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Class #22: Solving MDPs 
& Reinforcement Learning

Machine Learning (COMP 135):  M. Allen, 20 Nov. 19
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Review: The Bellman Equation
} Richard Bellman (1957), working in Control Theory,  was able 

to show that the utility of any state s, given policy of action p, 
can be defined recursively in terms of the utility of any states 
we can get to from s by taking the action that p dictates:

} Furthermore, he showed how to actually calculate this value 
using an iterative dynamic programming algorithm 
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]
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function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s) 
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation:  given a policy, we calculate the expected value for every state 
if we follow the policy, iterating until values converge (quit changing very much)
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Note: if we set Q to

approximation error is 
at most e

" (1� �)

�
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Finding the Optimal Policy (π*)

} Before, to calculate U π(s ), 
we only looked at single 
set of actions: those given 
for each state by policy,  

} Now, we will consider all 
possible actions, taking 
the one that is the best at 
each state before we sum 
over the various 
probabilities and rewards 
in the system
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Bellman Equations
} We have seen that the utility of any state s in a given 

policy π can be calculated iteratively:

} This same equation can be used to find the value of the 
best possible policy, simply by calculating what we get if 
we always take the best action:
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U?(s) = max
⇡

U⇡(s)

= max
a

X

s0

P (s, a, s0) [R(s, a, s0) + � U?(s0)]
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Solving for the Optimal Policy

} Before, we looked at the value of the purely random policy 
for this particular grid problem

} We can use the Bellman Equation to find the optimal policy 
} Here we see the optimal value function, U*, and the associated 

optimal policy, π* (where in some cases, multiple actions are all 
equally good/bad)
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A B

+5

+10 B´

A´

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

Problem domain U* p*

Example from: Sutton & Barto, 1998
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Policy Improvement
} Once we figure out the value for each state under our current 

policy, we can choose new actions

} Our choice is simple:  just set our new policy in a greedy way, 
choosing the best action available
} This choice is based on the current set of values
} Creates a new policy when we change some action
} If the policy does change, then we need to update our values again
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U⇡(s) =
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

⇡0(s) = argmax
a

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]
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Improving Policies Iteratively
} Again, a simple 

iterative algorithm:  
1. Evaluate the 

current policy.

2. Set all actions to 
best ones found 
when evaluating.

3. If the policy has 
changed, repeat.

4. When no action 
changes,  end.

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 8

function Policy-Iteration (mdp) returns a policy

inputs: mdp, an MDP

local variables: U , a vector of utility values for states s 2 S,

⇡, a policy to be updated

8s 2 S : U(S) = 0 and ⇡(s) = a random action

repeat while changed? = true

U  Policy-Evaluation(mdp, ⇡)

changed? false

8s 2 S :

a ⇡(s)

⇡(s) argmax
a2A

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

if : ⇡(s) 6= a, then : changed? true

return ⇡
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Policy Iteration
} It can be shown that in 

time, this process will 
converge to a policy π*
with value function U*, 
that is nearly optimal

} As with policy evaluation, 
we can put bounds on the 
amount of non-optimality 
(based on the value-
update parameter D)
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U → U π

π → greedy(U )

π U

π* U*
⋮
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Learning the Value of a Policy
} The dynamic programming algorithm we have seen works 

fine if we already know everything about an MDP 
system, including:
1. Probabilities of all state-action transitions
2. Rewards we get in each case

} If we don’t have this information, how can we figure out 
the value of a policy?
} Turns out we can use a sampling method
} “Follow the policy, and see what happens”
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10

Temporal Difference (TD) Updates

} Agent in an MDP takes actions, sees new states and rewards
} This information can be used to update the value function

} This is slightly modified from text, to simplify it
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function TD-Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

take action ⇡(s)

observe: next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return value function U ⇡ U⇡
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Temporal Difference (TD) Updates

} Now, we don’t base value-update on a probability distribution

} Instead, based on the single state we actually see, over and over again, stopping 
whenever we hit a terminal condition, for some number of learning episodes
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function TD-Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

take action ⇡(s)

observe: next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return value function U ⇡ U⇡
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The Basic TD(0) Update

} When we make one-step update, we add one-step reward
that we get, r, plus the difference between where we start, 
U (s ), and where we end up U (s´), discounted by the 
factor g as usual

} If state where we end up s´ is better after discounting, 
then the value of original state s goes up

} If s´ is worse, the value of s goes down
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U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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The Basic TD(0) Update

} We also weight the value-update amount by another 
constant a, (less than 1), called a step-size parameter

1. If this value shrinks to 0 over time, values stop changing

2. If we do this slowly, the update will eventually converge 
to actual value of state if we follow the policy p

} For example, if we update over episodes, e = 1, 2, 3,…, we 
can set the parameter for each episode to be:
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�e =
1
e

U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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Advantages and a Problem
} With TD updates, we only update the states we actually 

see given the policy we are following
} Don’t need to know MDP dynamics
} May only have to update very few states, saving much time to 

get the values of those we actually reach under our policy

} However, this can be a source of difficulty:  we may not be 
able to find a better policy, since we don’t know values of 
states that we never happen to visit
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Exploration and Exploitation
} If we use the Dynamic Programming method, we calculate 

the value of every state
} Easy to update policy (just be greedy)
} This is exploitation:  use best values seen to choose actions

} When we are learning, however, we sometimes don’t 
know what certain states are like, because we’ve never 
actually seen them yet
} Our current policy may never get us to things we really want
} Thus, we must use exploration:  try out things even if our 

current best policy doesn’t think it’s a good idea
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Almost-Greedy Policies
} One simple way to add exploration is to use a policy 

that is mostly greedy, but not always

} An “epsilon-greedy” (e-greedy) policy sets some 
probability threshold, e, and chooses actions by:
1. Picking a random number R ∈ [0,1]
2. If R ≤ e, choosing the action at random
3. If R > e, acting in a greedy fashion (as before)
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Learning with e-greedy policies
} We can add this idea to our sampling update method
} After we take an action, and see a state-transition from s

to s´, we do the same updates as before:

} When we choose actions, we do so in an e-greedy way, 
sometimes following the policy based on learned values, 
and sometimes trying random things

} Over enough time, this can converge to true value 
function U* of the optimal policy p*
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U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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TD-Learning

} Algorithm is the same, but explores using sometimes-greedy and 
sometimes-probabilistic action-choices instead of fixed policy p
} We reduce learning parameter a just as before to converge
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function TD-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

choose action a, using ✏-greedy policy based on U(s)

observe next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon U(s)

19

Next Few Weeks

} Topics: Reinforcement Learning

} HW 05: due Wednesday, 20 November, 9:00 AM

} Project 02: due Monday, 25 November, 9:00 AM

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well
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