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Class #21: Markov Decision 
Processes as Models for Learning

Machine Learning (COMP 135):  M. Allen, 18 Nov. 19
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What Do We Want AI and ML to Do?
} Short answer:  Lots of things!

} Intelligent robot and vehicle navigation
} Better web search 
} Automated personal assistants
} Scheduling for delivery vehicles, air traffic control, industrial 

processes, …
} Simulated agents in video games
} Automated translation systems
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What Do We Need?
} AI systems must be able to handle complex, uncertain 

worlds, and come up with plans that are useful to us over 
extended periods of time
} Uncertainty:  requires something like probability theory

} Value-based planning:  we want to maximize expected utility 
over time, as in decision theory

} Planning over time:  we need some sort of temporal model of 
how the world can change as we go about our business
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Markov Decision Processes

} Markov Decision Processes (MDPs) combine various 
ideas from probability theory and decision theory
} A useful model for doing full planning, and for representing 

environments where agents can learn what to do

} Basic idea:  a world made up of states, changing based on 
the actions of an AI agent, who is trying to maximize its 
long-term reward as it does so
} One technical detail:  change happens probabilistically (under 

the Markov assumption)
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Formal Definition of an MDP
} An MDP has several components

M = < S, A, P, R, T >
1. S = a set of states of the world
2. A = a set of actions an agent can take
3. P = a state-transition function:  P (s, a, s´ ) is the 

probability of ending up in state s´ if you start in state s
and you take action a: P(s´| s, a )

4. R = a reward function: R(s, a, s´ ) is the one-step 
reward you get if you go from state s to state s´ after 
taking action a

5. T = a time horizon (how many steps): we assume that 
every state-transition, following a single action, takes a 
single unit of time
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An Example:  Maze Navigation
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} Suppose we have a robot in 
a maze, looking for exit

} The robot can see where it 
is currently, and where 
surrounding walls are, but 
doesn’t know anything else

} We would like it to be able 
to learn the shortest route 
out of the maze, no matter 
where it starts

} How can we formulate this 
problem as an MDP?
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MDP for the Maze Problem
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} States:  each state is simply the robot’s current location 
(imagine the map is a grid), including nearby walls

} Actions:  the robot can move in one of the four 
directions (UP, DOWN, LEFT, RIGHT)  
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Action Transitions

} We can use the transition function 
to represent important features of 
the maze problem domain

} For instance, the robot cannot 
move through walls

} For example, if the robot starts in 
the corner (s1), and tries to go 
DOWN, nothing happens:

P(s1, DOWN, s1) = 1.0
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Action Transitions, II

} Similarly, we can model uncertain 
action outcomes using the 
transition model 

} Suppose the robot is a little 
unstable, and occasionally goes in 
the wrong direction

} Thus, if it starts in state s1 and tries 
to go UP to s2:
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Action Transitions, II

} Similarly, we can model uncertain 
action outcomes using the 
transition model 

} Suppose the robot is a little 
unstable, and occasionally goes in 
the wrong direction

} Thus, if it starts in state s1 and tries 
to go UP to s2:

1. 80% of the time it works:
P(s1, UP, s2) = 0.8
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Action Transitions, II

} Similarly, we can model uncertain 
action outcomes using the 
transition model 

} Suppose the robot is a little 
unstable, and occasionally goes in 
the wrong direction

} Thus, if it starts in state s1 and tries 
to go UP to s2:

1. 80% of the time it works:
P(s1, UP, s2) = 0.8

2. But it may slip and miss:
P(s1, UP, s3) = 0.2
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Rewards in the Maze

} If G is our goal (exit) state, we can 
“encourage” the robot, by giving any 
action that gets to G positive reward:

R(s1, DOWN, G) = +100
R(s2, LEFT, G) = +100
R(s3, UP, G) = +100

} Further, we can reward quicker 
solutions by making all other 
movements have negative reward, e.g.:

R(s1, RIGHT, s´ ) = -1
R(s2, UP, s´ ) = -1

etc.
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Solving the Maze

} A solution to our problem takes 
the form of a  policy of action, p

} At each state, it tells the agent the 
best thing to do:

} π(s1) = DOWN

} π(s2) = LEFT
} Similarly for all other states…
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Planning and Learning
} How do we find policies?

} If we know the entire problem, we plan
} e.g., if we already know the whole maze, and know all the 

MDP dynamics, we can solve it to find the best policy of action 
(even if we have to take into account the probability that some 
movements fail some of the time) 

} If we don’t know it all ahead of time, we learn
} Reinforcement Learning:  use the positive and negative 

feedback from the one-step reward in an MDP, and figure out 
a policy that gives us long-term value
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Maximizing Expected Return
} If we are solving a planning problem like an MDP, we want 

our plan to give us maximum expected reward over time

} In a finite-time problem, the total reward we get at some 
time-step t is just the sum of future rewards (up to our 
time-limit T ):

Rt = rt+1 + rt+2 + … + rT

} The optimal policy would make this sum as large as 
possible, taking into account any probabilistic outcomes 
(e.g. robot moves that go the wrong way by accident)
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The Infinite (Indefinite) Case
} Unfortunately, this simple idea doesn’t really work for 

problems with indefinite time-horizons

} In such problems, our agent can keep on acting, and we have 
no known upper bound on how long this may continue

} In such cases we treat upper bound as if it is infinite:  T = ∞

} If the time-horizon T is infinite, then the sum of rewards:

Rt = rt+1 + rt+2 + … + rT

can be infinitely large (or infinitely small), too!
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The Infinite (Indefinite) Case
} If the time-horizon T is infinite, then the sum of rewards:

Rt = rt+1 + rt+2 + … + rT

can be infinitely large (or infinitely small), too!

} For example, suppose a robot is exploring Mars
} Whenever it collects a valuable sample, it gets a reward of +100
} Less valuable samples only give it +1 (everything else is just 0)

} Now, if the problem is indefinite-horizon, it doesn’t matter 
what the robot does:  all policies give it the same value (+∞)
even if it ignores any valuable samples 
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Discounted Reward
} To solve the problem of future reward in MDPs, we 

therefore introduce a discount rate, γ (gamma), which is 
some number between 0 and 1

} Reward we get is then weighted by the discount rate:

} If our time horizon is finite, we can set gamma to 1;  if it 
is infinite, we always make sure that gamma is less than 1

} What happens if gamma = 0?
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Rt = rt+1 + �rt+2 + �2rt+3 + �3rt+4 + · · · =
��

k=0

�krt+k+1
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Policy Values in MDPs
} Suppose we have a policy π for an MDP
} A policy is a function from states to actions

} We can calculate the expected value we get by starting in some 
state s, at time t , and then following policy 𝜋 for T steps:

} Ep {…} is the expectation for value of {…} if we follow policy p
} If the domain is not probabilistic, then we know this exactly, otherwise 

we can calculate it using probability/decision theory
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U⇡(s) = E⇡{Rt | st = s} = E⇡

(
T�1X

k=0

�krt+k+1 | st = s

)

<latexit sha1_base64="UhvjVIHyFy1GaYxnCKtJOZ9ljas="></latexit>

19

The Bellman Equation
} Using basic algebra, the expected value of starting in some state, s, can be calculated, via 

dynamic programming, based on the next possible state(s) we can reach if we take the action 
dictated by our policy, π (s) = a :

} Which means that we can define policy-value for state s recursively, based on the policy-
value of any next state s´ that we can get to when we follow that policy:
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U⇡(s) = E⇡{Rt | st = s}

= E⇡
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T�1X
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����� st = s

)
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rt+1 + �
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�krt+k+2

����� st = s
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=
X

s0

P (s,⇡(s), s0)

"
R(s,⇡(s), s0) + � E⇡
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����� st+1 = s0
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Unpacking the Bellman Equation
} Derived first by Richard Bellman (1957), working in control theory  

} He also showed how to calculate the value of the equation

} Defines policy-value for state s recursively, based on the policy-value of 
any next state s´ that we can get to when we follow that policy:
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

Expected value of 
following policy 𝜋, 
starting in state s

Sum over all 
possible next 

states, s′

Transition probability 
of going from s to s′, 
following action 𝜋(s)

One-step reward for 
going from s to s′, 

following action 𝜋(s)

Discounted value of 
continuing to follow 
policy 𝜋, from state s′
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Bellman Updates

} Consider a 2-step policy, π,  starting in state s0

} At step 1, we take action a0 = π(s0), which leads to 
some possible next states, s1 or s2, each with different 
probabilities and resulting rewards
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Bellman Updates

} Then, each of these next states also has some action to 
take under our policy, leading to further transitions and 
rewards gained over time
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Bellman Updates

} Thus, to get the value of the start-state under this policy, Uπ(s0), we 
first calculate one-step, undiscounted expected value:

Uπ(s1) = (p3 × r3) + (p4 × r4) 
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Bellman Updates

} Similarly, we have:
Uπ(s2) = (p5 × r5) + (p6 × r6) 
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Bellman Updates

} Now we can calculate our start-state value, but this time 
discounting the value of the next states by our γ factor:

Uπ(s0) = (p1 × [r1 + γUπ(s1)]) + (p2 × [r2 + γUπ(s2)]) 
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Solving the Bellman Equation

} Next, we will see how to solve the general Bellman Equation for any set of 
states, probabilities, and rewards, over any time horizon

} Here, we see the solution for a grid with dynamics as follows:
} Agent policy: move randomly in one of 4 directions
} If agent hits a wall, reward is  R = -1
} All other moves are reward R = 0, except for in two special states A and B, 

where any action takes agent to A´ or B´ with reward indicated
} Discount factor (gamma) is g = 0.9
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A B

+5

+10 B´

A´

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0
Actions

Example from: Sutton & Barto, 1998
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function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s) 
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation:  given a policy, we calculate the expected value for every state 
if we follow the policy, iterating until values converge (quit changing much)
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Next Few Weeks
} Topics: Reinforcement Learning

} HW 05: due Wednesday, 20 November, 9:00 AM

} Project 02: due Monday, 25 November, 9:00 AM

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well
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