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Class #25: Abstractions in
Reinforcement Learning

Machine Learning (COMP 135):  M. Allen, 04 Dec. 19
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Extending the Value Update Procedure

} Basic reinforcement learning algorithms update the value of a 
single state (or state-action pair) at a time
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function Q-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

set action a, chosen ✏-greedily based on Q(s, a)

take action a

observe next state s0, one-step reward r

Q(s, a) Q(s, a) + ↵[r + � max
a0

Q(s0, a0)�Q(s, a)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)

2

Lack of Generalization
} When doing learning, each state is treated as unique, and must 

be repeated over and over to learn something about its value
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Even if we learn that 
going right here is 

best, because type-A 
objects are better 

than type-B ones…
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But this really tells 
us nothing about 
what to do in a 

similar state like 
this one…
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Might even say 
nothing about what 
to do in a different 
environment with 

some states exactly 
the same!
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Feature Vectors
} Rather than use every single detail of a state space, we 

can try to generalize over multiple states at once, by 
selecting some finite number of features and learning 
based upon only those 

} States (or state-action pairs) that share the same features 
are thus treated the same, even if they differ in other ways 
that we don’t pay attention to

} Using the right features can speed learning significantly
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fX(s, a) =
x

maxx
for x-coordinate after a in s

fY (s, a) =
y

maxy
for y-coordinate after a in s

fA(s, a) =
1

dA + 1
, where dA is the distance to nearest A after a in s

fB(s, a) =
1

dB + 1
, where dB is the distance to nearest B after a in s

} Here, we might try representing state-action pairs (s, a) in terms of just four features:
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Choosing Feature Vectors
} We want to choose values that seem to be 

important to problem success
} When we represent them, it has been 

shown that we get better results if we 
normalize features, ensuring that each is in 
same, unit range:
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0  fi(s, a)  1

fX(s, a) =
x

maxx
for x-coordinate after a in s

fY (s, a) =
y

maxy
for y-coordinate after a in s

fA(s, a) =
1

dA + 1
, where dA is the distance to nearest A after a in s

fB(s, a) =
1

dB + 1
, where dB is the distance to nearest B after a in s
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Value Functions over Features
} One issue is that when we use simpler features, we don’t 

always know which ones to use
} States may share features and still have very different values
} Some features may turn out to be more or less important
} We want to learn a proper function that tells us how much we 

should pay attention to each feature

} We may assume this function is linear
} This means that the value of a state is a simple combination of 

weights applied to each feature
} While this assumption may not be the right one in some 

domains, it can often be the basis of a good approximation

Wednesday, 4 Dec. 2019 Machine Learning (COMP 135) 6

6

Linear Functions over Features

} What we want is to learn the set of weights needed to 
properly calculate our U- or Q-values

} For instance, for our grid problem:
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U(s) = w1 f1(s) + w2 f2(s) + · · ·+ wn fn(s)

Q(s, a) = w1 f1(s, a) + w2 f2(s, a) + · · ·+ wn fn(s, a)

Q(s, a) = wX fX(s, a) + wY fY (s, a) + wA fA(s, a) + wB fB(s, a)

7

Setting the Weights
} Initially, we may not know which features really matter

} In some cases, we may have knowledge that tells us some are more important than others, 
and we will weight them more

} In other cases, we may treat them all the same
} For instance, in our grid problem, we might start with all weights the same (1.0)
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Q(s,Right) = wX fX(s, a) + wY fY (s, a) + wA fA(s, a) + wB fB(s, a)
= (1.0⇥ 2/7) + (1.0⇥ 1/7) + (1.0⇥ 1) + (1.0⇥ 1/3)
= 1.76

Q(s,Down) = wX fX(s, a) + wY fY (s, a) + wA fA(s, a) + wB fB(s, a)
= (1.0⇥ 1/7) + (1.0⇥ 2/7) + (1.0⇥ 1/3) + (1.0⇥ 1)
= 1.76

Initially, many states may end up with identical value estimates.  If it 
turned out that position didn’t matter, and both A- and B-type objects 
were equally valuable, this would be fine.  Typically, however, this is not 
the case, and we will need to adjust our weights dynamically as we go. 
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After Right, at (x,y) = (2,1), 
distance 0 to A, distance 2 to B
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Q-Learning with Function Approximation
} In normal Q-learning, we evaluate a state-action pair (s,a) based on 

the results we get ( r and s′) and update the single pair value:

} Now, we will instead update each of the weights on our features
} If outcomes are particularly good or bad, we change weights accordingly
} This affects all (state, action) pairs that share features with current one
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� = r + � max
a0

Q(s0, a0)�Q(s, a)

Q(s, a) Q(s, a) + ↵ �

� = r + � max
a0

Q(s0, a0)�Q(s, a)

8i, wi  wi + ↵ � fi(s, a)

9

� = r + � max
a0

Q(s0, a0)�Q(s,Right) = 10

wX  wX + ↵ � fX(s, a)
 1.0 + 0.9⇥ 10⇥ 2/7 = 3.57

wY  wY + ↵ � fY (s, a)
 1.0 + 0.9⇥ 10⇥ 1/7 = 2.29

wA  wA + ↵ � fA(s, a)
 1.0 + 0.9⇥ 10⇥ 1 = 10.0

wB  wB + ↵ � fB(s, a)
 1.0 + 0.9⇥ 10⇥ 1/3 = 4.0

Q(s,Right) = (3.57⇥ 2/7) + (2.29⇥ 1/7) + (10.0⇥ 1) + (4.0⇥ 1/3)
= 12.69

Adjusting the Weights
} Now, when we take an action, we adjust weight-values and then compute Q-values
} For example:  we take the RIGHT action and get a large positive reward, which 

means we could increase weights on contributing features
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� = r + � max
a0

Q(s0, a0)�Q(s,Down) = �20

wX  wX + ↵ � fX(s, a)
 3.57 + 0.9⇥�20⇥ 1/7 = 1.0

wY  wY + ↵ � fY (s, a)
 2.29 + 0.9⇥�20⇥ 2/7 = �2.85

wA  wA + ↵ � fA(s, a)
 10.0 + 0.9⇥�20⇥ 1/3 = 4.0

wB  wB + ↵ � fB(s, a)
 4.0 + 0.9⇥�20⇥ 1 = �14.0

Q(s,Down) = (1.0⇥ 1/7) + (�2.85⇥ 2/7) + (4.0⇥ 1/3) + (�14.0⇥ 1)
= �13.34

Adjusting the Weights
} Later, if we take the DOWN action from the same state, and get a large negative 

cost-value, we might down-grade weights on the contributing features
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Adjusting the Weights
} Note:  since we adjust the weights that are used to calculate the Q-values of any 

(state, action) pairs, what happens when we encounter one new outcome actually 
affects the Q-value of all the pairs at once

} We are thus potentially learning a value function over our entire space, even 
though it is based only on a single outcome at a time, which can speed up learning
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� = r + � max
a0

Q(s0, a0)�Q(s,Down) = �20

Q(s,Down) = (1.0⇥ 1/7) + (�2.85⇥ 2/7) + (4.0⇥ 1/3) + (�14.0⇥ 1)
= �13.34

Q(s,Right) = (1.0⇥ 2/7) + (�2.85⇥ 1/7) + (4.0⇥ 1) + (�14.0⇥ 1/3)
= �0.79

After Down, we have 
changed weights, which 
changes the Q-value of 

not only one state-action 
pair, but all of them.

Here, we see the updated 
value for going Right 

(this was 12.69 before).
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Where Do Features Come From?
} A variety of approaches can be used to generate useful 

features for a given learning problem
} Sometimes we have good intuitions about what features are 

useful, and sometimes we don’t

} For example, suppose we have a problem in which states 
are characterized by (x, y) points in the plane:
1. We might just use the features (x, y) themselves, with 2 

matching weights…
2. Or a simple polynomial combination, like (1, x, y, xy), with 

4 weights to go along with those…
3. Or a more complex polynomial, like:

(1, x, y, xy, x2, y2, xy2, x2y, x2y2)
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Various Feature Functions
} Experimentation has been performed with many different 

functional forms for features:
1. Polynomial features: linear weights over polynomial 

combinations of numeric features
2. Fourier features: combinations of sine and cosine functions 

over the underlying numbers
3. Radial basis functions: real-valued features based on 

computed distances from chosen points in the state-space

} A common issue is the complexity growth of the features 
as the dimensionality of the state space increases
} A variety of techniques exist to use sparser, binary features
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Coarse Coding

} Suppose we have a state-space consisting of points in the plane
} A binary coding scheme is to use features that each 

correspond to circles in the state-space
} A point has a given feature if it lies inside the circle
} Two points share all the features that overlap them both
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Image: Sutton & Barto, 2018
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Advantages of Binary Features
} Given a coarse coding scheme (set of n circles), we get a 

feature-vector, and corresponding weight-vector for state s :

} Each feature is a binary value:

} If we use these features to compute a utility-value for s , 
rather than a series of multiplications and additions, we get the 
simpler summation:
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xs = (c1, c2, . . . , cn)

ws = (w1, w2, . . . , wn)

ci =

(
1 if s lies inside circle i

0 else

U(s) = ws · xs =
X

i

{wi | ci = 1}

16
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Feature Variation

} A simple idea, circular coarse coding can still generalize 
over domains in a variety of ways
} We get generalization, since the same weight vector is used 

for every state (only the particular features change)
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Image: Sutton & Barto, 2018
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Tile Coding

} Another form of coarse coding is to tile the state space
} A single, simple tiling is just a partition, dividing the state space 

into uniform regions
} A more complex tiling uses multiple overlapping partitions
} Again, each individual tile corresponds to a binary feature 
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Image: Sutton & Barto, 2018
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Placement of Tiles
} Much research has gone into good ways to choose how 

many tilings to use, and how they should overlap
} It has been found that choosing uniform offsets of the tiles 

(e.g. moving each new tiling over by 1 unit in each direction) 
can introduce certain numerical biases

} Best practices, as recommended by Miller and Glanz (96):
1. For a state space of dimensionality k, use 2n ≥ 4k tilings
2. Offset each dimension using numbers (1, 3, 5, …, 2k–1)

} For example, in 2 dimensions, use 8 or more tilings, 
offsetting each by 1 unit in the x dimension, and 3 in y

} In 3 dimensions, use at least 12 tilings, offsetting by 1
unit in x , 3 in y, 5 in z …
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Other Approaches to Tiling

} Any number of tiling patterns and offsets can be used
} Tilings need not be regular in shape or size
} “Striped” tilings generalize along only certain dimensions
} Different sizes of tiles allow finer/coarser discrimination in 

certain parts of the state space
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Image: Sutton & Barto, 2018
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Sparse Distributed Memory
} Developed by NASA Ames researcher 

Pentti Kanerva while working on a model 
of human long-term memory

} In RL, often now called Kanerva coding

} A model that generalizes over states 
based on a similarity measure

} State-features are represented again as 
binary vectors, which can be regarded as 
lists of other states to which they are or 
are not similar
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Basic Kanerva Coding for Q-Learning
} Rather than save Q-values for all state-action pairs, a Kanerva

coding selects a subset of prototypes:

} For any state s and prototype pi , we say the two are adjacent
if s and pi differ by at most 1 feature (other such similarity 
measures are possible)

} For example, if we have two state feature-variables:

} Then the state s = (1, a) would be:
1. Adjacent to prototypes pi = (2, a), (1, b), or (1, c)
2. Not adjacent to pj = (2, b) or (2, c)
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P = {p1, p2, ..., pn} ( S

f1 2 {1, 2} f2 2 {a, b, c}

22

From Prototypes to Binary Features
} For our vector of prototypes we then get a vector of binary 

features for every state:

} Our Q-learning algorithm then learns weight values over 
prototypes only:

Wednesday, 4 Dec. 2019 Machine Learning (COMP 135) 23

P = {p1, p2, ..., pn}
xs = (f(s)1, f(s)2, ..., f(s)n)

f(s)i =

(
1 if s is adjacent to pi
0 else

✓(pi, a), 8pi 2 P, 8a 2 A

23

Adjusting Prototype Weights
} For any state-action pair, we can now compute an approximate 

Q-value, based only on adjacent prototypes:

} Furthermore, when our learning algorithm takes action a in 
state s1, receives reward r, and ends up in state s2 we update:

} Doing it this way also means that we only update those 
weights on pairs featuring prototypes that are adjacent to s, 
since otherwise f (s)i = 0
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✓(pi, a) ✓(pi, a) + f(s)i ↵(r + � max
a2

Q̂(s2, a2))

Q̂(s, a) =
X

i

✓(pi, a) f(s)i

24
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Choosing Prototypes
} In the limit, we could use all states as prototypes (P = S ), 

and impose strict identity on the measure of adjacency:

} In this case, the algorithm is just normal Q-learning, without any 
generalization at all

} If we make the set of prototypes very small, on the other 
hand, then most states will not be adjacent to any 
prototype, and we won’t learn anything about those 
states at all
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f(s)i =

(
1 if s = pi
0 else

25

Choosing Prototypes
} In between the extremes, the usefulness of Kanerva

encoding is maximized when:
1. No prototype is visited too much (such a state is effectively 

too abstract)
2. No prototype is visited too little (such a state is effectively 

too specific)

} Achieving this balance with an initial set or prototypes, 
which is often chosen randomly, or according to some 
heuristic, is challenging, leading to interest in adaptive 
Kanerva Coding, where we change the prototype set 
over time as we learn
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Adaptive Kanerva Coding
} We can modify the basic approach as follows:

1. We start with a set of randomly chosen prototypes

2. For each prototype, we keep track of how many times 
we visit a state that is adjacent to it

3. Periodically, we modify the prototype set in two ways:
a. Deletion: if a prototype has been visited t times, we decide whether 

or not to delete it randomly, with probability:

b. Splitting: whenever some prototypes are deleted, they are replaced 
by taking the most-visited prototypes and generating new, adjacent 
ones by changing one of their feature-values
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Pdel = e�t

27

An Application: Xpilot Navigation
} Xpilot is a space-shooter 

game with the ability to add 
complex physics and 
environments

} Basic Q-learning is thwarted 
by the enormous state-space 
of the full game (even when 
only trying to learn to 
navigate successfully without 
crashing)
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Fig. 1. A view of the Xpilot environment.

More recent work has examined the use of adaptive Kanerva
representations, changing the set of selected states dynamically
over time to improve performance [12], [13], or extending
the idea by use of fuzzy membership functions for multiagent
learning domains [14], [15].

Our work uses adaptive Kanerva coding in the Xpilot
domain, extending the technique to a highly complex state-
action space. This paper begins by outlining the Xpilot game
environment. We then describe the adaptive Kanerva approach
in general, before looking at its particular application in Xpilot.
Empirical results are then detailed and analyzed.

II. XPILOT AND XPILOT-AI

Xpilot is an open-source 2-D space combat game in which
players control ships with available actions like shooting,
thrusting and turning. One major challenge is posed by the
frictionless environment and life-like physics of the game,
along with a wide range of action effects, such as incidental
gains and losses of momentum due to things like firing
thrusters or guns. Figure 1 shows the corner of an Xpilot game
board, with the triangular ship icon, and surrounding wall of
of rectangular blocks. The game allows the construction of
individual maps by the placement of these bounding blocks;
collisions with these walls, at any but the lowest possible
speeds, results in the destruction of the ship.

The Xpilot-AI interface allows a programmer to write
automated Xpilot agents, which can then interact with other
automated agents or with human players [16]. These agent
programs can range from simple, hard-coded control loops
to more complex AI techniques, such as evolutionary com-
puting [17], [18] or fuzzy logic control [19]. The full game
environment can be highly complex, since a ship’s state
depends upon a combination of (among other things) orienta-
tion, speed of travel, exact position on-screen or relative to
a wall, and the presence of other agents, if any. Previous
work on reinforcement learning for Xpilot used Q-learning
to develop programs for navigating a ship at speed around the

environment, based on a highly simplified and hand-designed
set of state variables [7].

III. Q-LEARNING

Reinforcement learning agents adjust their behavior based
on rewards, positive or negative, received after performing
particular actions. By carefully adjusting their responses based
on this immediate feedback, the agent seeks to maximize long-
term reward. Assuming the agent observes its environment
directly, the goal is to learn a maximizing policy, in the form
of a function from states to action-choices, ⇡ : s! a.

A popular technique for such policy development is Q-
learning [5], [6], in which agents uses rewards observed to
modify a value function, Q(s, a), assigning a score to any
given state-action pair (s, a). For the most part, then, an
agent follows the best policy so far discovered, observing
their current state s and choosing an action a that maxi-
mizes value Q(s, a). Occasionally, the agent engages in policy

exploration, trying actions that are not apparently best, in
hopes of discovering a better line of attack. (In our work,
exploration is dealt with by using an ✏-greedy policy; that is,
the agent chooses the maximizing action greedily all but some
fraction ✏ of the time, where ✏ starts off large to encourage
initial exploration of possible actions, and decreases over time
to decrease exploration and adhere more strictly to the best
learned policy.)

Since agents are presumed to begin with no real information
about their environments, they start by acting randomly. At
each step in the learning process after that, the agent observes
the current state s, chooses its action a based on its ✏-
greedy policy, and observes the resulting positive or negative
reward r and eventuating next state s0. The Q-function is then
immediately updated, according to the equation:

Q(s, a) Q(s, a) + ↵(r + � max
a0

Q(s0, a0)) (1)

where we have the following:
• ↵ 2 [0, 1]: a step-size parameter, influencing how much

of the newly observed reward value is applied in the
update; generally, ↵ is reduced over time toward 0 so
that Q-values stabilize.

• � 2 (0, 1): a discount factor, which has the effect of
reducing the importance of far-future outcomes to the
value of a state-action pair (necessary to distinguish
different policies in problems with very long or indefinite
possible time horizons); generally, this is set to some fixed
value, like � = 0.9, in advance.

• a0: the Q-value for the current state-action pair, (s, a),
is updated based on the immediate reward, r, combined
with the maximum Q-value for the resulting state; that
is, the value update is performed under the assumption
that the real value of (s, a) will be properly determined
long-term by the value of the best (maximizing) action
learned for the ensuing state, s0, since by definition that
action will form a part of the best learned policy.

One advantage of this sort of direct learning by experience is
that agents only update Q-values and associated actions for

} Even on a small map of size (500 x 500), a ship with 10
possible speeds and full rotation will correspond to 
approximately 3.24 x 1010 states!
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An Application: Xpilot Navigation

Wednesday, 4 Dec. 2019 Machine Learning (COMP 135) 29

TABLE I
STATE VARIABLES FOR XPILOT, WITH RANGES. THE STATE SPACE IS

MADE UP OF 5 VARIABLES AND 31104 STATES. THESE COMBINE WITH 4
ACTIONS FOR 124416 STATE-ACTION PAIRS (s, a). 1024 STATES ARE

CHOSEN AS PROTOTYPES, FOR 4096 PROTOTYPE-ACTION PAIRS (p, a).

State Variable Range
Heading 1–36
Tracking 1–36

Speed 1–6
Near Wall {1, 0}

Near Corner {1, 0}

• Counting visits: Over time, we keep a count of how often
a prototype is visited—that is, how often we encounter
an adjacent state and update the prototype’s ✓-value.

• Prototype deletion: To remove rarely visited prototypes,
we use an exponential function: if m is the number of
times visiting a prototype, it is deleted with probability

p = e�m (4)

so that rarely visited prototypes are discarded with high
probability, and regularly visited prototypes are retained
with high probability.

• Prototype splitting: To replace deleted prototypes, those
that are visited most often are split into multiple neighbor-
ing prototypes, by choosing one of their state variables,
and changing its value by a single increment. This has
the effect of creating a new prototype that is adjacent to
the original, with the idea that this will better cover a
well-traveled area of our state-space.

This process, combined with the value-updates described
above, generates a shifting landscape of prototypes over time,
removing those that turn out not to cover enough abstract
state-space, and splitting the popular prototypes. This last
step reduces the sorts of collisions that arise from over-
generalization, since now it becomes possible to distinguish
states that might previously have shared all the same adjacent
prototypes. Furthermore, when generating such new prototype
states, we use an initial ✓-value equal to that of the one from
which it was split, in hopes that prior learning for adjacent
states will apply to the new ones as well. (Continued value
updates will eventually correct initial biases that follow from
this practical assumption.)

V. APPLYING KANERVA CODING IN XPILOT

The full Xpilot state-action space is highly complex. Map
sizes can range from quite small to very large, and in the
latter environments, and the number of possible distinct (x, y)
coordinates at which a ship can be located grows effectively
indefinitely. Ships possess full 360� rotation; in addition, since
the environment is frictionless, a gliding ship can rotate,
and so its course of flight and actual heading are separate
variables. Flight speeds range from 0 to effectively unlimited,
and walls can be placed anywhere on-screen. Even leaving
aside other players, and ignoring walls, a ship with 10 possible

TABLE II
POSSIBLE AGENT ACTIONS

Action Effect
Avoid Wall Turn 10�: away from nearest wall; thrust once

Avoid Corner Turn 10�: direction 180� opposite Tracking; thrust once
Thrust If speed s < 6, thrust once

Do Nothing null

TABLE III
THE REWARD-STRUCTURE.

Reward Value Condition
�10 Agent crashes
+1 Agent is alive for one frame

speed values on a small map of 500 ⇥ 500 locations will
generate a space of 3.24 ⇥ 1010 states, making direct Q-
learning effectively impossible, even before the rich action
space is factored into things.

To deal with these complications, we began by somewhat
simplifying the Xpilot domain so that it was more tractable
for RL. Concentrating on a single agent-ship, we reduced
the overall number of states and actions. Furthermore, we
restricted ourselves to a simple reward-function, based on the
set task of creating an agent that could navigate freely without
crashing into walls.

A. States

The initial state space was created using 5 state variables:
• Heading: The direction in which the ship’s nose is

pointing, discretized into 10� slices of the space.
• Tracking: The actual direction in which the ship is

moving, similarly divided into 10� increments.
• Speed: The speed at which the ship is moving, starting

from a stand-still, and going up in 2-unit increments, for
6 possible values; the top value (6) corresponded to any
game speed greater than 8 units.

• Near Wall: A boolean value, based on distance to the
nearest wall in the direction of travel. If this distance
d < 20s, for game-speed s, then the variable is true,
else false.

• Near Corner: Also a boolean value, calculated as the
previous value, but based on two distances d1 and d2,
measured 30� to each side of the vector of travel, and
thus indicating approach to at least two intersecting walls.

The state variables and their possible values can be seen in
Table I. All told, these values provide 31104 states. While this
is certainly more modest than the full domain, it is still rather
large for rapid RL. In prior work with regular Q-learning, for
example, the state space was reduced to a set of only 384
simple abstract states [7].

B. Actions

Again, the full set of Xpilot game actions was somewhat too
large, and included options, like firing ship weapons, irrelevant

TABLE I
STATE VARIABLES FOR XPILOT, WITH RANGES. THE STATE SPACE IS

MADE UP OF 5 VARIABLES AND 31104 STATES. THESE COMBINE WITH 4
ACTIONS FOR 124416 STATE-ACTION PAIRS (s, a). 1024 STATES ARE

CHOSEN AS PROTOTYPES, FOR 4096 PROTOTYPE-ACTION PAIRS (p, a).

State Variable Range
Heading 1–36
Tracking 1–36

Speed 1–6
Near Wall {1, 0}

Near Corner {1, 0}

• Counting visits: Over time, we keep a count of how often
a prototype is visited—that is, how often we encounter
an adjacent state and update the prototype’s ✓-value.

• Prototype deletion: To remove rarely visited prototypes,
we use an exponential function: if m is the number of
times visiting a prototype, it is deleted with probability

p = e�m (4)

so that rarely visited prototypes are discarded with high
probability, and regularly visited prototypes are retained
with high probability.

• Prototype splitting: To replace deleted prototypes, those
that are visited most often are split into multiple neighbor-
ing prototypes, by choosing one of their state variables,
and changing its value by a single increment. This has
the effect of creating a new prototype that is adjacent to
the original, with the idea that this will better cover a
well-traveled area of our state-space.

This process, combined with the value-updates described
above, generates a shifting landscape of prototypes over time,
removing those that turn out not to cover enough abstract
state-space, and splitting the popular prototypes. This last
step reduces the sorts of collisions that arise from over-
generalization, since now it becomes possible to distinguish
states that might previously have shared all the same adjacent
prototypes. Furthermore, when generating such new prototype
states, we use an initial ✓-value equal to that of the one from
which it was split, in hopes that prior learning for adjacent
states will apply to the new ones as well. (Continued value
updates will eventually correct initial biases that follow from
this practical assumption.)

V. APPLYING KANERVA CODING IN XPILOT

The full Xpilot state-action space is highly complex. Map
sizes can range from quite small to very large, and in the
latter environments, and the number of possible distinct (x, y)
coordinates at which a ship can be located grows effectively
indefinitely. Ships possess full 360� rotation; in addition, since
the environment is frictionless, a gliding ship can rotate,
and so its course of flight and actual heading are separate
variables. Flight speeds range from 0 to effectively unlimited,
and walls can be placed anywhere on-screen. Even leaving
aside other players, and ignoring walls, a ship with 10 possible

TABLE II
POSSIBLE AGENT ACTIONS

Action Effect
Avoid Wall Turn 10�: away from nearest wall; thrust once

Avoid Corner Turn 10�: direction 180� opposite Tracking; thrust once
Thrust If speed s < 6, thrust once

Do Nothing null

TABLE III
THE REWARD-STRUCTURE.

Reward Value Condition
�10 Agent crashes
+1 Agent is alive for one frame

speed values on a small map of 500 ⇥ 500 locations will
generate a space of 3.24 ⇥ 1010 states, making direct Q-
learning effectively impossible, even before the rich action
space is factored into things.

To deal with these complications, we began by somewhat
simplifying the Xpilot domain so that it was more tractable
for RL. Concentrating on a single agent-ship, we reduced
the overall number of states and actions. Furthermore, we
restricted ourselves to a simple reward-function, based on the
set task of creating an agent that could navigate freely without
crashing into walls.

A. States

The initial state space was created using 5 state variables:
• Heading: The direction in which the ship’s nose is

pointing, discretized into 10� slices of the space.
• Tracking: The actual direction in which the ship is

moving, similarly divided into 10� increments.
• Speed: The speed at which the ship is moving, starting

from a stand-still, and going up in 2-unit increments, for
6 possible values; the top value (6) corresponded to any
game speed greater than 8 units.

• Near Wall: A boolean value, based on distance to the
nearest wall in the direction of travel. If this distance
d < 20s, for game-speed s, then the variable is true,
else false.

• Near Corner: Also a boolean value, calculated as the
previous value, but based on two distances d1 and d2,
measured 30� to each side of the vector of travel, and
thus indicating approach to at least two intersecting walls.

The state variables and their possible values can be seen in
Table I. All told, these values provide 31104 states. While this
is certainly more modest than the full domain, it is still rather
large for rapid RL. In prior work with regular Q-learning, for
example, the state space was reduced to a set of only 384
simple abstract states [7].

B. Actions

Again, the full set of Xpilot game actions was somewhat too
large, and included options, like firing ship weapons, irrelevant
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we use an exponential function: if m is the number of
times visiting a prototype, it is deleted with probability
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so that rarely visited prototypes are discarded with high
probability, and regularly visited prototypes are retained
with high probability.

• Prototype splitting: To replace deleted prototypes, those
that are visited most often are split into multiple neighbor-
ing prototypes, by choosing one of their state variables,
and changing its value by a single increment. This has
the effect of creating a new prototype that is adjacent to
the original, with the idea that this will better cover a
well-traveled area of our state-space.

This process, combined with the value-updates described
above, generates a shifting landscape of prototypes over time,
removing those that turn out not to cover enough abstract
state-space, and splitting the popular prototypes. This last
step reduces the sorts of collisions that arise from over-
generalization, since now it becomes possible to distinguish
states that might previously have shared all the same adjacent
prototypes. Furthermore, when generating such new prototype
states, we use an initial ✓-value equal to that of the one from
which it was split, in hopes that prior learning for adjacent
states will apply to the new ones as well. (Continued value
updates will eventually correct initial biases that follow from
this practical assumption.)

V. APPLYING KANERVA CODING IN XPILOT

The full Xpilot state-action space is highly complex. Map
sizes can range from quite small to very large, and in the
latter environments, and the number of possible distinct (x, y)
coordinates at which a ship can be located grows effectively
indefinitely. Ships possess full 360� rotation; in addition, since
the environment is frictionless, a gliding ship can rotate,
and so its course of flight and actual heading are separate
variables. Flight speeds range from 0 to effectively unlimited,
and walls can be placed anywhere on-screen. Even leaving
aside other players, and ignoring walls, a ship with 10 possible
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Avoid Wall Turn 10�: away from nearest wall; thrust once

Avoid Corner Turn 10�: direction 180� opposite Tracking; thrust once
Thrust If speed s < 6, thrust once

Do Nothing null
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THE REWARD-STRUCTURE.

Reward Value Condition
�10 Agent crashes
+1 Agent is alive for one frame

speed values on a small map of 500 ⇥ 500 locations will
generate a space of 3.24 ⇥ 1010 states, making direct Q-
learning effectively impossible, even before the rich action
space is factored into things.

To deal with these complications, we began by somewhat
simplifying the Xpilot domain so that it was more tractable
for RL. Concentrating on a single agent-ship, we reduced
the overall number of states and actions. Furthermore, we
restricted ourselves to a simple reward-function, based on the
set task of creating an agent that could navigate freely without
crashing into walls.

A. States

The initial state space was created using 5 state variables:
• Heading: The direction in which the ship’s nose is

pointing, discretized into 10� slices of the space.
• Tracking: The actual direction in which the ship is

moving, similarly divided into 10� increments.
• Speed: The speed at which the ship is moving, starting

from a stand-still, and going up in 2-unit increments, for
6 possible values; the top value (6) corresponded to any
game speed greater than 8 units.

• Near Wall: A boolean value, based on distance to the
nearest wall in the direction of travel. If this distance
d < 20s, for game-speed s, then the variable is true,
else false.

• Near Corner: Also a boolean value, calculated as the
previous value, but based on two distances d1 and d2,
measured 30� to each side of the vector of travel, and
thus indicating approach to at least two intersecting walls.

The state variables and their possible values can be seen in
Table I. All told, these values provide 31104 states. While this
is certainly more modest than the full domain, it is still rather
large for rapid RL. In prior work with regular Q-learning, for
example, the state space was reduced to a set of only 384
simple abstract states [7].

B. Actions

Again, the full set of Xpilot game actions was somewhat too
large, and included options, like firing ship weapons, irrelevant

Even with a simplified 
and discretized state-

action space, things are 
still far too complex 
for effective use of 
basic RL algorithms
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Other Parameters
1. # of prototypes: 1,024 initial prototypes (at random)

} A total of 4,096 (prototype, action) pairs
} ~3.3% of overall possible (state, action) pairs

2. Learning updates:  γ = 0.9, 𝛼 = 0.1

3. Policy randomness: initially 𝜀 = 0.9
} Every 25,000 games we update:

4. Updating prototypes: every time any prototype is visited (by 
encountering an adjacent state) 50 times, we:

a. Delete m of them using randomness based upon number of visits
b. Split each of the most-visited m prototypes, returning to 1,024
c. Re-set all counts of how many times each is visited
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0.9

btotalGames/25, 000c+ 1

30

Learning Performance

} The agent continues to improve performance over many 
hours of learning, comprising over 170,000 episodes
} Note: as they get better, each episode of learning gets longer as they 

survive more frames
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(b) Average Frames Alive Over Time

Fig. 2. The left-hand figure shows total reward accumulated over the full number of games. The upward-bowing of the line correlates with an increasing rate
of accumulation over time. This increase is explained by the right-hand figure, which shows the average number of frames for which the RL agent remained
alive per game, taken over every 1000 games. Trend-line shown with linear fit, R2 ⇡ 0.96.

to the task of navigating. In addition, they were often simpler
than we desired, and were better supplemented by compound
combinations of atomic actions. We thus used a set of 4 simple
actions, as follows:

• Avoid Wall: A short (3-line) routine for Xpilot-AI that
calculates an angle away from a nearing wall, turns a
fixed number (given by the Xpilot-AI environment itself)
of degrees in that direction, and thrusts once to counter
current direction of travel.

• Avoid Corner: An equally simple compound action
routine that involves a turn towards the direction 180�

rotated from the current direction of travel, followed by
a single engine thrust.

• Thrust: A single thrust of propulsion.
• Do Nothing: A NOP for the Xpilot agent.

It is to be noted that both of the wall-avoidance actions are not
always entirely successful on firing. Since ships are limited
in the number of degrees they can turn in one movement,
several such actions may be required before a ship is oriented
in a direction that faces away from an approaching wall.
Similarly, at higher rates of speed, a single thrust of propulsion
may not be sufficient to counter-act current travel. Finally,
the simple Thrust action is itself conditional: when traveling
at a speed greater than 5, choosing this action is equivalent
to Do Nothing, since the ship will not accelerate beyond its
maximum speed value of 6. All told, these 4 choices in every
state give a possible set of 124416 state action pairs (s, a).

C. Rewards

We also used a simple reward structure, as given in Table III:
• If the agent crashes, it incurs penalty r = �10.
• If the agent survives a game-frame, r = +1.

This simple structure thus maximizes reward simply based
upon surviving for the greatest number of game-frames be-
tween crashes. To avoid the case that the agent simply learns
not ever to begin moving at all, every post-crash restart begins
with the agent moving at middle speed in a random direction.

While agents could feasibly learn to brake to a halt in order
to survive for maximum duration, this prevents a trivial Do
Nothing policy from developing for all possible start locations.

D. Other Parameters

At the start of the learning, 1024 prototype states are chosen
at random; this gives a possible 4096 prototype-action pairs
(p, a), approximately 3.3% of the possible total state-action
space. At each frame of the game, an agent’s reward is
generated based on the values given in Table III. For last state
s and action a, the ✓-value of any adjacent prototype is updated
according to Equation (2), using particular parameters ↵ = 0.1
and � = 0.9 (typical settings for many RL applications). At
this time, the visitation number for each updated prototype is
incremented by one.

At this time, the ✏-greedy policy is enacted, and with
probability ✏, a random action is taken to explore the state-
action space. With probability (1 � ✏), a greedy action a0 is
chosen that maximizes the value Q̂(s0, a0) for new state s0, as
given in Equation (3). Initially, this probability is ✏ = 0.9, but
is decreased every 25000 games, to reduce exploration over
time, using the formula:

✏ =
0.9

bG/�c + 1
(5)

where G is the total number of games played to date and
� = 25000. Thus, the agent acts randomly approximately 90%
of the time for the first 25000 games, then 45% of the time
for the next 25000, before reducing to 30% of the time, and
so forth for the duration of the simulation.

Whenever at least one prototype has been visited at least
50 times, prototype elimination is instigated, with each pro-
totype being eliminated based on the number of visits, using
probability given by Equation (4). After deleting some number
m of prototypes, m new ones are generated to replace them,
by splitting the most-visited prototypes in order, duplicating
their ✓-values as we go. At the end of this stage, we again
have 1024 prototypes; all visitation counts are set to 0, and

31

Prototype Visits

} As rarely visited prototypes are replaced by more useful 
ones, overall rate of visits increases 
} At same time, variance of visits to any prototype decreases
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(b) Variance: Average Visits per Prototype Over Time

Fig. 3. The left-hand figure shows the average visits to each of the 1024 prototypes as the number of games progresses. A weak linear trend (R2 ⇡ 0.45)
follows from the fact that over time, the prototype set is pruned of singular, rarely-visited states, and populated with those that are adjacent to regions of the
state-space that are visited most often. The right-hand figure shows the variance in these numbers over time. The weak downward trend (R2 ⇡ 0.23), even
as the raw numbers increase indicates increasing stability of the prototype set as it becomes better-distributed over active regions of the state-space.

the process repeats, indefinitely. A single game episode ends
on any crash, the game is then re-set with all current learned
values and prototypes intact, and learning continues.

VI. EMPIRICAL RESULTS

Xpilot-AI can be adjusted to run simulations at high rates
of speed, far beyond what human players can manage when
playing live. Adjusting to high speed, we ran our simulation
for a little over 173000 games (measured from start to crash),
for a total compute time of approximately 24 hours on a
standard Linux desktop machine communicating with a central
Xpilot game server. Even with the very small number of
prototypes relative to the overall state space, performance
improved steadily over time, and learning continued through
the end of the simulation.

Figure 2 shows basic data for agent performance over time.
The left-hand side of the figure shows total reward accumu-
lated over time. As expected, the total increases directly over
time, as the agent survives far more than it crashes (even
though the latter incurs a penalty 10 times greater than the
reward for a single frame of survival). More interesting, the
right-hand side shows the average number of frames for which
an agent survived during a game, averaged over every 1000
games along the way.

Two results are clear. First, there is a general upward
trend in Figure 2 (a). Initially, the learning agent, acting
almost randomly (since the value ✏ = 0.9 initially for the ✏-
greedy policy), survives on average approximately 60 frames
before crashing. As learning progresses, survival rates also
continually improve, with discontinuities corresponding to
the downward adjustment in ✏ every 25000 games, and the
improvement in the learned policy. It is important to note that
this improvement cannot be explained solely by the reduction
in randomness initially the greedy policy and prototype set

are chosen entirely at random. Even if ✏ were initialized to 0,
so no random exploration were performed, no improvement
would be seen absent learning, since the starting policies are
entirely un-directed, independent of the ✏-value that happens
to have been initially chosen.

By the end of the run, average survival is approximately 130
frames, doubling initial survival rates. Fitting this progression
to a linear trend, we see a steady upward climb in total
frames survived (R2 ⇡ 0.96). These numbers explain the
slight upward-bowing seen in Figure 2 (b), as well, since the
steady progression in number of frames survived on average
leads to an increasing rate of reward gain over time. These
numbers show that Kanerva coding can be effective for the
Xpilot domain, even when only a very small extent (3.3%)
of the possible state-action space is covered by the prototype
set. Future work will examine the relationship between this
coverage and performance examining how larger prototype
sets affect overall performance, both in terms of final survival
rates and time needed for improvement.

Even with the small prototype set, growing regularity in
its make-up is seen over time. Figure 3 (a) shows the aver-
age number of visits for each prototype, sampled frequently
early on, and then every 10000 games after that. While the
dynamic nature of the adaptive Kanerva coding leads to a
certain amount of noise in the data, a weak upward trend
(R2 ⇡ 0.45) becomes evident over time. Initially, that is, the
average randomly chosen prototypes are rarely visited, since
most states actually encountered in practice are not adjacent to
most, if not all, of those prototypes. As time goes on, however,
infrequently visited prototypes are pruned away with high
probability, and replaced with more representative abstracting
states. By the end of the process, most all entries are being
visited regularly, as the set P has come to be populated through
prototype splitting, which has the effect of concentrating on
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9

Adding More Prototypes

} Using 2/4/8 times as many prototypes has little to no effect, 
meaning that the smaller number is as good as any other

} For the largest size of prototype set, learning was much slower, 
and experiments had to be curtailed somewhat
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Fig. 4. Average number of frames survived for Kanerva coding with progressively larger prototype spaces; all details are as for previously reported experiments,
except that the proportion of randomness for ✏-greedy policy selection is reduced every 1000 games (rather than every 25000 games). As shown, increasing
the number of prototypes from the base level (1024 sample states) to larger values (from 2048 to 9192) has no significant effect over several thousand games.
Note that data for the largest prototype space is only shown over 10000 games, while the rest range over 13000 games, due to time constraints on computation.

entires adjacent to those regions of the state space that the
agent actually encounters.

This trend is also reflected in Figure 3 (b), which plots
the variance in the first set of average numbers. Despite the
fact that the raw numbers increase over time, the variance
tends weakly downward (R2 ⇡ 0.23), as the prototype space
changes from its starting condition—divided between a few
frequently visited states and a majority that are rarely if
ever visited at all—and a more stable state in which the
prototypes are better distributed over the encountered state-
space, allowing learning over the wide range of states actually
encountered by the RL agent.

In many domains, performance of Kanerva coding scales
proportionally with the number of prototypes used at each
stage, converging on the performance of full Q-learning when
the full state-space is used [13], [14]. To examine this effect in
Xpilot, we ran a series of further tests, in which we compared
the frames survived for the agent relative to an increasing
number of prototypes, ranging from the initial level of 1024,
and doubling to 2048, 4096, and finally setting that number
to 9192. As outlined in Table IV, these increasing sizes lead
to an increase in the percentage of the full state-action space
covered by the prototype set, ranging from the initial coverage
of only 3.3% to a near ten-fold increase of 29.6%. To speed
the process of convergence to a non-random policy, these tests
reduced the parameter ✏ every 1000 games, instead of the
initial value of 25000, setting � = 1000 in Equation (5).

Figure 4 shows the results of these tests, over 13000 games
played for each collection of prototypes (except for the largest
set, run for only 10000 games due to time constraints). By
the end of each run of 13000 games, the ✏-greedy agent
was acting on its best policy approximately 93% of the time,

and acting randomly the remaining 7% (values are 91% and
9% respectively for the run of 10000 games). Under these
conditions, it is interesting to note that the results for all of the
various prototype set sizes are statistically indistinguishable.
Even a near ten-fold increase in the size of the prototype space
results in no real improvement over the 10000-game horizon;
over the full 13000-game runs, all three prototype sets selected
have nearly identical performance.

It is worth noting that this final value, which averages to
approximately 289 frames survived for each of the three runs
to the full horizon, is a 5-fold increase from the average
value of approximately 60 frames generated over the first
1000 highly-random games. This is also more than a 2-fold
increase over the value generated for the longest prior runs
(reported in Figure 2), indicating that future work will be better
served by reducing randomness more rapidly, as extensive state
exploration only slows overall learning progress.

VII. CONCLUSIONS AND FUTURE WORK

The Xpilot domain is a complicated real-time game environ-
ment, proving difficult for both human and automated players.
Simple hand-coded controllers are generally ineffective for
such a game, as often requires highly context-sensitive policies
of action. Our work provides the first effective reinforce-
ment learning agent that can deal with anything like the
full complexity of the complete Xpilot game. This provides
the possibility of a robust learning AI agent that develops
autonomous control routines for a complex game environment,
generating realistic and competitive game play against other
players. Such technologies could be used in improving oppo-
nent “bot” performance for similar video games, providing a
single human user with an automated, but interesting opponent

TABLE IV
NUMBERS OF PROTOTYPES USED IN THE EXPERIMENTS DESCRIBED IN

FIGURE 4. EACH COMBINES WITH 4 ACTIONS FOR THE GIVEN NUMBER OF
STATE-ACTION PAIRS (s, a). ALSO SHOWN IS THE PERCENTAGE OF THE

ENTIRE STATE-ACTION SPACE (124416 PAIRS) REPRESENTED.

Prototypes (s,a) % Total
1024 4096 3.3%
2048 8192 6.6%
4096 16384 13.2%
9192 36768 29.6%

even in large and sophisticated game environments.

Even with a very small number of prototypes relative to the
overall Xpilot state-space, our Kanerva-coded version of Q-
learning was able to double survival rates for learning agents.
Prior work [7] was able to achieve comparable results with
regular Q-learning, but only by performing full value updates
over a larger, hand-crafted state-action space. In addition, that
work used a hand-crafted and highly reduced state space,
with more complex programmer-designed reward functions to
achieve its results. In contrast, the Kanerva method here is
highly automated, and uses a very simple reward structure.
Since only 3.3% of the state-space is necessarily represented
in the prototype set at any given time, a much more complex
and natural set of state variables can be employed, without
requiring the programmer to hand-craft those the RL agent
will use. The automation of the adaptive portion of the method
allows the state abstraction to develop naturally, without
designer preconceptions and direct input.

Our work adapts and applies the approach of [13] to
the highly complex Xpilot domain, extending from boolean-
valued state variables to more complex combinations of values.
Our results suggest even further improvements are possible.
Reducing random exploration significantly has already been
shown to speed learning, with no apparent loss of value.
Furthermore, initial tests indicate that the Xpilot navigation
domain chosen is highly amenable to abstraction, since a near
ten-fold increase in the prototype space, from 3.3% of the
overall state-action space to nearly one-third of that space
shows no significant change in behavior. This work is now
being pushed further, examining the effects of even greater
reductions in random exploration, with an eye to longer time-
horizons for learning, and more conclusive analysis of the
relationship between prototype space size and performance of
the Kanerva coding method in this particular domain.

In addition, we are comparing results against those of [7],
which provides alternative reward functions that may help
improve the performance of the adaptive Kanerva technique.
For multiagent domains, we are examining how the process of
prototype generation and maintenance can be combined with
measures of agent influence [20], so that teams of learning
agents can focus on parts of the state space that reduce
problematic interactions between them.
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This Week & Next Week

} Topics:  Approximation in RL & Review

} Homework 06:  Last assignment, due Monday, 06 Dec.

} Final Project: Essay assignment, due Thursday, 19 Dec.

} Final Exam: in regular classroom
} 7:00–9:00 PM, Thursday, 12 December
} Practice exam out by end of this week
} Exam review: last class (Monday, 09 December)

} Office Hours: as usual next week
} By appointment with instructor after that
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