
1

Class #23: Solving MDPs
& Reinforcement Learning

Machine Learning (COMP 135): M. Allen, 25 Nov. 19

1

Review: Almost-Greedy Policies
} One simple way to add exploration is to use a policy

that is mostly greedy, but not always

} An “epsilon-greedy” (e-greedy) policy sets some
probability threshold, e, and chooses actions by:
1. Picking a random number R ∈ [0,1]
2. If R ≤ e, choosing the action at random
3. If R > e, acting in a greedy fashion (as before)

2Monday, 25 Nov. 2019 Machine Learning (COMP 135)

2

Review: TD-Learning

} Algorithm is the same, but explores using sometimes-greedy and
sometimes-probabilistic action-choices instead of fixed policy p
} We reduce learning parameter a just as before to converge

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 3

function TD-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

choose action a, using ✏-greedy policy based on U(s)

observe next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon U(s)

3

Randomness and Weighting in Learning
} Our algorithm uses two parameters, a and e (plus the

usual discount factor g), to control its overall behavior

} Each can be adapted over time to control algorithm

1. e: the amount of randomness in the policy
} When we don’t know much, set it to a high value, so that

we start off with lots of random exploration
} We reduce this value over time until e = 0, and we are being

purely greedy, and just exploiting what he have learned

2. a: the weight on each learning-update step
} Reduce this over time, as well: when a = 0, U-values don’t

change anymore, and we can converge on final policy values

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 4

4

2

Randomness and Weighting in Learning
} The control parameters a and e give us simple ways to

control complex learning behavior

} We don’t always want to reduce each over time

} In a purely stationary environment, where system
dynamics don’t ever change, and all probabilities stay the
same, we can simply slowly reduce each until we
converge upon a stable learned behavior

} In a non-stationary environment, where things may
change at some point, learned solutions may quit working

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 5

5

Non-Stationary Environments
} Suppose environment starts off in one configuration:

} Over time, we can learn a policy for shortest path to goal

} By letting e and a go to 0, the policy becomes stable

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 6

GOAL

s0

6

Non-Stationary Environments
} The environment may change, however:

} If e and a stay at 0, policy is sub-optimal from now on

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 7

GOAL

s0

7

Non-Stationary Environments
} We may be able to tell that environment changes, however

} If value drops off over a long time, we can increase e and a
again, to resume learning and find new optimal policy

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 8

GOAL

s0 X X X X X X X X X X X X X X

8

3

Bellman Equations for Q-values
} Instead of the value of a state U(s), we can calculate the

value of a state-action pair Q(s,a)
} The value of taking action a in state s, and then following

the policy π after that:

} Similarly, we calculate optimal values Q*(s,a) of taking a
in state s, then following best possible policy after that:

} We can do learning for Q-values, too…

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 9

Q�(s, a) =
�

s�

P (s, a, s�) [R(s, a, s�) + � Q�(s�, ⇥(s�))]

Q�(s, a) =
�

s�

P (s, a, s�)
⇥
R(s, a, s�) + � max

a�
Q�(s�, a�)

⇤

9

TD (SARSA) Learning for Q-values

} Same basic RL method, converging to optimal Q*
} Called SARSA, due to information used (s, a, r, s´, a´)

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 10

function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)

10

On-Policy Updates

} Both basic TD and SARSA are on-policy learning/update methods
} We choose our initial action (a) based on current e-greedy policy

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 11

function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)

11

On-Policy Updates

} When we do the value update, we also choose the next action (a´) based
on the same current e-greedy policy

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 12

function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)

12

4

The Effect of On-Policy Updates
} When we do this sort of updating, we are not basing our value

calculation on the best possible policy
} Instead, we are basing it on our learning policy, which means

the values that we base our updates and choices on will
combine the values that we get from:

1. greedy action selection for exploitation
2. random actions in some states for exploration

} Values we learn can reflect what would happen in a state if we
sometimes acted in a non-optimal way
} For example, on the edge of a cliff, we will sometimes randomly

explore jumping off the cliff when learning
} Edge-states are thus risky, and get lower value than they would really

have under the optimal policy (where we only do the best thing, and
never jump)

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 13

13

Off-Policy Methods
} One possible solution is to update the values we learn

based on the best actions only

} That is, we ignore rewards and outcomes that come from
any of the possible bad actions we take when exploring

} The policy being updated is then not the current learning
version, but the optimal one
} This is the policy that we wanted to learn in the end, anyway!

} How can we do this?

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 14

14

Q-Learning: Off-Policy Updates

} We still choose actions (a) in an e-greedy way (so we are sometimes random)

} However, we update values based upon whatever action would actually be best

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 15

function Q-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

set action a, chosen ✏-greedily based on Q(s, a)

take action a

observe next state s0, one-step reward r

Q(s, a) Q(s, a) + ↵[r + � max
a0

Q(s0, a0)�Q(s, a)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)

15

Comparing the Methods: Cliff Problem
} Shortest path to the goal

goes along edge of a cliff
} SARSA learns safer path,

since edge-states get
lower values due to
random falls

} Q-Learning learns best
path, since it ignores
random jumps off edge

} Why does QL do worse
in the end? How can we
fix this over a period of
time?

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 16

Example from: Sutton & Barto, 1998

16

5

Unifying the Methods
} Both SARSA and Q-Learning can be made to converge to the

same optimal policy over time
} By reducing the epsilon-value in our e-greedy policy, we

eventually reduce the randomness
} Thus, the SARSA agent will eventually learn better values even

for risky states, and come to use the optimal policy, too (e.g.
walking along the cliff ’s edge)

} So what’s the difference?
} In many cases, Q-Learning can converge on values somewhat faster
} Doesn’t have to spend time “fixing” the values of states where it has

over-estimated negative risk
} Thus we can reduce the e-value more rapidly, and learn optimal

state-values more quickly
} What are the potential risks of doing this?

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 17

17

Extending the Value Update Procedure
} Basic reinforcement learning algorithms update the value

of a single state (or single state-action pair) at a time
} Repeated occurrences of the same state sequences eventually

cause observed utility value to “spread out” over time, so that
states that tend to lead to particularly good (or bad) states
down the road also get higher (or lower) values

} Sometimes, we can speed up learning by directly
implementing the process of spreading values over time

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 18

18

Eligibility Traces
} For each state, s, we set aside some extra memory, e (s),

to keep track of how recently we visited it
} Each time we visit a state, we increase this value
} We can choose a lambda value, 0 ≤ l ≤ 1, to control how

quickly the “eligibility” variable e (s) decreases over time

} At each time step t, we update the eligibility for all states,
including the one we are currently visiting, st :

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 19

et(s) =

(
��et�1(s) if s 6= st

��et�1(s) + 1 if s = st

19

Eligibility Traces

} The eligibility trace grows each time a state is visited, and then “decays” towards 0 over time,
until that state is visited again

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 20

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

El
ig

ib
ili

ty
 v

al
ue

: e
(s

)

Time-step: t

Eligibility, weighted by (gamma * lambda) = (0.9 *0.9) = 0.81 per time-step

Eligibility

Visit to state s

20

6

Eligibility Traces
} We then take the TD

error—the difference
between values of the
current state and the
last state, plus current
reward—and spread
this out over all the
past states, in
proportion to their
eligibility values:

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 21

�t = rt+1 + �Qt(st+1, at+1)�Qt(st, at)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

El
ig

ib
ili

ty
 v

al
ue

: e
(s

)

Time-step: t

Eligibility, weighted by (gamma * lambda) = (0.9 *0.9) = 0.81 per time-step

Eligibility

Visit to state s

21

SARSA-l: Learning with Eligibility Traces

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 22

function SARSA-� (mdp) returns a policy

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, 8a 2 A, Q(s, a) = 0 and e(s, a) = 0

repeat for each episode E:

set start-state and action s s0, a max
a

Q(s0, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

choose next action a0, chosen ✏-greedily based on Q(s0, a0)

� r + �Q(s0, a0)�Q(s, a)

e(s, a) e(s, a) + 1

8s 2 S, 8a 2 A :

Q(s, a) Q(s, a) + ↵�e(s, a)

e(s, a) ��e(s, a)

s s0, a a0

return policy ⇡, set greedily for every state and action based upon Q-values

22

Using Eligibility Traces

} The algorithm sends the TD-error back over prior time-steps, with a
“distance” that is affected by the choice of l

} If we choose l = 0, the algorithm is simply doing a single-state
backup as before

} As l nears (but never equals) 1, the algorithm pushes the updates
further and further back in time

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 23

Diagram taken from: Sutton & Barto, 1998

23

Possible Advantages of Using Traces

} In many cases, using Eligibility Traces can speed the learning
process, since whole chains of states can be updated at once

} This works especially well for path-planning problems, and
things similar to it, since the value updates can affect multiple
locations along the path to a goal at the same time

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 24

Example from: Sutton & Barto, 1998

24

7

After Break
} HW 06: due Monday, 09 December, 9:00 AM

} Project 03: due Monday, 16 December, 9:00 AM

} Final Exam: Thursday, 12 December, 7:00 PM – 9:00 PM
} Usual classroom
} Practice exam to be posted by 05 December

} Office Hours: 237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} Hours over exam period will be announced later

Monday, 25 Nov. 2019 Machine Learning (COMP 135) 25

25

