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Class #20: 
Ensemble Learning and Boosting

Machine Learning (COMP 135):  M. Allen, 13 Nov. 19
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Ensemble Learning Methods
} An ensemble learning method combines multiple learned 

functions into a single prediction

} A simple example is the decision forest: build a set of 
different decision trees using different parts of our data
} Instead of only keeping one of them (e.g., the one with least 

error on its test set), we keep them all
} For any new classification, run it through all of the trees
} Use the majority classification, breaking ties randomly
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Boosting Methods
} A more complex method combines weaker, error-prone 

classifiers in a sequence, getting better as it goes
} Each time we classify the training set, correct/incorrect 

classifications are used to weight the data so that next 
classifier can improve results

} An important version of this is ADABOOST

} Stands for “Adaptive Boosting”
} Freund & Schapire, 1999 (Gödel Prize, 2003)
} Has a very interesting and important convergence property:  if 

each classifier is even slightly better than random chance, we 
can eventually boost to a perfect classifier (in the limit)
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ADABOOST

} With K runs of some learning algorithm L, we adjust weights on both training-data 
and algorithm classifications themselves until we get to the end

} The final output is based on the weights given to the different classification results
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44 Chapter 18. Learning from Examples

function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k = 1 to K do
h[k ]←L(examples ,w)
error← 0
for j = 1 to N do
if h[k ](xj) ≠ yj then error← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )

w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

Source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)
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An Example of Using ADABOOST
} 10 data-points, in 2 classes
} Run algorithm with K = 3 separate, 

consecutive boosting steps 
} Initially, each example in the data-set is given 

equal weight = 1/10 = 0.1
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function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k = 1 to K do
h[k ]←L(examples ,w)
error← 0
for j = 1 to N do
if h[k ](xj) ≠ yj then error← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )

w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.
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An Example of Using ADABOOST
} At each of the K runs, we classify using an 

algorithm L that uses the weights given
} In this example, we use a linear classifier of 

some sort, but other examples are possible
} For example, we could create a new version of 

the decision tree algorithm
} When choosing sets to split, calculate the 

entropy values (Lecture 03) using the weighted 
sums of positive and negative examples, instead 
of simply counting them
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44 Chapter 18. Learning from Examples

function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k = 1 to K do
h[k ]←L(examples ,w)
error← 0
for j = 1 to N do
if h[k ](xj) ≠ yj then error← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )

w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

h[1] Initially, since all weights are the same, 
the algorithm would be identical to the 
one seen previously.

As we change weights over time, 
however, getting things right/wrong for 
heavy-weighted items would matter 
more to how the algorithm classified.
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ADABOOST: Round 1
} We sum up the error for any elements that 

have been mis-classified by the hypothesis
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h[1]

44 Chapter 18. Learning from Examples
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inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
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w←NORMALIZE(w)
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error  3⇥ 0.1 = 0.3
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} We sum up the error for any elements that 
have been mis-classified by the hypothesis

} We adjust weights downwards on the 7 
correctly classified items:

ADABOOST: Round 1
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h[1]

w[incorrect] = 0.1

w[correct] = 0.1⇥ 0.3/0.7

⇡ 0.043

error  3⇥ 0.1 = 0.3

Correct items are less important, 
to stress the importance of 
eliminating classification error.
If we have a lot of error, then that 
is far more important to get rid of 
than getting some correct answers.

for j = 1 to N :

if h[k](xj) = yj : w[j] w[j] · error

(1� error)
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ADABOOST: Round 1
} We normalize all weights:
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h[1]

X

w[j]

= (3⇥ w[incorrect]) + (7⇥ w[correct])

⇡ 0.6

w[incorrect] = 0.1/0.6 ⇡ 0.167

w[correct] = 0.043/0.6 ⇡ 0.0717

Note: weight is still highest
on the incorrect items
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ADABOOST: Round 1
} Last, we calculate the weight for the 

classification hypothesis h[1] itself:

} This weight will be used after we are done 
with all the boosting rounds
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error← 0
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for j = 1 to N do
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Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

z[1]  log
0.7

0.3
⇡ 0.847

Hypothesis functions with lots of error 
will have lower weight than those that 
are more correct.  

Using the log ensures that differences 
between weights aren’t too extreme.
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ADABOOST: Round 2
} Now we move to next boosting round
} We feed in same data, with new weights 

(w [correct ] or w [incorrect ])
} Our algorithm generates a new 

classification hypothesis, h[2], using the 
same algorithm L, but results may be 
different due to the fact that the weights 
on the data-set have been changed

} This new, adjusted classification is not 
perfect either
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inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )
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Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

h[2]
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ADABOOST: Round 2
} We now sum up the error for the three 

mis-classified elements
} Note: we have made the same number of 

errors as before, but error value is lower
due to reduced weights on these items

} The incorrect ones were all correct on 
previous round, so error now is:
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function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
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if h[k ](xj) ≠ yj then error← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )
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Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

error  3⇥ w[correct] ⇡ 0.215

h[2]

12
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ADABOOST: Round 2
} Now, when we adjust weights down on the 

correctly classified items, they will get a 
variety of different weights
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function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble
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for k = 1 to K do
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error← 0
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w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
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WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

Incorrect on 1st, 
correct on 2nd: 0.046

Correct on 
both: 0.02

Correct on 1st, incorrect 
on 2nd: 0.0717

(no change)
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ADABOOST: Round 2
} We normalize these various weights on 

items, and calculate the weight for the 
second boosting round:
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if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )

w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

z[2]  log
0.785

0.215
⇡ 1.3

h[2]
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if h[k ](xj) = yj then w[j]←w[j] · error/(1− error )

w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweighting the training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses in h, with votes weighted by z.

Note: this time, the weight is higher
than z[1], since this classifier is in 

some ways doing better (because it 
is based on better information)
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ADABOOST: Round 3
} We do our last boosting round, 

using weights from prior iteration

} This gives last set of calculated 
error and hypothesis-weight values:
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h[3]

error  0.14

z[3]  log
0.86

0.14
⇡ 1.82

15

ADABOOST: Final Output

} Now, although none of our classifiers were perfect, we can combine them 
in a weighted way to get the final version

} For each object x, and each classification type T, add up weight values for 
each boosting run that assigned x to T
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w←NORMALIZE(w)
z[k ]← log (1− error )/error

returnWEIGHTED-MAJORITY(h, z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
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the hypotheses in h, with votes weighted by z.

h[3]
1.82

h[1]
0.847

16
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ADABOOST: Final Output

} For each object x, and each classification type T, add up weight values for 
each boosting run that assigned x to T
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h[2]
1.3

h[3]
1.82

h[1]
0.847

w[Green]  = 0.847 + 1.3 = 2.147
w[Yellow] = 1.82
Class = Green
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ADABOOST: Final Output

} For each object x, and each classification type T, add up weight values for 
each boosting run that assigned x to T
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h[2]
1.3

h[3]
1.82

h[1]
0.847

w[Green]  = 1.3
w[Yellow] = 0.847 + 1.82 = 2.667
Class = Yellow
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ADABOOST: Final Output
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h[2]
1.3

h[3]
1.82

h[final]

h[1]
0.847
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ADABOOST: Final Output

} The final, weighted-majority classification is perfect even though none of 
the individual components were on their own

} In this example, K = 3 rounds were sufficient, but this won’t always be 
the case (although perfection always possible)
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h[final]
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Ensembles of Ensembles
} Once we have used ADABOOST to create a single classifier, 

we can continue the learning process

} A cascading classifier could, for instance:
1. Build a single strong classifier C1 using ADABOOST and 

K1 boosts of one type of algorithm L1

2. Create another classifier C2 using ADABOOST and K2
boosts of some other algorithm L2

3. Combine C1 and C2 into their own weighted ensemble

} One widely used such method is the Viola-Jones cascade 
classifier for face detection
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Face Detection

} Data consists of different rectangular regions of a photograph

} Classifiers label each region as “face” or “not face”
1. If region is labeled “face” by one level of the classifier, it is passed 

on to the next, more complex, classifier level
2. If labeled “not face,” the region is discarded from data-set

} At the end, multiple “face” regions that are very close together 
are merged into single rectangles
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Paul Viola & Michael J. Jones, 
Robust real-time face detection, 
Intl. Journal of Computer Vision: 57, 
137–154 (2004).
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Haar-Like Rectangle Features
} The algorithm evaluates a (24 × 24) region of an image by 

examining all possible rectangle features
} Each of these divides the region into various sub-regions:

} Each sums the pixel values in each sub-region, and returns the 
difference between the A and B sub-regions
} Each rectangle feature-value is calculated for every possible size and 

starting position for the feature
} Over 160,000 such features exist for each (24 × 24) region 
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A B
A

B A B A
A B

AB

2-rectangle features 3-rectangle feature 4-rectangle feature
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Efficient Rectangle Features
} To avoid re-calculating pixel-sums over and over, the algorithm 

first uses dynamic programming to compute an integral image
} An (m × n) pixel image is turned into an (m × n) integer 

array, where locatiion [x][y] stores sum for entire sub-
image from upper-left corner, at [0][0], to that pixel point
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(x,y)

24



7

Efficient Rectangle Features
} Integral image can be calculated in a single 

nested(m × n) loop: 
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Original image pixels

10 5 0 0

10 5 0 0

10 10 10 10

10 0 0 0

Integral image (ii)

10 15 15 15

20 30 30 30

30 50 60 70

40 60 70 80

int[][] ii = 
new int[image.length][image[0].length];

for ( int r = 0; r < ii.length; r++ )
{

int rowSum = 0;
for ( int c = 0; c < ii[r].length; c++ )
{

rowSum += ii[r][c];
ii[r][c] = rowSum;
if ( r > 0 )
ii[r][c] += ii[r - 1][c];

}
}

25

Efficient Rectangle Features

} To get sum for D, look at the other 
rectangles that lie between it and the 
origin point [0][0]

} Get sum value using only four accesses 
to the integral image array

1. Sum for A
2. Sum for A + B
3. Sum for A + C
4. Sum for A + B + C + D

} We then compute sum for D:
D = s4 + s1 – (s2 + s3)
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D

BA

C

s2

s3

s1

s4

} We can get the pixel sum value for any region we choose, using the 
values stored in the integral image array
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Classification Using Rectangle Features
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} Set of training examples: image sub-regions <r1,…, rN>, each correctly labeled as 
containing a face (+) or not (–)

} For rectangle feature F, compute difference of pixel sums, and then sort all the 
regions by these difference values

} Loop over regions and compute error of doing classification using its feature-value as 
our classification threshold:

T+ =
X

i

w(ri), weights of all face regions

T� =
X

j

w(rj), weights of all non-face regions

S+
m =

X

k

w(rk), weights on all face regions before region rm in sort

S�
m =

X

l

w(rl), weights on all face regions before region rm in sort

em = min(S+
m + (T� � S�

m), S�
m + (T+ � S+

m))

weights of all face regions

weights of all non-face regions

weights of all face regions before region rm in sort

weights of all non-face regions before region rm in sort
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Classification Using Rectangle Features

Wednesday, 13 Nov. 2019 Machine Learning (COMP 135) 28

} For region rm with feature-value vm,  we compute the error 
that we would get if we make vm the classification threshold:

} The algorithm then uses the error value that is smallest overall, 
and divides on that value for classification using the particular 
rectangle feature that gave us the sorted ordering

em = min(S+
m + (T� � S�

m), S�
m + (T+ � S+

m))

Error of labeling every region after 
rm (including rm itself) in sorted order 

as being a face (+), and everything 
before it as being a non-face (-)

Error of labeling every region before 
rm in sorted order as a face (+), and 
everything after it (including rm itself) 

as a non-face (-)
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Choosing Features by Boosting
} Now we can use ADABOOST to pick set of features:
1. The i-th boosting step chooses the rectangle feature Fi

with best error-rate after sorting and thresholding

2. Weights on data and on feature Fi are adjusted 
according to its error-rate

3. Final output is weighted-majority classifier using the 
vector of features selected <F1, F2,…, FK>

} Viola & Jones trained a single large classifier, using the 
best 200 rectangle features, and achieved quite good 
results, but it was quite slow to run classification
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Cascading Feature Choices
} Viola & Jones use a different, more efficient cascading approach:

1. The i-th cascading step starts with two limits:
§ Posi :  maximum acceptable rate of false-positive detections
§ Deti :  minimum acceptable rate of correct-positive detections

2. Boost as long as false positive rate is not greater than Posi :
a) Choose feature Fi with best classification threshold (as before)
b) Loosen threshold value so detection rate ≥ Deti
c) Adjust weights and repeat boosting

3. Adjust training-set so that it contains all the actual face regions, 
along with all those non-face regions that are false positives for 
current classifier

4. Set new limits Posi+1 and Deti+1 ; Repeat cascading process until 
overall detection performance is satisfactory
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Building the Detector
} Each cascading step starts with two limits:

} Posi :  maximum acceptable false-positive rate
} Deti :  minimum acceptable correct-positive rate

} Step 1:  Starts with a simple, 2-feature classifier that 
rejects 50% of non-face regions, while still detecting 
almost 100% of faces

} Step 2:   Any regions not rejected by first classifier are 
passed to one with 10 features, which rejects about 80% 
of the non-face regions remaining, while still detecting 
almost all faces

} And so forth…
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Features Chosen
} For the first stage of the classifier, the algorithm chose some basic 

features of regions that seemed intuitive
} A 2-rectangle feature focusing on contrast between darker eyes and 

lighter colors typical on upper cheeks (left), and a 3-rectangle 
feature capturing eye contrast with bridge of the nose (right)
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The Final Classifier
} The final result of the Viola-Jones 

approach was a 38 layer cascade 
classifier, with 6,060 total rectangle 
features used

} On the hardware they had available 
(a single-core 466-MHz machine), 
the process took weeks

} They noted that this could be 
parallelized to speed training

} Once classifier is trained, however, it 
runs very fast (orders of magnitude 
faster than others known)

} This concept has been extended to a 
large number of different Haar-based 
(and other) cascading classifiers
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2 features
reject

accept

(done)

10 features
reject

(done)

accept

2 layers *
25 features each

reject
(done)

accept

2 layers *
50 features each

reject
(done)

accept

32 layers
(5,898 total features)

reject
(done)

accept
(done)
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Next Few Weeks
} Topics: Boosting Classifiers, Reinforcement Learning

} HW 05: due Wednesday, 20 November, 9:00 AM

} Project 02: due Monday, 25 November, 9:00 AM

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well
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