

1

What Do We Need?

- Al systems must be able to handle complex, uncertain worlds, and come up with plans that are useful to us over extended periods of time
- Uncertainty: requires something like probability theory
- Value-based planning: we want to maximize expected utility over time, as in decision theory
- Planning over time: we need some sort of temporal model of how the world can change as we go about our business

Monday, 18 Nov. 2019

What Do We Want AI and ML to Do?

- Short answer: Lots of things!
- Intelligent robot and vehicle navigation
- Better web search
- Automated personal assistants
- Scheduling for delivery vehicles, air traffic control, industrial processes, ...
- Simulated agents in video games
- Automated translation systems
- Monday, 18 Nov. 2019

2

Markov Decision Processes

- Markov Decision Processes (MDPs) combine various ideas from probability theory and decision theory
- A useful model for doing full planning, and for representing environments where agents can learn what to do
- Basic idea: a world made up of states, changing based on the actions of an Al agent, who is trying to maximize its long-term reward as it does so
- One technical detail: change happens probabilistically (under the Markov assumption)
- Monday, 18 Nov. 2019

4

Formal Definition of an MDP

- An MDP has several components

$$
M=\langle S, A, P, R, T\rangle
$$

1. $S=$ a set of states of the world
2. A = a set of actions an agent can take
3. $P=$ a state-transition function: $P\left(s, a, s^{\prime}\right)$ is the probability of ending up in state s^{\prime} if you start in state s and you take action $a: ~ P\left(s^{\prime} \mid s, a\right)$
4. $R=$ a reward function: $R\left(s, a, s^{\prime}\right)$ is the one-step reward you get if you go from state s to state s^{\prime} after taking action a
5. \quad = a time horizon (how many steps): we assume that every state-transition, following a single action, takes a single unit of time

- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
5

MDP for the Maze Problem

- States: each state is simply the robot's current location (imagine the map is a grid), including nearby walls
- Actions: the robot can move in one of the four directions (UP, DOWN, LEFT, RIGHT)
- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
7

An Example: Maze Navigation

- Suppose we have a robot in
 a maze, looking for exit
- The robot can see where it is currently, and where surrounding walls are, but doesn't know anything else
- We would like it to be able to learn the shortest route out of the maze, no matter where it starts
- How can we formulate this problem as an MDP?

6

Action Transitions

- We can use the transition function
 to represent important features of the maze problem domain
- For instance, the robot cannot move through walls
- For example, if the robot starts in the corner (s_{1}), and tries to go DOWN, nothing happens:
$\mathrm{P}\left(\mathrm{s}_{1}\right.$, DOWN, $\left.\mathrm{s}_{1}\right)=1.0$

8

9

11

10

Rewards in the Maze

- If G is our goal (exit) state, we can "encourage" the robot, by giving any action that gets to G positive reward:

$$
\begin{gathered}
R\left(\mathrm{~s}_{1}, \text { DOWN, } \mathrm{G}\right)=+100 \\
\mathrm{R}\left(\mathrm{~s}_{2}, \text { LEFT, } G\right)=+100 \\
\mathrm{R}\left(\mathrm{~s}_{3}, \mathrm{UP}, \mathrm{G}\right)=+100
\end{gathered}
$$

- Further, we can reward quicker solutions by making all other movements have negative reward, e.g.:

$$
\begin{gathered}
\mathrm{R}\left(\mathrm{~s}_{1}, \text { RIGHT, } \mathrm{s}^{\prime}\right)=-1 \\
\mathrm{R}\left(\mathrm{~s}_{2}, \mathrm{UP}, \mathrm{~s}^{\prime}\right)=-1
\end{gathered}
$$

etc.

- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
12

Solving the Maze

- A solution to our problem takes the form of a policy of action, π

- At each state, it tells the agent the best thing to do:
- $\pi\left(\mathrm{s}_{1}\right)=\mathrm{DOWN}$
- $\quad \pi\left(\mathrm{s}_{2}\right)=$ LEFT
- Similarly for all other states...

Maximizing Expected Return

- If we are solving a planning problem like an MDP, we want our plan to give us maximum expected reward over time
- In a finite-time problem, the total reward we get at some time-step t is just the sum of future rewards (up to our time-limit T):

$$
R_{\mathrm{t}}=r_{\mathrm{t}+1}+r_{\mathrm{t}+2}+\ldots+r_{T}
$$

- The optimal policy would make this sum as large as possible, taking into account any probabilistic outcomes (e.g. robot moves that go the wrong way by accident)
- Monday, 18 Nov. 2019 Machine Learning (COMP 135) 15

Planning and Learning

- How do we find policies?
- If we know the entire problem, we plan
- e.g., if we already know the whole maze, and know all the MDP dynamics, we can solve it to find the best policy of action (even if we have to take into account the probability that some movements fail some of the time)
- If we don't know it all ahead of time, we learn
- Reinforcement Learning: use the positive and negative feedback from the one-step reward in an MDP, and figure out a policy that gives us long-term value
- Monday, 18 Nov. 2019

14

The Infinite (Indefinite) Case

- Unfortunately, this simple idea doesn't really work for problems with indefinite time-horizons
- In such problems, our agent can keep on acting, and we have no known upper bound on how long this may continue
- In such cases we treat upper bound as if it is infinite: $\mathrm{T}=\infty$
- If the time-horizon T is infinite, then the sum of rewards:

$$
R_{\mathrm{t}}=r_{\mathrm{t}+1}+r_{\mathrm{t}+2}+\ldots+r_{T}
$$

can be infinitely large (or infinitely small), too!

The Infinite (Indefinite) Case

| If the time-horizon T is infinite, then the sum of rewards:

$$
R_{\mathrm{t}}=r_{\mathrm{t}+1}+r_{\mathrm{t}+2}+\ldots+r_{T}
$$

can be infinitely large (or infinitely small), too!

- For example, suppose a robot is exploring Mars
, Whenever it collects a valuable sample, it gets a reward of +100
- Less valuable samples only give it +1 (everything else is just 0)
b Now, if the problem is indefinite-horizon, it doesn't matter what the robot does: all policies give it the same value $(+\infty)$ even if it ignores any valuable samples

Discounted Reward

- To solve the problem of future reward in MDPs, we therefore introduce a discount rate, γ (gamma), which is some number between 0 and 1
- Reward we get is then weighted by the discount rate:
$R_{t}=r_{t+1}+\gamma r_{t+2}+\gamma^{2} r_{t+3}+\gamma^{3} r_{t+4}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}$
- If our time horizon is finite, we can set gamma to 1 ; if it is infinite, we always make sure that gamma is less than 1
- What happens if gamma $=0$?
- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
18
18

The Bellman Equation

- Using basic algebra, the expected value of starting in some state, s, can be calculated, via dynamic programming, based on the next possible state(s) we can reach if we take the action dictated by our policy, $\pi(s)=a$:
$U^{\pi}(s)=E_{\pi}\left\{R_{t} \mid s_{t}=s\right\}$

$$
\begin{aligned}
& =E_{\pi}\left\{\sum_{k=0}^{T-1} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right\} \\
& =E_{\pi}\left\{r_{t+1}+\gamma \sum_{k=0}^{T-2} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right\} \\
& =\sum_{s^{\prime}} P\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma E_{\pi}\left\{\sum_{k=0}^{T-2} \gamma^{k} r_{t+k+2} \mid s_{t+1}=s^{\prime}\right\}\right]
\end{aligned}
$$

- Which means that we can define policy-value for state s recursively, based on the policyvalue of any next state s 'that we can get to when we follow that policy:

$$
U^{\pi}(s)=\sum_{s^{\prime}} P\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma U^{\pi}\left(s^{\prime}\right)\right]
$$

> Monday, 18 Nov. 2019

Unpacking the Bellman Equation

- Derived first by Richard Bellman (1957), working in control theory
- He also showed how to calculate the value of the equation
- Defines policy-value for state s recursively, based on the policy-value of any next state s^{\prime} that we can get to when we follow that policy:

21

Bellman Updates

- Then, each of these next states also has some action to take under our policy, leading to further transitions and rewards gained over time
- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
23

Bellman Updates

- Consider a 2-step policy, π, starting in state s_{0}
- At step 1 , we take action $\mathrm{a}_{0}=\pi\left(\mathrm{s}_{0}\right)$, which leads to some possible next states, s_{1} or s_{2}, each with different probabilities and resulting rewards
- Monday, 18 Nov. 2019 Machine Learning (COMP 135) 22

22

Bellman Updates

- Thus, to get the value of the start-state under this policy, $\mathrm{U}^{\pi}\left(\mathrm{S}_{0}\right)$, we first calculate one-step, undiscounted expected value:

$$
\mathrm{U}^{\pi}\left(\mathrm{s}_{1}\right)=\left(\mathrm{p}_{3} \times \mathrm{r}_{3}\right)+\left(\mathrm{p}_{4} \times \mathrm{r}_{4}\right)
$$

- Monday, 18 Nov. 2019

Machine Learning (COMP 135)
24

Bellman Updates

- Similarly, we have:

$$
\mathrm{U}^{\pi}\left(\mathrm{s}_{2}\right)=\left(\mathrm{p}_{5} \times \mathrm{r}_{5}\right)+\left(\mathrm{p}_{6} \times \mathrm{r}_{6}\right)
$$

- Monday, 18 Nov. 2019 Machine Learning (COMP 135)

Bellman Updates

- Now we can calculate our start-state value, but this time discounting the value of the next states by our γ factor:

$$
U^{\pi}\left(s_{0}\right)=\left(p_{1} \times\left[r_{1}+\gamma U^{\pi}\left(s_{1}\right)\right]\right)+\left(p_{2} \times\left[r_{2}+\gamma U^{\pi}\left(s_{2}\right)\right]\right)
$$

> Monday, 18 Nov. 2019 Machine Learning (COMP 135) 26
26

Evaluating a Policy Iteratively

```
function Policy-Evaluation \((m d p, \pi)\) returns a value function
    inputs: \(m d p\), an MDP, and \(\pi\), a policy to be evaluated
    local variables: \(\Delta\), maximal amount policy values change per iteration,
                \(\Theta\), a small positive constant
    \(\forall s \in S: U(S)=0\)
    repeat while \(\Delta \geq \Theta\)
        \(\Delta \leftarrow 0\)
            \(\forall s \in S\)
                \(u \leftarrow U(s)\)
                \(U(s) \leftarrow \sum_{s^{\prime}} P\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma U\left(s^{\prime}\right)\right]\)
            \(\Delta \leftarrow \max (\Delta,|U(s)-u|)\)
    return value function \(U \approx U^{\pi}\)
```

- Policy evaluation: given a policy, we calculate the expected value for every state if we follow the policy, iterating until values converge (quit changing much)
- Monday, 18 Nov. 2019

Machine Learning (COMP 135) 28
28

| Next Few Weeks |
| :--- | :--- |
| - Topics: Reinforcement Learning |
| - HW 05: due Wednesday, 20 November, 9:00 AM |
| Project 02: due Monday, 25 November, 9:00 AM |
| - Office Hours: 237 Halligan, Tuesday, I I:00 AM - I:00 PM |
| - TA hours can be found on class website as well |
| |
| |

