Tufts

Class \#03: Linear and Polynomial Regression Models

Machine Learning (COMP 135): M. Allen, 27 Jan. 20

1

Accuracy of the Hypothesis Function

- Although we can generally find the best set of weights efficiently, the exact form of the equation, in terms of the degree of the
polynomial used in that equation, can limit our accuracy
- Example: if we try to predict time to tumor recurrence based on a simple linear function of its radius, this is likely to be very inaccurate
- Monday, 27 Jan. 2020

Machine Learning (COMP 135) 3

3

Practical Use of Linear Regression

Ad sales vs. media expenditure (1000 's of units). From: James et al., Intro. to Statistical Learning (Springer, 2017)

- A linear model can often radically simplify a data-set, isolating a relatively straightforward relationship between data-features and outcomes
- Monday, 27 Jan. 2020

Machine Learning (COMP 135)
2
2

Higher Order Polynomial Regression

- Since not every data-set is best represented as a simple linear function, we will in general want to explore higherorder hypothesis functions
- We can still keep these functions quasi-linear, in terms of a sum of weights over terms, but we will allow those terms to take more complex polynomial forms, like:

$$
h(x) \longleftarrow y=w_{0}+w_{1} x+w_{2} x^{2}
$$

- Monday, 27 Jan. 2020

Machine Learning (COMP 135)

4

Higher Order Polynomial Regression

$$
h(x) \longleftarrow y=w_{0}+w_{1} x+w_{2} x^{2}
$$

- Note: the hypothesis function here is still linear, in terms of a sum of coefficients, each multiplied by a single feature
- The same algorithms can find the coefficients that minimize error, just as before

What is different, however, are the features themselves

- A feature transformation is a common ML technique
- In order to best solve a problem, we generally don't care what features we use
- We will often experiment with modifying features to get better results from existing algorithms
- Monday, 27 Jan. $2020 \quad$ Machine Learning (COMP 135)

5

Higher-Order Regression Solutions

$$
h(x) \longleftarrow y=1.05+1.60 x \quad h(x) \longleftarrow y=0.73+1.74 x+0.68 x^{2}
$$

- It is important to note that the "curves" we get are still linear
- These are the result of projecting a linear structure in a higher dimensional space back into the dimensions of the original data
- Monday, 27 Jan. 2020

Machine Learning (COMP 135) 7

Higher-Order Regression Solutions

- With an order-2 function, we can fit our data somewhat better than with the original, order-1 version

6

Higher-Order Fitting

Order-3 Solution

Order-4 Solution

D Monday, 27 Jan. 2020
Machine Learning (COMP 135)

8

Even Higher-Order Fitting

- Monday, 27 Jan. 2020

9

Defining Overfitting

- To precisely understand overfitting, we distinguish between two types of error:

1. True error: the actual error between the hypothesis and the true function that we want to learn
2. Training error: the error observed on our training set of examples, during the learning process

- Overfitting is when:

We have a choice between hypotheses, $\mathrm{h}_{1} \& \mathrm{~h}_{2}$
2. We choose h_{1} because it has lowest training error
3. Choosing h_{2} would actually be better, since it will have lowest true error, even if training error is worse

- In general we do not know true error (would essentially need to already know function we are trying to learn)
- How then can we estimate the true error?
- Monday, 27 Jan. 2020

Machine Learning (COMP 135) ${ }^{11}$

The Risk of Overfitting

- An order-9 solution hits all the data points exactly, but is very "wild" at points that are not given in the data, with high variance
- This is a general problem for learning: if we over-train, we can end up with a function
 that is very precise on the data we already have, but will not predict accurately when used on new examples
- Monday, 27 Jan. 2020

Machine Learning (COMP 135) 1
10

This Week

- Linear and polynomial regression; gradient descent and gradient ascent; over-fitting and cross validation
- Readings:
- Book sections on linear methods and regression (see class schedule)
- Assignment 01: posted to class Piazza
- Due via Gradescope, 9:00 AM,Wednesday, 29 January
- Office Hours: 237 Halligan
- Mondays, 10:30 AM - Noon
- Tuesdays, 9:00 AM - 10:30 AM
- TA hours/locations can be found on class site

Monday, 27 Jan. 2020
Machine Learning (COMP 135)

12

