
1

Class #22: Solving MDPs
& Reinforcement Learning

Machine Learning (COMP 135): M. Allen, 20 Nov. 19

1

Review: The Bellman Equation
} Richard Bellman (1957), working in Control Theory, was able

to show that the utility of any state s, given policy of action p,
can be defined recursively in terms of the utility of any states
we can get to from s by taking the action that p dictates:

} Furthermore, he showed how to actually calculate this value
using an iterative dynamic programming algorithm

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 2

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

2

function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s)
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation: given a policy, we calculate the expected value for every state
if we follow the policy, iterating until values converge (quit changing very much)

3Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

Note: if we set Q to

approximation error is
at most e

" (1� �)

�

3

Finding the Optimal Policy (π*)

} Before, to calculate U π(s),
we only looked at single
set of actions: those given
for each state by policy,

} Now, we will consider all
possible actions, taking
the one that is the best at
each state before we sum
over the various
probabilities and rewards
in the system

4Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

s

s’ s’ s’ s’ s’ s’

max

a1 a2 a3

EV =
X

i

pi ri

ai = ⇡(si)

4

2

Bellman Equations
} We have seen that the utility of any state s in a given

policy π can be calculated iteratively:

} This same equation can be used to find the value of the
best possible policy, simply by calculating what we get if
we always take the best action:

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 5

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U?(s) = max
⇡

U⇡(s)

= max
a

X

s0

P (s, a, s0) [R(s, a, s0) + � U?(s0)]

5

Solving for the Optimal Policy

} Before, we looked at the value of the purely random policy
for this particular grid problem

} We can use the Bellman Equation to find the optimal policy
} Here we see the optimal value function, U*, and the associated

optimal policy, π* (where in some cases, multiple actions are all
equally good/bad)

6Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

A B

+5

+10 B´

A´

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

Problem domain U* p*

Example from: Sutton & Barto, 1998

6

Policy Improvement
} Once we figure out the value for each state under our current

policy, we can choose new actions

} Our choice is simple: just set our new policy in a greedy way,
choosing the best action available
} This choice is based on the current set of values
} Creates a new policy when we change some action
} If the policy does change, then we need to update our values again

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 7

U⇡(s) =
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

⇡0(s) = argmax
a

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

7

Improving Policies Iteratively
} Again, a simple

iterative algorithm:
1. Evaluate the

current policy.

2. Set all actions to
best ones found
when evaluating.

3. If the policy has
changed, repeat.

4. When no action
changes, end.

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 8

function Policy-Iteration (mdp) returns a policy

inputs: mdp, an MDP

local variables: U , a vector of utility values for states s 2 S,

⇡, a policy to be updated

8s 2 S : U(S) = 0 and ⇡(s) = a random action

repeat while changed? = true

U Policy-Evaluation(mdp, ⇡)

changed? false

8s 2 S :

a ⇡(s)

⇡(s) argmax
a2A

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

if : ⇡(s) 6= a, then : changed? true

return ⇡

8

3

Policy Iteration
} It can be shown that in

time, this process will
converge to a policy π*
with value function U*,
that is nearly optimal

} As with policy evaluation,
we can put bounds on the
amount of non-optimality
(based on the value-
update parameter D)

9Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

U → U π

π → greedy(U)

π U

π* U*
⋮

9

Learning the Value of a Policy
} The dynamic programming algorithm we have seen works

fine if we already know everything about an MDP
system, including:
1. Probabilities of all state-action transitions
2. Rewards we get in each case

} If we don’t have this information, how can we figure out
the value of a policy?
} Turns out we can use a sampling method
} “Follow the policy, and see what happens”

10Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

10

Temporal Difference (TD) Updates

} Agent in an MDP takes actions, sees new states and rewards
} This information can be used to update the value function

} This is slightly modified from text, to simplify it

11Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

function TD-Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

take action ⇡(s)

observe: next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return value function U ⇡ U⇡

11

Temporal Difference (TD) Updates

} Now, we don’t base value-update on a probability distribution

} Instead, based on the single state we actually see, over and over again, stopping
whenever we hit a terminal condition, for some number of learning episodes

12Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

function TD-Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

take action ⇡(s)

observe: next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return value function U ⇡ U⇡

12

4

The Basic TD(0) Update

} When we make one-step update, we add one-step reward
that we get, r, plus the difference between where we start,
U (s), and where we end up U (s´), discounted by the
factor g as usual

} If state where we end up s´ is better after discounting,
then the value of original state s goes up

} If s´ is worse, the value of s goes down

13Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

U(s) = U(s) + ↵[r + � U(s0)� U(s)]

13

The Basic TD(0) Update

} We also weight the value-update amount by another
constant a, (less than 1), called a step-size parameter

1. If this value shrinks to 0 over time, values stop changing

2. If we do this slowly, the update will eventually converge
to actual value of state if we follow the policy p

} For example, if we update over episodes, e = 1, 2, 3,…, we
can set the parameter for each episode to be:

14Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

�e =
1
e

U(s) = U(s) + ↵[r + � U(s0)� U(s)]

14

Advantages and a Problem
} With TD updates, we only update the states we actually

see given the policy we are following
} Don’t need to know MDP dynamics
} May only have to update very few states, saving much time to

get the values of those we actually reach under our policy

} However, this can be a source of difficulty: we may not be
able to find a better policy, since we don’t know values of
states that we never happen to visit

15Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

15

Exploration and Exploitation
} If we use the Dynamic Programming method, we calculate

the value of every state
} Easy to update policy (just be greedy)
} This is exploitation: use best values seen to choose actions

} When we are learning, however, we sometimes don’t
know what certain states are like, because we’ve never
actually seen them yet
} Our current policy may never get us to things we really want
} Thus, we must use exploration: try out things even if our

current best policy doesn’t think it’s a good idea

16Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

16

5

Almost-Greedy Policies
} One simple way to add exploration is to use a policy

that is mostly greedy, but not always

} An “epsilon-greedy” (e-greedy) policy sets some
probability threshold, e, and chooses actions by:
1. Picking a random number R ∈ [0,1]
2. If R ≤ e, choosing the action at random
3. If R > e, acting in a greedy fashion (as before)

17Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

17

Learning with e-greedy policies
} We can add this idea to our sampling update method
} After we take an action, and see a state-transition from s

to s´, we do the same updates as before:

} When we choose actions, we do so in an e-greedy way,
sometimes following the policy based on learned values,
and sometimes trying random things

} Over enough time, this can converge to true value
function U* of the optimal policy p*

18Wednesday, 20 Nov. 2019 Machine Learning (COMP 135)

U(s) = U(s) + ↵[r + � U(s0)� U(s)]

18

TD-Learning

} Algorithm is the same, but explores using sometimes-greedy and
sometimes-probabilistic action-choices instead of fixed policy p
} We reduce learning parameter a just as before to converge

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 19

function TD-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

choose action a, using ✏-greedy policy based on U(s)

observe next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon U(s)

19

Next Few Weeks

} Topics: Reinforcement Learning

} HW 05: due Wednesday, 20 November, 9:00 AM

} Project 02: due Monday, 25 November, 9:00 AM

} Office Hours: 237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} TA hours can be found on class website as well

Wednesday, 20 Nov. 2019 Machine Learning (COMP 135) 20

20

