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Class #02:  Types of Learning; 
Linear Methods

Machine Learning (COMP 135):  M. Allen, 22 Jan. 20
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Defining a Learning Problem
} Suppose we have three basic components:

1. Set of tasks, T
2. A performance measure, P
3. Data describing some experience, E
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A computer program learns if its performance at tasks in 
T, as measured by P, improves based on E.

From: Tom M. Mitchell, Machine Learning (1997) 
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An Example Problem
} Suppose we want to build a system, like Siri or Alexa, that 

responds to voice commands
} What are our components?

1. Tasks, T
2. Performance measure, P
3. Experience, E
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Task:

Take system actions,
based upon speech

Performance:

How often correct action 
is taken during testing

Experience?

This is the tricky part!

For many domains, deriving the 
experience used by the system is 
the biggest real challenge:
• The evidence it uses.
• How it uses that evidence.
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The Expert Systems Approach
} One (older) approach used 

expert-generated rules:
1. Find someone with advanced 

knowledge of linguistics
2. Get them to devise the 

structural rules of language’s 
grammar and semantics

3. Encode those rules in program 
for parsing written language

4. Build another program to 
translate speech into written 
language, and tie that to 
another program for taking 
actions based upon the parsing
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Another Approach: Supervised Learning
} In supervised learning, we:
1. Provide a set of correct answers to a problem

2. Use algorithms to find (mostly) correct answers to 
similar problems

} We can still use experts, but their job is different:
} Don’t need to devise complex rules for understanding speech
} Instead, they just have to be able to tell what the correct 

results of understanding look like
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Another Approach: Supervised Learning
} Collect a large set of 

sample things a set of test 
users say to our system

} For each, map it to a 
correct outcome action 
the system should take
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“Call my wife”

“Set an alarm for 4:00 AM”
“Play Pod Save America”

…

call(555-123-4567)

alarm_set(04:00)

podcast_play(“Pod 
Save America”)

…

} A large set of such (speech, action) pairs can be created
} This can then form the experience, E, the system needs
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Inductive Learning
} In its simplest form, induction is the task of learning a 

function on some inputs from examples of its outputs

} For a function, f, that we want to learn, each of these 
training examples is a pair

(x, f (x ))

} We assume that we do not yet know the actual form of the 
function f (if we did, we don’t need to learn)

} Learning problem: find a hypothesis function, h, such that 
h (x ) = f (x ) (at least most of the time), based on a 
training set of example input-output pairs
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} What are our components?
1. Tasks, T
2. Performance measure, P
3. Experience, E

Example:1-Dimensional Data Analysis
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Example: What hypothesis class should we pick?

x

y

x y

0.86 2.49

0.09 0.83

-0.85 -0.25

0.87 3.10

-0.44 0.87

-0.43 0.02

-1.10 -0.12

0.40 1.81

-0.96 -0.83

0.17 0.43

Linear hypothessis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1 + · · · + wnxn

• wi are called parameters or weights

• To simplify notation, we always add an attribute x0 = 1 to the

other n attributes (also called bias term or intercept term):

hw(x) =
n
X

j=0

wjxj = w · x

where w and x are vectors of size n + 1.

How should we pick w?

Task:

Predict the output, f (x ) = y , for 
points we haven’t seen yet

Performance:

Seek to reduce overall error of the 
predictions for known points

Experience?

Here, this is the easy part: 
we are provided with an 

existing data-set of (input, 
output) points (x, y)

[ i.e., f (x ) = y ]

8



3

Linear Regression

} In general, we want to learn a hypothesis function h that minimizes 
our error relative to the actual output function f

} Often we will assume that this function h is linear, so the problem 
becomes finding a set of weights that minimize the error between f
and our function:
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Example: What hypothesis class should we pick?

x

y

x y

0.86 2.49

0.09 0.83

-0.85 -0.25

0.87 3.10

-0.44 0.87

-0.43 0.02

-1.10 -0.12

0.40 1.81

-0.96 -0.83

0.17 0.43

Linear hypothessis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1 + · · · + wnxn

• wi are called parameters or weights

• To simplify notation, we always add an attribute x0 = 1 to the

other n attributes (also called bias term or intercept term):

hw(x) =
n
X

j=0

wjxj = w · x

where w and x are vectors of size n + 1.

How should we pick w?

h(x1, x2, . . . , xn) = w0 + w1x1 + w2x2 + · · · + wnxn
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An Error Function: Least Squared Error
} For a chosen set of weights, w, we can define an error function 

as the squared residual between what the hypothesis function 
predicts and the actual output, summed over all N test-cases:

} Learning is then the process of finding a weight-sequence that 
minimizes this loss:

} Note:  Other loss-functions are commonly used (but the basic 
learning problem remains the same)
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Loss(w) =
NX

j=1

(yj � hw(xj))
2

w? = argmin
w

Loss(w)
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An Example

} For the data given, the best fit for a simple linear function 
of x is as follows:
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

h(x)  � y = 1.05 + 1.60x

11

Finding Minimal-Error Weights

} We can in principle solve for the weight with least error analytically
1. Create data matrix with one training input example per row, one feature per 

column, and output vector of all training outputs

2. Solve for the minimal weights using linear algebra (for large data, requires 
optimized routines for finding matrix inverses, doing multiplications, etc., as well 
as for certain matrix properties to hold, which are not universal):
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X =

2

6664

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fN1 fN2 · · · fNn

3

7775
y =

2

6664

y1
y2
...
yN

3

7775

w? = (X>X)�1X>y

w? = argmin
w

Loss(w)
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Finding Minimal-Error Weights

} Weights that minimize error can instead be found (or at least 
approximated) using gradient descent:

1. Loop repeatedly over all weights wi , updating them based on their 
“contribution” to the overall error:

2. Stop on convergence, when maximum update on any weight (D) drops 
below some threshold (Q);  alternatively, stop when change in error/loss 
grows small enough
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w? = argmin
w

Loss(w)

wi  wi + ↵
X

j

xj,i (yj � hw(xj))

Overall Error: difference 
between current and correct 

outputs for case j

Feature: normalized 
value of feature i of 

training input j

Learning rate: multiplying 
parameter for weight 

adjustments
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h(x1, x2, . . . , xn) = w0 + w1x1 + w2x2 + · · · + wnxn

Updating Weights

} For each value i , the update equation takes into account:
1. The current weight-value, wi

2. The difference (positive or negative) between the current 
hypothesis for input j and the known output:

3. The i-th feature of the data, xj,i
} When doing this update, we must remember that for n data 

features, we have (n + 1) weights, including the bias, w0

} It is presumed that the related “feature” xj,0 = 1 in every case, 
and so the update for the bias weight becomes:
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wi  wi + ↵
X

j

xj,i (yj � hw(xj))

(yj � hw(xj))
<latexit sha1_base64="UNINs4PSoyLllMZSJoJr3l+I7nM=">AAACB3icZVBLT8JAGNziC8FH1aOXDWgCiZIWD3okevGIiTwSIM12u4WFbbfZblFCetc/ozfkarx794fo2aXgAZlkk8ns95hv7IDRUBrGl5ZaW9/Y3EpvZ7I7u3v7+sFhPeSRwKSGOeOiaaOQMOqTmqSSkWYgCPJsRhr24Gb23xgSEVLu38tRQDoe6vrUpRhJJVl6rjCy+vAc9qy2h2TPdscPceGPPsZWv1i09LxRMhLAVWIuSL5y8j35GGZ/qpb+2XY4jjziS8xQGLZMI5CdMRKSYkbiTDsKSYDwAHXJOLkghqdKcqDLhXq+hIm6VOdzmThe6m5F0r3qjKkfRJL4eD7GjRiUHM6OhQ4VBEs2UgRhQdV+iHtIICxVJEuTRMSIcwaHsxwd5ZV1uarveWXlVwVg/j93ldTLJfOiVL5TSVyDOdLgGORAAZjgElTALaiCGsDgCbyANzDVnrVXbaJN56UpbdFzBJagvf8CzfmdNA==</latexit>

w0  w0 + ↵
X

j

(yj � hw(xj))

<latexit sha1_base64="9+1uaXVEozFi2/1CVduDzrznNjI="></latexit>
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Gradient Descent

} The loss function forms a contour (here shown for one-dimensional data)
} For any initial set of weights (w0) we are at some point on this contour
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Loss(w) =
NX

j=1

(yj � hw(xj))
2

L
os
s(
w
)

<latexit sha1_base64="d8+Pnc8Qjlxr0SuB84Vd//nnZyA=">AAAB9XicZVDLTgIxFO3gC/E16tJNAzHBaMgMLnRJdOPCBSYiJAwhnU4HGjrtpO1AyIS/cKk7ZeufuOdvLAObkZs0OTk9995zjx8zqrTjLKzC1vbO7l5xv3RweHR8Yp+evSmRSExaWDAhOz5ShFFOWppqRjqxJCjyGWn7o8flf3tMpKKCv+ppTHoRGnAaUoy0ofq2/SyUqnoR0kM/TCezq75dcWpOVnATuGtQaZS96/dFY9rs279eIHASEa4xQ0p1XSfWvRRJTTEjs5KXKBIjPEIDkmZ+Z/DSUAEMhTSPa5ixOR0XOvOX6+4mOrzvpZTHiSYcr8aECYNawOVpMKCSYM2mBiAsqdkP8RBJhLUJIDdJJowEN3C8TC0wXtlAGP0wqhu/JgD3/7mb4K1ec29r9ReTxANYVRFcgDKoAhfcgQZ4Ak3QAhiMwQf4BnNrYn1aX9Z8JS1Y655zkCvr5w+zAJUZ</latexit>

Loss(w0)
<latexit sha1_base64="Kjkdk6NCa4osqlOYPWUwVMo7txw=">AAAB93icZVC7TsMwFHXKq5RXKCOL1QqpCFQlZYCxgoWBoUj0ITVV5DhOa9WJI9spRFX/ghk26MqPsPdvcNMuoVeydHR87r3nHi9mVCrLWhiFre2d3b3ifung8Oj4xDwtdyRPBCZtzBkXPQ9JwmhE2ooqRnqxICj0GOl644flf3dChKQ8elFpTAYhGkY0oBgpTblm+YlLWXNCpEZeMH2dudala1atupUV3AT2GlSbFefqfdFMW6756/gcJyGJFGZIyr5txWowRUJRzMis5CSSxAiP0ZBMM8czeKEpHwZc6BcpmLE5XcRV5jDX3U9UcDeY0ihOFInwakyQMKg4XB4HfSoIVizVAGFB9X6IR0ggrHQEuUkiYcS/hpNlbr72yoZc60dhQ/vVAdj/z90EnUbdvqk3nnUS92BVRXAOKqAGbHALmuARtEAbYPAGPsA3mBup8Wl8GfOVtGCse85AroyfP+DFlbw=</latexit>

w
<latexit sha1_base64="e3bc6JZUm5z3Ueby/VUHFkSDzKs=">AAAB7XicZVC7TsMwFHV4lvAqMLJYVEgMqErKAAuigoWxSPQh2qpyHKe16tiRc1NURf0L2KALA5/Cxor4G9y0S+iRLB0dn3vvudeLBI/BcX6tldW19Y3Nwpa9vbO7t188OGzEKtGU1akSSrc8EjPBJasDB8FakWYk9ARresO72X9zxHTMlXyEccS6IelLHnBKwEhPnZDAwAvS50mvWHLKTga8TNwFKd182dfRx49d6xW/O76iScgkUEHiuO06EXRTooFTwSZ2J4lZROiQ9Fma5ZzgUyP5OFDaPAk4U3M+qSDLlatuJxBcdVMuowSYpPM2QSIwKDxbCftcMwpibAihmpv5mA6IJhTM4rlOOhHMP8ej2bV8k1X0lfEPworJaw7g/l93mTQqZfeiXHlwStVbNEcBHaMTdIZcdImq6B7VUB1RJNELekdTS1mv1ps1nVtXrEXNEcrB+vwDmwKS7A==</latexit>

15

Gradient Descent

} The derivate of the loss function at the given weight settings “points uphill” along 
the slope of the function (note: this is true for this point, not every point)

} The gradient descent update moves along the function in the opposite direction 
toward the direction that decreases loss most significantly
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w
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wi  wi + ↵
X

j

xj,i (yj � hw(xj))

@ Loss(w0)

@w0
<latexit sha1_base64="a3bWX7amDYwAaxB1lC6z7SEeJNQ="></latexit>
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Practical Use of Linear Regression

} A linear model can often radically simplify a data-set, isolating a relatively 
straightforward relationship between data-features and outcomes
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16 2. Statistical Learning
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ϵ. (2.1)

Here f is some fixed but unknown function ofX1, . . . , Xp, and ϵ is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ϵ. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

Ad sales vs. media expenditure (1000’s of units). From: James et al., Intro. to Statistical Learning (Springer, 2017)
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This Week & Next
} Linear & polynomial regression; gradient descent and gradient 

ascent; over-fitting and cross validation

} Readings: 
} Book excerpts on linear methods and regression (linked from class 

schedule)

} Assignment 01: posted to class Piazza
} Due via Gradescope, 9:00 AM, Wednesday, 29 January

} Office Hours:  237 Halligan
} Wednesday, 22 Jan.: 10:30 AM – Noon
} Mondays, 10:30 AM – Noon
} Tuesdays, 9:00 AM – 10:30 AM
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