Class #18: Back-Propagation;
TU'ftS Tuning Hyper-Parameters

Machine Learning (COMP 135): M. Allen, 04 Nov. 19

Learning in Neural Networks

Wae

» A neural network can learn a classification function by
adjusting its weights to compute different responses

» This process is another version of gradient descent: the
algorithm moves through a complex space of partial
solutions, always seeking to minimize overall error

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 2

Source: Russel & Norvig,
Al: A Modern Approach

Back-Propagation (Hinton, et al) (Prentic Har 2010

function BACK-PROP-LEARNING(ezamples, network) returns a neural network
inputs: examples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights w; ;, activation function g
local variables: A, a vector of errors, indexed by network node

repeat Initial random weights
for each weight w; ; in network do /

wi,; +— a small random number —
for each example (x,y) in ezamples do

/% Propagate the inputs forward to compute the outputs +/

for each node i in the input layer do

i — Tq
for £=2to L do

for jzd‘ "‘;‘:c f““‘ ‘“ay”[do Loop over all training

j i Wi G .
a;—g(in;) | examples, generating the

/* Propagate deltas backward from output layer to input layer / d h d .
for each node j in the output layer do OUtPUt’ and then UP atmg

Al g'(ing) x (4 — aj) weights based on error

for/=L—1to1do
for each node 7 in layer ¢ do
Afil ¢ (in) 3, wiy Alj]
/* Update every weight in network using deltas /
for each weight w;,; in network do
wig—wiy + a X ai X Alj] - | Stop when weights converge
until some stopping criterion is satisfied — . .
return network or error is minimized

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 3

Propagating Output Values Forward

/ = Propagate the inputs forward to compute the outputs x/ ‘
for each node 7 in the input layer do
A < Tq
for /=2to L do
for each node j in layer ¢ do
inj =D wij @

At first (“top”) layer, each
neuron input is set to the
corresponding feature value

aj < g(in;) ‘

T

\

Go down layer-by-layer,
calculating weighted input sums
for each neuron,and computing

output function g

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 4

Propagating Error Backward

/ * Propagate deltas backward from output layer to input layer x/ |
for each node j in the output layer do
Alj] —¢'(inj) x (y; — aj) At output (“bottom”)
for (=1L —1to1do \ layer, each delta-value is
for each node i in layer ¢ do set to the error on that
Ali] = ¢'(ins) 3o, wi,; Alf] neuron, multiplied by the
/ * Update every weight in network usindeltas * / derivative of function g
for each weight w; ; in network do I
Wi,j < Wij + « ;< a; X A[]]

Go bottom-up and set

delta to derivative value
multiplied by sum of
deltas at the next layer

down (weighting each
such value appropriately)

After all the delta values are computed,
update weights on every node in the
network

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 5

Hyperparameters for Neural Networks

» Multi-layer (deep) neural networks involve a number of
different possible design choices, each of which can affect
classifier accuracy:

Number of hidden layers

Size of each hidden layer

Activation function employed

Regularization term (controls over-fitting)
» This is not unique to neural networks

Logistic regression: regularization (C parameter in sklearn), class
weights, etc.

SVM: kernel type, kernel parameters (like polynomial degree), error
penalty (C again), etc.

» Question is often how we can tune these model control
parameters effectively to find best combinations

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 6

Heldout Cross-Validation

» We can use k-fold cross-validation techniques to estimate the
real effectiveness of various parameter settings:

I. Divide labeled data into k folds, each of size 1/ k

2. Repeat k times:

Hold aside one of the folds; train on the remaining (k — 1); test on
the heldout data

Record classification error for both training and heldout data

3. Average over the k trials

» This can give us a more robust estimate of real effectiveness

» It can also allow us to better detect over-fitting: when average
heldout error is significantly worse than average training error,
model has grown too complex or otherwise problematic

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 7

Modifying Model Parameters

v

Using heldout validation techniques, we can begin to
explore various parts of the hyperparameter-space
In each case, we try to maximize average performance on the
heldout validation data

v

For example: number of layers in a neural network can
be explored iteratively, starting with one layer, and
increasing one at a time (up to some reasonable) limit
until over-fitting is detected

Similarly, we can explore a range of layer sizes, starting
with hidden layers of size equal to the number of input
features, and increasing in some logarithmic manner until
over-fitting occurs, or some practical limits reach

v

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 8

Using Grid Search for Tuning

» One basic technique is to list out the different values of
each parameter that we want to test, and systematically
try different combinations of those values

For P distinct tuning parameters, defines a P-dimensional space
(or “grid”), that we can explore, one combination at a time

» In many cases, since building, training, and testing the
models for each combination all take some time, we may
find that there are far too many such combinations to try

One possibility: many such models can be explored in parallel,
allowing large numbers of combinations to be compared at the
same time, given sufficient resources

Costs of Grid Search

» When we have large numbers of combinations of possible
parameters, we may decide to limit the range of some of
the parts of our “grid” for feasibility

» For example, we might try:
Hidden layers: 1, 2, ..., 10
Layer size: N, 2N, SN, 10N, 20N (N: # input features)
Activation: Sigmoid, ReLU, tanh
Regularization (alpha): 10°, 103, 10!, 10!, 10°
» Produces (10 x 5 x 3 x 5) = 750 different models
If we are doing |10-fold validation, need to run 7,500 total tests

Still only a small fragment of the possible parameter-space

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 10

10

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 9
9
Random Search
» Instead of limiting our grid even further, or trying to spend
even more time on more combinations, we might try to
randomize the process
» Instead of limiting values, we choose randomly from any of a
(larger) range of values:
Hidden layers:[1, 20]
Layer size: [8, 1024]
Activation: [Sigmoid, ReLU, tanh]|
Regularization (alpha):[10-7,107]
» For each of these, we assign a probability distribution over its
values (uniform or otherwise)
We may presume these distributions are independent of one another
» For T tests, we sample each of the ranges for one possible
value, giving us T different combinations of those values
Monday, 4 Nov. 2019 Machine Learning (COMP 135) 1"
11

From: J. Bergstra & Y. Bengio
“Random search for hyper-
parameter optimization
Performance of Random Search ... oo Leomine
Research 13 (2012)

Grid Layout Random Layout

Unimportant parameter

Important parameter Important parameter

Grid and random search of nine trials for optimizing a function f(x,y) = g(x) +h(y) ~
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square /(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

» This technique can sometimes out-perform grid search

» When using a grid, it is sometimes possible that we just miss some intermediate,
and important, value completely

» The random approach can often hit upon the better combinations with the same
(or far less) testing involved

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 12

12

accuracy

Performance of Random Search

mnist rotated

From: J. Berg

Random sez

a & Y. Bengio
ch for hyper

parameter optimization,”
Journal of Machine Learning

Research 13 (2012)

1.0 T T .
Performance for grid search over
0.9 .
- — -7 100 different neural network
08 SRS parameter combinations
0.7F L
|
0.6 1
1 +
05F +
04fF +
0.3 *
— Statistically significant improvement
experiment size (# trials) <-------- for as few as 8 randomly chosen

combination models

Monday, 4 Nov. 2019

Machine Learning (COMP 135) 13

This Week

» Topics: Neural Networks

» Project 01: due Monday, 04 November, 4:15 PM
Can be handed in without penalty until Wed., 06 Nov.,4:15 PM

» Homework 04: due Wednesday, 06 November, 9:00 AM

» Office Hours: 237 Halligan, Tuesday, | 1:00 AM — 1:00 PM

TA hours can be found on class website as well

Monday, 4 Nov. 2019 Machine Learning (COMP 135) 14

13

14

