

1

An Example Problem

- Suppose we want to build a system, like Siri or Alexa, that responds to voice commands
- What are our components?

Tasks, T
2. Performance measure, P
3. Experience, E

For many domains, deriving the experience used by the system is the biggest real challenge:

- The evidence it uses
- How it uses that evidence.

Experiact
This is the tricky part!

Defining a Learning Problem

- Suppose we have three basic components:

Set of tasks, T
2. A performance measure, P
3. Data describing some experience, E

A computer program learns if its performance at tasks in T, as measured by P, improves based on E.

From:Tom M. Mitchell, Machine Learning (1997)

2

The Expert Systems Approach

- One (older) approach used expert-generated rules:

Find someone with advanced knowledge of linguistics
2. Get them to devise the structural rules of language's grammar and semantics
3. Encode those rules in program for parsing written language

4. Build another program to translate speech into written language, and tie that to another program for taking actions based upon the parsing

- Wednestay, 22 Jan. 2020

Machine Learning (COMP 135)

4

Another Approach: Supervised Learning

- In supervised learning, we:
I. Provide a set of correct answers to a problem

2. Use algorithms to find (mostly) correct answers to similar problems

- We can still use experts, but their job is different:
- Don't need to devise complex rules for understanding speech
- Instead, they just have to be able to tell what the correct results of understanding look like
- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135)
5

Inductive Learning

- In its simplest form, induction is the task of learning a function on some inputs from examples of its outputs
- For a function, f, that we want to learn, each of these training examples is a pair

$$
(x, f(x))
$$

- We assume that we do not yet know the actual form of the function f (if we did, we don't need to learn)
- Learning problem: find a hypothesis function, h, such that $h(x)=f(x)$ (at least most of the time), based on a training set of example input-output pairs
- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135)

Another Approach: Supervised Learning

- Collect a large set of sample things a set of test users say to our system
- For each, map it to a correct outcome action the system should take
"Call my wife" \longrightarrow cal1 (555-123-4567)

Set an alarm for 4:00 AM"
"Play Pod Save America" \longrightarrow

\ldots | podcast_p1ay ("Pod |
| :---: |
| Save America") |

- A large set of such (speech, action) pairs can be created
- This can then form the experience, E, the system needs
- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135) 6
6

Example:1-Dimensional Data Analysis

- What are our components?

Tasks, T
2. Performance measure, P
3. Experience, E

Task:

Predict the output, $f(x)=y$, for points we haven't seen yet

Performance:

Seek to reduce overall error of the predictions for known points

- Wednesday, 22 Jan. 2020

Experience?

Here, this is the easy part: we are provided with an existing data-set of (input, output) points (x, y)

$$
\text { [i.e., } f(x)=y \text {] }
$$

achine Learning (COMP 135)

8

Linear Regression

- In general, we want to learn a hypothesis function h that minimizes our error relative to the actual output function f
- Often we will assume that this function h is linear, so the problem becomes finding a set of weights that minimize the error between f and our function:

$$
\begin{gathered}
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n} . \cdots \text { Machine Learning (COMP 135) } \\
\quad \text { Wednesday, 22 Jan. 2020 }
\end{gathered}
$$

An Example

- For the data given, the best fit for a simple linear function of x is as follows:

$$
h(x) \longleftarrow y=1.05+1.60 x
$$

- Wednesday, 22 Jan. $2020 \quad$ Machine Learning (COMP 135) ${ }^{1}$

An Error Function: Least Squared Error

* For a chosen set of weights, \mathbf{w}, we can define an error function as the squared residual between what the hypothesis function predicts and the actual output, summed over all N test-cases:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{j=1}^{N}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)^{2}
$$

- Learning is then the process of finding a weight-sequence that minimizes this loss:

$$
\mathbf{w}^{\star}=\arg \min _{w} \operatorname{Loss}(\mathbf{w})
$$

- Note: Other loss-functions are commonly used (but the basic learning problem remains the same)
- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135) 10

10

Finding Minimal-Error Weights

$$
\mathbf{w}^{\star}=\arg \min _{w} \operatorname{Loss}(\mathbf{w})
$$

- We can in principle solve for the weight with least error analytically Create data matrix with one training input example per row, one feature per Create data matrix with one training input examp
column, and output vector of all training outputs

$$
\mathbf{X}=\left[\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{N 1} & f_{N 2} & \cdots & f_{N n}
\end{array}\right]
$$

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

2. Solve for the minimal weights using linear algebra (for large data, requires optimized routines for finding matrix inverses, doing multiplications, etc., as well as for certain matrix properties to hold, which are not universal):

$$
\mathbf{w}^{\star}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Wednesday, 22 Jan. 2020
Machine Learning (COMP 135) $\quad 12$
12

Finding Minimal-Error Weights

$$
\mathbf{w}^{\star}=\arg \min _{w} \operatorname{Loss}(\mathbf{w})
$$

-Weights that minimize error can instead be found (or at least approximated) using gradient descent:

1. Loop repeatedly over all weights w_{i}, updating them based on their contribution" to the overall error:

Stop on convergence, when maximum update on any weight (Δ) drops
below some threshold (Θ); alternatively, stop when below some threshold (Θ); alternatively, stop when change in error/loss grows small enough

- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135) 13

13

Gradient Descent

$$
\operatorname{Loss}(\mathbf{w})=\sum_{j=1}^{N}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)^{2}
$$

- The loss function forms a contour (here shown for one-dimensional data)

For any initial set of weights $\left(\mathbf{w}_{0}\right)$ we are at some point on this contour

Updating Weights

$$
w_{i} \leftarrow w_{i}+\alpha \sum_{j} x_{j, i}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

- For each value i, the update equation takes into account:

$$
\text { The current weight-value, } w_{i}
$$

2 The difference (positive or negative) between the current The difference (positive or negative) between the current
hypothesis for input j and the known output: $\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)$ The i-th feature of the data, $x_{j, i}$

- When doing this update, we must remember that for n data features, we have $(n+1)$ weights, including the bias, w_{0}
$h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$
" It is presumed that the related "feature" $x_{j, 0}=1$ in every case and so the update for the bias weight becomes:

$$
w_{0} \leftarrow w_{0}+\alpha \sum_{j}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135) 14

14

Gradient Descent

- The derivate of the loss function at the given weight settings "points uphill" along the slope of the function (note: this is true for this point, not every point)
- The gradient descent update moves along the function in the opposite direction toward the direction that decreases loss most significantly

$$
w_{i} \leftarrow w_{i}+\alpha \sum_{j} x_{j, i}\left(y_{j}-h_{\mathbf{w}}\left(\mathbf{x}_{j}\right)\right)
$$

Wednesday, 22 Jan. 2020
Machine Learning (COMP 135)
16

16

Practical Use of Linear Regression

Ad sales vs. media expenditure (1000 's of units). From: James et al., Intro. to Stotistical Leorning (Springer, 2017)

- A linear model can often radically simplify a data-set, isolating a relatively straightforward relationship between data-features and outcomes
- Wednesday, 22 Jan. 2020

Machine Learning (COMP 135) 17

This Week \& Next

- Linear \& polynomial regression; gradient descent and gradient ascent; over-fitting and cross validation
- Readings:

Book excerpts on linear methods and regression (linked from class schedule)

- Assignment 01: posted to class Piazza
- Due via Gradescope, 9:00 AM,Wednesday, 29 January
- Office Hours: 237 Halligan

Wednesday, 22 Jan.: 10:30 AM - Noon
, Mondays, 10:30 AM - Noon

- Tuesdays, 9:00 AM - 10:30 AM

