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Class #23: Solving MDPs 
& Reinforcement Learning

Machine Learning (COMP 135):  M. Allen, 25 Nov. 19
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Review: Almost-Greedy Policies
} One simple way to add exploration is to use a policy 

that is mostly greedy, but not always

} An “epsilon-greedy” (e-greedy) policy sets some 
probability threshold, e, and chooses actions by:
1. Picking a random number R ∈ [0,1]
2. If R ≤ e, choosing the action at random
3. If R > e, acting in a greedy fashion (as before)
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Review: TD-Learning

} Algorithm is the same, but explores using sometimes-greedy and 
sometimes-probabilistic action-choices instead of fixed policy p
} We reduce learning parameter a just as before to converge
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function TD-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

choose action a, using ✏-greedy policy based on U(s)

observe next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon U(s)
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Randomness and Weighting in Learning
} Our algorithm uses two parameters, a and e (plus the 

usual discount factor g), to control its overall behavior

} Each can be adapted over time to control algorithm

1. e: the amount of randomness in the policy
} When we don’t know much, set it to a high value, so that 

we start off with lots of random exploration
} We reduce this value over time until e = 0, and we are being 

purely greedy, and just exploiting what he have learned

2. a: the weight on each learning-update step 
} Reduce this over time, as well:  when a = 0, U-values don’t 

change anymore, and we can converge on final policy values
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Randomness and Weighting in Learning
} The control parameters a and e give us simple ways to 

control complex learning behavior

} We don’t always want to reduce each over time

} In a purely stationary environment, where system 
dynamics don’t ever change, and all probabilities stay the 
same, we can simply slowly reduce each until we 
converge upon a stable learned behavior

} In a non-stationary environment, where things may 
change at some point, learned solutions may quit working 
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Non-Stationary Environments
} Suppose environment starts off in one configuration:

} Over time, we can learn a policy for shortest path to goal

} By letting e and a go to 0, the policy becomes stable
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Non-Stationary Environments
} The environment may change, however:

} If e and a stay at 0, policy is sub-optimal from now on
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Non-Stationary Environments
} We may be able to tell that environment changes, however

} If value drops off over a long time, we can increase e and a 
again, to resume learning and find new optimal policy
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Bellman Equations for Q-values
} Instead of the value of a state U(s ), we can calculate the 

value of a state-action pair Q(s,a )
} The value of taking action a in state s, and then following 

the policy π after that:

} Similarly, we calculate optimal values Q*(s,a ) of taking a
in state s, then following best possible policy after that:

} We can do learning for Q-values, too…
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Q�(s, a) =
�

s�

P (s, a, s�) [R(s, a, s�) + � Q�(s�, ⇥(s�))]

Q�(s, a) =
�

s�

P (s, a, s�)
⇥
R(s, a, s�) + � max

a�
Q�(s�, a�)

⇤
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TD (SARSA) Learning for Q-values

} Same basic RL method, converging to optimal Q*
} Called SARSA, due to information used (s, a, r, s´, a´)
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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On-Policy Updates

} Both basic TD and SARSA are on-policy learning/update methods
} We choose our initial action (a) based on current e-greedy policy
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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On-Policy Updates

} When we do the value update, we also choose the next action (a´ ) based 
on the same current e-greedy policy  
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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The Effect of On-Policy Updates
} When we do this sort of updating, we are not basing our value 

calculation on the best possible policy
} Instead, we are basing it on our learning policy, which means 

the values that we base our updates and choices on will 
combine the values that we get from:

1. greedy action selection for exploitation
2. random actions in some states for exploration

} Values we learn can reflect what would happen in a state if we 
sometimes acted in a non-optimal way
} For example, on the edge of a cliff, we will sometimes randomly 

explore jumping off the cliff when learning
} Edge-states are thus risky, and get lower value than they would really 

have under the optimal policy (where we only do the best thing, and 
never jump)
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Off-Policy Methods
} One possible solution is to update the values we learn 

based on the best actions only 

} That is, we ignore rewards and outcomes that come from 
any of the possible bad actions we take when exploring

} The policy being updated is then not the current learning 
version, but the optimal one
} This is the policy that we wanted to learn in the end, anyway!

} How can we do this?
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Q-Learning:  Off-Policy Updates

} We still choose actions (a ) in an e-greedy way (so we are sometimes random)

} However, we update values based upon whatever action would actually be best
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function Q-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

set action a, chosen ✏-greedily based on Q(s, a)

take action a

observe next state s0, one-step reward r

Q(s, a) Q(s, a) + ↵[r + � max
a0

Q(s0, a0)�Q(s, a)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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Comparing the Methods: Cliff Problem
} Shortest path to the goal 

goes along edge of a cliff
} SARSA learns safer path, 

since edge-states get 
lower values due to 
random falls

} Q-Learning learns best 
path, since it ignores 
random jumps off edge

} Why does QL do worse 
in the end?  How can we 
fix this over a period of 
time?
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Example from: Sutton & Barto, 1998
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Unifying the Methods
} Both SARSA and Q-Learning can be made to converge to the 

same optimal policy over time
} By reducing the epsilon-value in our e-greedy policy, we 

eventually reduce the randomness
} Thus, the SARSA agent will eventually learn better values even 

for risky states, and come to use the optimal policy, too (e.g. 
walking along the cliff ’s edge)

} So what’s the difference?
} In many cases, Q-Learning can converge on values somewhat faster
} Doesn’t have to spend time “fixing” the values of states where it has 

over-estimated negative risk
} Thus we can reduce the e-value more rapidly, and learn optimal 

state-values more quickly 
} What are the potential risks of doing this?
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Extending the Value Update Procedure
} Basic reinforcement learning algorithms update the value 

of a single state (or single state-action pair) at a time
} Repeated occurrences of the same state sequences eventually 

cause observed utility value to “spread out” over time, so that 
states that tend to lead to particularly good (or bad) states 
down the road also get higher (or lower) values

} Sometimes, we can speed up learning by directly 
implementing the process of spreading values over time
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Eligibility Traces
} For each state, s, we set aside some extra memory, e (s), 

to keep track of how recently we visited it
} Each time we visit a state, we increase this value
} We can choose a lambda value, 0 ≤ l ≤ 1, to control how 

quickly the “eligibility” variable e (s) decreases over time

} At each time step t, we update the eligibility for all states, 
including the one we are currently visiting, st :
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et(s) =

(
��et�1(s) if s 6= st

��et�1(s) + 1 if s = st

19

Eligibility Traces

} The eligibility trace grows each time a state is visited, and then “decays” towards 0 over time, 
until that state is visited again
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Eligibility Traces
} We then take the TD 

error—the difference 
between values of the 
current state and the 
last state, plus current 
reward—and spread 
this out over all the 
past states, in 
proportion to their 
eligibility values:
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�t = rt+1 + �Qt(st+1, at+1)�Qt(st, at)
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SARSA-l: Learning with Eligibility Traces
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function SARSA-� (mdp) returns a policy

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, 8a 2 A, Q(s, a) = 0 and e(s, a) = 0

repeat for each episode E:

set start-state and action s s0, a max
a

Q(s0, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

choose next action a0, chosen ✏-greedily based on Q(s0, a0)

�  r + �Q(s0, a0)�Q(s, a)

e(s, a) e(s, a) + 1

8s 2 S, 8a 2 A :

Q(s, a) Q(s, a) + ↵�e(s, a)

e(s, a) ��e(s, a)

s s0, a a0

return policy ⇡, set greedily for every state and action based upon Q-values
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Using Eligibility Traces

} The algorithm sends the TD-error back over prior time-steps, with a 
“distance” that is affected by the choice of l

} If we choose l = 0, the algorithm is simply doing a single-state 
backup as before

} As  l nears (but never equals) 1, the algorithm pushes the updates 
further and further back in time 
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Diagram taken from: Sutton & Barto, 1998
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Possible Advantages of Using Traces

} In many cases, using Eligibility Traces can speed the learning 
process, since whole chains of states can be updated at once

} This works especially well for path-planning problems, and 
things similar to it, since the value updates can affect multiple 
locations along the path to a goal at the same time
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Example from: Sutton & Barto, 1998
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After Break
} HW 06: due Monday, 09 December, 9:00 AM

} Project 03: due Monday, 16 December, 9:00 AM

} Final Exam: Thursday, 12 December, 7:00 PM – 9:00 PM
} Usual classroom
} Practice exam to be posted by 05 December

} Office Hours:  237 Halligan, Tuesday, 11:00 AM – 1:00 PM
} Hours over exam period will be announced later
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