we try to maximize average performance on the

heldout validation data
} For example: number of layers in a neural network can

be explored iteratively, starting with one layer, and
increasing one at a time (up to some reasonable) limit
until over-fitting is detected

} Similarly, we can explore a range of layer sizes, starting
with hidden layers of size equal to the number of input
features, and increasing in some logarithmic manner until
over-fitting occurs, or some practical limits reach

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 8

8

3

Using Grid Search for Tuning
} One basic technique is to list out the different values of

each parameter that we want to test, and systematically
try different combinations of those values
} For P distinct tuning parameters, defines a P-dimensional space

(or “grid”), that we can explore, one combination at a time

} In many cases, since building, training, and testing the
models for each combination all take some time, we may
find that there are far too many such combinations to try
} One possibility: many such models can be explored in parallel,

allowing large numbers of combinations to be compared at the
same time, given sufficient resources

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 9

9

Costs of Grid Search
} When we have large numbers of combinations of possible

parameters, we may decide to limit the range of some of
the parts of our “grid” for feasibility

} For example, we might try:
1. # Hidden layers: 1, 2, …, 10
2. Layer size: N, 2N, 5N, 10N, 20N (N: # input features)
3. Activation: Sigmoid, ReLU, tanh
4. Regularization (alpha): 10-5, 10-3, 10-1, 101, 103

} Produces (10 x 5 x 3 x 5) = 750 different models
} If we are doing 10-fold validation, need to run 7,500 total tests
} Still only a small fragment of the possible parameter-space

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 10

10

Random Search
} Instead of limiting our grid even further, or trying to spend

even more time on more combinations, we might try to
randomize the process

} Instead of limiting values, we choose randomly from any of a
(larger) range of values:
1. # Hidden layers: [1, 20]
2. Layer size: [8, 1024]
3. Activation: [Sigmoid, ReLU, tanh]
4. Regularization (alpha): [10-7,107]

} For each of these, we assign a probability distribution over its
values (uniform or otherwise)
} We may presume these distributions are independent of one another

} For T tests, we sample each of the ranges for one possible
value, giving us T different combinations of those values

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 11

11

Performance of Random Search

} This technique can sometimes out-perform grid search
} When using a grid, it is sometimes possible that we just miss some intermediate,

and important, value completely
} The random approach can often hit upon the better combinations with the same

(or far less) testing involved

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 12

BERGSTRA AND BENGIO

Grid Layout Random Layout

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

From: J. Bergstra & Y. Bengio,
“Random search for hyper-
parameter optimization,”

Journal of Machine Learning
Research 13 (2012).

12

4

Performance of Random Search

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 13

From: J. Bergstra & Y. Bengio,
“Random search for hyper-
parameter optimization,”

Journal of Machine Learning
Research 13 (2012).

BERGSTRA AND BENGIO

Figure 3: From top to bottom, samples from themnist rotated,mnist background random,mnist
background images, mnist rotated background images data sets. In all data sets the
task is to identify the digit (0 - 9) and ignore the various distracting factors of variation.

2.3 Data Sets

Following the work of Larochelle et al. (2007) and Vincent et al. (2008), we use a variety of classi-
fication data sets that include many factors of variation.2

Themnist basic data set is a subset of the well-knownMNIST handwritten digit data set (LeCun
et al., 1998a). This data set has 28x28 pixel grey-scale images of digits, each belonging to one of ten
classes. We chose a different train/test/validation splitting in order to have faster experiments and see
learning performance differences more clearly. We shuffled the original splits randomly, and used
10 000 training examples, 2000 validation examples, and 50 000 testing examples. These images
are presented as white (1.0-valued) foreground digits against a black (0.0-valued) background.

The mnist background images data set is a variation on mnist basic in which the white fore-
ground digit has been composited on top of a 28x28 natural image patch. Technically this was done
by taking the maximum of the original MNIST image and the patch. Natural image patches with
very low pixel variance were rejected. As with mnist basic there are 10 classes, 10 000 training
examples, 2000 validation examples, and 50 000 test examples.

The mnist background random data set is a similar variation on mnist basic in which the
white foreground digit has been composited on top of random uniform (0,1) pixel values. As with
mnist basic there are 10 classes, 10 000 training examples, 2000 validation examples, and 50 000
test examples.

Themnist rotated data set is a variation onmnist basic in which the images have been rotated
by an amount chosen randomly between 0 and 2π radians. This data set included 10000 training
examples, 2000 validation examples, 50 000 test examples.

2. Data sets can be found at http://www.iro.umontreal.ca/˜lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007.

288

BERGSTRA AND BENGIO

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist basic

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background images

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background random

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated background images

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

convex

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles images

Figure 5: Neural network performance without preprocessing. Random experiment efficiency
curves of a single-layer neural network for eight of the data sets used in Larochelle et al.
(2007), looking only at trials with no preprocessing (7 hyper-parameters to optimize).
The vertical axis is test-set accuracy of the best model by cross-validation, the horizontal
axis is the experiment size (the number of models compared in cross-validation). The
dashed blue line represents grid search accuracy for neural network models based on a
selection by grids averaging 100 trials (Larochelle et al., 2007). Random searches of 8
trials match or outperform grid searches of (on average) 100 trials.

parameter. The kernels defined for each hyper-parameter were combined by multiplication (joint
Gaussian kernel). We fit a GP to samples of Ψ by finding the length scale (l) for each hyper-
parameter that maximized the marginal likelihood. To ensure relevance could be compared between
hyper-parameters, we shifted and scaled each one to the unit interval. For hyper-parameters that
were drawn geometrically or exponentially (e.g., learning rate, number of hidden units), kernel
calculations were based on the logarithm of the effective value.

292

Performance for grid search over
100 different neural network

parameter combinations

Statistically significant improvement
for as few as 8 randomly chosen

combination models

13

This Week

} Topics: Neural Networks

} Project 01: due Monday, 04 November, 4:15 PM
} Can be handed in without penalty until Wed., 06 Nov., 4:15 PM

} Homework 04: due Wednesday, 06 November, 9:00 AM

} Office Hours: 237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 14

14

