
1

Class #21: Markov Decision
Processes as Models for Learning

Machine Learning (COMP 135): M. Allen, 18 Nov. 19

1

What Do We Want AI and ML to Do?
} Short answer: Lots of things!

} Intelligent robot and vehicle navigation
} Better web search
} Automated personal assistants
} Scheduling for delivery vehicles, air traffic control, industrial

processes, …
} Simulated agents in video games
} Automated translation systems

2Monday, 18 Nov. 2019 Machine Learning (COMP 135)

2

What Do We Need?
} AI systems must be able to handle complex, uncertain

worlds, and come up with plans that are useful to us over
extended periods of time
} Uncertainty: requires something like probability theory

} Value-based planning: we want to maximize expected utility
over time, as in decision theory

} Planning over time: we need some sort of temporal model of
how the world can change as we go about our business

3Monday, 18 Nov. 2019 Machine Learning (COMP 135)

3

Markov Decision Processes

} Markov Decision Processes (MDPs) combine various
ideas from probability theory and decision theory
} A useful model for doing full planning, and for representing

environments where agents can learn what to do

} Basic idea: a world made up of states, changing based on
the actions of an AI agent, who is trying to maximize its
long-term reward as it does so
} One technical detail: change happens probabilistically (under

the Markov assumption)

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 4

4

2

Formal Definition of an MDP
} An MDP has several components

M = < S, A, P, R, T >
1. S = a set of states of the world
2. A = a set of actions an agent can take
3. P = a state-transition function: P (s, a, s´) is the

probability of ending up in state s´ if you start in state s
and you take action a: P(s´| s, a)

4. R = a reward function: R(s, a, s´) is the one-step
reward you get if you go from state s to state s´ after
taking action a

5. T = a time horizon (how many steps): we assume that
every state-transition, following a single action, takes a
single unit of time

5Monday, 18 Nov. 2019 Machine Learning (COMP 135)

5

An Example: Maze Navigation

6Monday, 18 Nov. 2019 Machine Learning (COMP 135)

} Suppose we have a robot in
a maze, looking for exit

} The robot can see where it
is currently, and where
surrounding walls are, but
doesn’t know anything else

} We would like it to be able
to learn the shortest route
out of the maze, no matter
where it starts

} How can we formulate this
problem as an MDP?

6

MDP for the Maze Problem

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 7

} States: each state is simply the robot’s current location
(imagine the map is a grid), including nearby walls

} Actions: the robot can move in one of the four
directions (UP, DOWN, LEFT, RIGHT)

7

Action Transitions

} We can use the transition function
to represent important features of
the maze problem domain

} For instance, the robot cannot
move through walls

} For example, if the robot starts in
the corner (s1), and tries to go
DOWN, nothing happens:

P(s1, DOWN, s1) = 1.0

8Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S2 S3

S4S1

8

3

Action Transitions, II

} Similarly, we can model uncertain
action outcomes using the
transition model

} Suppose the robot is a little
unstable, and occasionally goes in
the wrong direction

} Thus, if it starts in state s1 and tries
to go UP to s2:

9Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S2 S3

S4S1

9

Action Transitions, II

} Similarly, we can model uncertain
action outcomes using the
transition model

} Suppose the robot is a little
unstable, and occasionally goes in
the wrong direction

} Thus, if it starts in state s1 and tries
to go UP to s2:

1. 80% of the time it works:
P(s1, UP, s2) = 0.8

10Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S2 S3

S4S1

10

Action Transitions, II

} Similarly, we can model uncertain
action outcomes using the
transition model

} Suppose the robot is a little
unstable, and occasionally goes in
the wrong direction

} Thus, if it starts in state s1 and tries
to go UP to s2:

1. 80% of the time it works:
P(s1, UP, s2) = 0.8

2. But it may slip and miss:
P(s1, UP, s3) = 0.2

11Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S2 S3

S4S1

11

Rewards in the Maze

} If G is our goal (exit) state, we can
“encourage” the robot, by giving any
action that gets to G positive reward:

R(s1, DOWN, G) = +100
R(s2, LEFT, G) = +100
R(s3, UP, G) = +100

} Further, we can reward quicker
solutions by making all other
movements have negative reward, e.g.:

R(s1, RIGHT, s´) = -1
R(s2, UP, s´) = -1

etc.

12Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S1

S3

S2G

12

4

Solving the Maze

} A solution to our problem takes
the form of a policy of action, p

} At each state, it tells the agent the
best thing to do:

} π(s1) = DOWN

} π(s2) = LEFT
} Similarly for all other states…

13Monday, 18 Nov. 2019 Machine Learning (COMP 135)

S2

S4 S5

S1 S3

S6 S7 S8

G

13

Planning and Learning
} How do we find policies?

} If we know the entire problem, we plan
} e.g., if we already know the whole maze, and know all the

MDP dynamics, we can solve it to find the best policy of action
(even if we have to take into account the probability that some
movements fail some of the time)

} If we don’t know it all ahead of time, we learn
} Reinforcement Learning: use the positive and negative

feedback from the one-step reward in an MDP, and figure out
a policy that gives us long-term value

14Monday, 18 Nov. 2019 Machine Learning (COMP 135)

14

Maximizing Expected Return
} If we are solving a planning problem like an MDP, we want

our plan to give us maximum expected reward over time

} In a finite-time problem, the total reward we get at some
time-step t is just the sum of future rewards (up to our
time-limit T):

Rt = rt+1 + rt+2 + … + rT

} The optimal policy would make this sum as large as
possible, taking into account any probabilistic outcomes
(e.g. robot moves that go the wrong way by accident)

15Monday, 18 Nov. 2019 Machine Learning (COMP 135)

15

The Infinite (Indefinite) Case
} Unfortunately, this simple idea doesn’t really work for

problems with indefinite time-horizons

} In such problems, our agent can keep on acting, and we have
no known upper bound on how long this may continue

} In such cases we treat upper bound as if it is infinite: T = ∞

} If the time-horizon T is infinite, then the sum of rewards:

Rt = rt+1 + rt+2 + … + rT

can be infinitely large (or infinitely small), too!

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 16

16

5

The Infinite (Indefinite) Case
} If the time-horizon T is infinite, then the sum of rewards:

Rt = rt+1 + rt+2 + … + rT

can be infinitely large (or infinitely small), too!

} For example, suppose a robot is exploring Mars
} Whenever it collects a valuable sample, it gets a reward of +100
} Less valuable samples only give it +1 (everything else is just 0)

} Now, if the problem is indefinite-horizon, it doesn’t matter
what the robot does: all policies give it the same value (+∞)
even if it ignores any valuable samples

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 17

17

Discounted Reward
} To solve the problem of future reward in MDPs, we

therefore introduce a discount rate, γ (gamma), which is
some number between 0 and 1

} Reward we get is then weighted by the discount rate:

} If our time horizon is finite, we can set gamma to 1; if it
is infinite, we always make sure that gamma is less than 1

} What happens if gamma = 0?

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 18

Rt = rt+1 + �rt+2 + �2rt+3 + �3rt+4 + · · · =
��

k=0

�krt+k+1

18

Policy Values in MDPs
} Suppose we have a policy π for an MDP
} A policy is a function from states to actions

} We can calculate the expected value we get by starting in some
state s, at time t , and then following policy 𝜋 for T steps:

} Ep {…} is the expectation for value of {…} if we follow policy p
} If the domain is not probabilistic, then we know this exactly, otherwise

we can calculate it using probability/decision theory

19Monday, 18 Nov. 2019 Machine Learning (COMP 135)

⇡ : S ! A

U⇡(s) = E⇡{Rt | st = s} = E⇡

(
T�1X

k=0

�krt+k+1 | st = s

)

<latexit sha1_base64="UhvjVIHyFy1GaYxnCKtJOZ9ljas=">AAACWXicZVFda9swFJXdbku9r7R93MtlZdDRLdjZw/oSKCtle+xG0xaqxCiy7AjLlpGuC8X4D+ytf6ywx3X/ZUxO8rC0FyQO5577oaNZpaTFMPzt+RubT54+620Fz1+8fPW6v71zbnVtuBhzrbS5nDErlCzFGCUqcVkZwYqZEhez/LjLX1wLY6Uuz/CmEpOCZaVMJWfoqLiP4ymt5L59DyM4iR0EagU2P2J0oMY5WIdGYFt3BSuBEinSpssXcZOPwnbanH2MWqAZKwo2zcHEDR7kBx31fw+gRmZzpG3c3wsH4SLgMYhWYO/o68/jv/T212ncv6OJ5nUhSuSKWXsVhRVOGmZQciXagNZWVIznLBPNwpMW3jkqgVQbd0qEBbumKzUuPFirvqoxPZw0sqxqFCVftklrBaihsw8SaQRHdeMA40a6+cDnzDCOzuS1TqZWIvkA193PJG5XlWmnnxdDt68zIHr43MfgfDiIPg2G350TX8gyeuQNeUv2SUQ+kyPyjZySMeHk3iPelhd4f3zP7/nBUup7q5pdshb+7j9QRrRd</latexit>

19

The Bellman Equation
} Using basic algebra, the expected value of starting in some state, s, can be calculated, via

dynamic programming, based on the next possible state(s) we can reach if we take the action
dictated by our policy, π (s) = a :

} Which means that we can define policy-value for state s recursively, based on the policy-
value of any next state s´ that we can get to when we follow that policy:

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 20

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U⇡(s) = E⇡{Rt | st = s}

= E⇡

(
T�1X

k=0

�krt+k+1

����� st = s

)

= E⇡

(
rt+1 + �

T�2X

k=0

�krt+k+2

����� st = s

)

=
X

s0

P (s,⇡(s), s0)

"
R(s,⇡(s), s0) + � E⇡

(
T�2X

k=0

�krt+k+2

����� st+1 = s0
)#

<latexit sha1_base64="MnqcPr9i9Cns2S3Dw+dhPmojzRU=">AAADjXicjVLbbtNAEN3YXEqANoVHXkZEoFQJkR2K4AFXFQjBY6iatlKcWJv1Jll5fdHuuFJl8j38De/8DRvbqE0jUUayfHTmzJnZ0cwyKTQ6zu+GZd+7/+DhzqPm4ydPd/da+8/OdJorxkcslam6mFHNpUj4CAVKfpEpTuOZ5Oez6PM6f37JlRZpcopXGZ/EdJGIuWAUDRXsN36Opn4mOvoAXnvwJTAYfM2xOAnQgByXoA3yQK/A95vXGsnn6BfVv79WxkERec5qWpy+cY12QeOYTiNQQYHdqLumlFgsEX78NawJ/5/GZbkp7taOtzoNtjsN7u5UeWg/U/EKhh3dg2oFPSi5g6o5jOGkzsHN5PUoPWiCif/YyJ1zFmh8zTu9qsuNiSvNJGi1nb5TBmwDtwZtUscwaP3yw5TlMU+QSar12HUynBRUoWCSr5p+rnlGWUQXvCjvaAWvDBXCPFXmSxBKdkOXpFjezUb1OMf5h0khkixHnrDKZp5LwBTWJwehUJyhvDKAMiVMf2BLqihDc5gbTiqXPOzB5fqaQzOrXKRGv4wHZl6zAPf2c7fB2aDvvu0Pvh+2jz/Vq9ghL8hL0iEueU+OyTcyJCPCrF3r0PKsI3vPfmd/tI8qqdWoa56TjbC//gGEBRTK</latexit>

20

6

Unpacking the Bellman Equation
} Derived first by Richard Bellman (1957), working in control theory

} He also showed how to calculate the value of the equation

} Defines policy-value for state s recursively, based on the policy-value of
any next state s´ that we can get to when we follow that policy:

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 21

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

Expected value of
following policy 𝜋,
starting in state s

Sum over all
possible next

states, s′

Transition probability
of going from s to s′,
following action 𝜋(s)

One-step reward for
going from s to s′,

following action 𝜋(s)

Discounted value of
continuing to follow
policy 𝜋, from state s′

21

Bellman Updates

} Consider a 2-step policy, π, starting in state s0

} At step 1, we take action a0 = π(s0), which leads to
some possible next states, s1 or s2, each with different
probabilities and resulting rewards

22Monday, 18 Nov. 2019 Machine Learning (COMP 135)

s0

s2

s1
p1 , r1

p2 , r2

a0

22

Bellman Updates

} Then, each of these next states also has some action to
take under our policy, leading to further transitions and
rewards gained over time

23Monday, 18 Nov. 2019 Machine Learning (COMP 135)

s0

s2

s1
p1 , r1

p2 , r2

a0

s3

s4

s5

s6

a1

a2

p3 , r3

p4 , r4

p5 , r5

p6 , r6

23

Bellman Updates

} Thus, to get the value of the start-state under this policy, Uπ(s0), we
first calculate one-step, undiscounted expected value:

Uπ(s1) = (p3 × r3) + (p4 × r4)

24Monday, 18 Nov. 2019 Machine Learning (COMP 135)

s0

s2

s1
p1 , r1

p2 , r2

a0

s3

s4

s5

s6

a1

a2

p3 , r3

p4 , r4

p5 , r5

p6 , r6

Uπ(s1)

24

7

Bellman Updates

} Similarly, we have:
Uπ(s2) = (p5 × r5) + (p6 × r6)

25Monday, 18 Nov. 2019 Machine Learning (COMP 135)

s0

s2

s1
p1 , r1

p2 , r2

a0

s3

s4

s5

s6

a1

a2

p3 , r3

p4 , r4

p5 , r5

p6 , r6

Uπ(s1)

Uπ(s2)

25

Bellman Updates

} Now we can calculate our start-state value, but this time
discounting the value of the next states by our γ factor:

Uπ(s0) = (p1 × [r1 + γUπ(s1)]) + (p2 × [r2 + γUπ(s2)])
26Monday, 18 Nov. 2019 Machine Learning (COMP 135)

s0

s2

s1
p1 , r1

p2 , r2

a0

s3

s4

s5

s6

a1

a2

p3 , r3

p4 , r4

p5 , r5

p6 , r6

Uπ(s0)

Uπ(s2)

Uπ(s1)

26

Solving the Bellman Equation

} Next, we will see how to solve the general Bellman Equation for any set of
states, probabilities, and rewards, over any time horizon

} Here, we see the solution for a grid with dynamics as follows:
} Agent policy: move randomly in one of 4 directions
} If agent hits a wall, reward is R = -1
} All other moves are reward R = 0, except for in two special states A and B,

where any action takes agent to A´ or B´ with reward indicated
} Discount factor (gamma) is g = 0.9

27Monday, 18 Nov. 2019 Machine Learning (COMP 135)

A B

+5

+10 B´

A´

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0
Actions

Example from: Sutton & Barto, 1998

27

function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s)
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation: given a policy, we calculate the expected value for every state
if we follow the policy, iterating until values converge (quit changing much)

28Monday, 18 Nov. 2019 Machine Learning (COMP 135)

28

8

Next Few Weeks
} Topics: Reinforcement Learning

} HW 05: due Wednesday, 20 November, 9:00 AM

} Project 02: due Monday, 25 November, 9:00 AM

} Office Hours: 237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well

Monday, 18 Nov. 2019 Machine Learning (COMP 135) 29

29

