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Class #03:  Linear and 
Polynomial Regression Models

Machine Learning (COMP 135):  M. Allen, 27 Jan. 20
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Practical Use of Linear Regression

} A linear model can often radically simplify a data-set, isolating a relatively 
straightforward relationship between data-features and outcomes
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ϵ. (2.1)

Here f is some fixed but unknown function ofX1, . . . , Xp, and ϵ is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ϵ. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

Ad sales vs. media expenditure (1000’s of units). From: James et al., Intro. to Statistical Learning (Springer, 2017)
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Accuracy of the Hypothesis Function

} Although we can generally find the best set of weights efficiently, the 
exact form of the equation, in terms of the degree of the 
polynomial used in that equation, can limit our accuracy

} Example:  if we try to predict time to tumor recurrence based on a 
simple linear function of its radius, this is likely to be very inaccurate
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Synthetic example: Data and line y = 1.60x + 1.05

x

y

Predicting recurrence time based on tumor size

10 15 20 25 30
0

10

20

30

40

50

60

70

80

tumor radius (mm?)

ti
m

e
 t

o
 r

e
c
u

rr
e

n
c
e

 (
m

o
n

th
s
?

)

This function looks complicated, and a linear hypothesis does not seem very good
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Higher Order Polynomial Regression
} Since not every data-set is best represented as a simple 

linear function, we will in general want to explore higher-
order hypothesis functions

} We can still keep these functions quasi-linear, in terms of 
a sum of weights over terms, but we will allow those 
terms to take more complex polynomial forms, like:
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h(x)  � y = w0 + w1x + w2x
2
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Higher Order Polynomial Regression

} Note: the hypothesis function here is still linear, in terms 
of a sum of coefficients, each multiplied by a single feature
} The same algorithms can find the coefficients that minimize 

error, just as before

} What is different, however, are the features themselves
} A feature transformation is a common ML technique
} In order to best solve a problem, we generally don’t care what 

features we use
} We will often experiment with modifying features to get better 

results from existing algorithms
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h(x)  � y = w0 + w1x + w2x
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Higher-Order Regression Solutions

} With an order-2 function, we can fit our data somewhat 
better than with the original, order-1 version
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h(x)  � y = 0.73 + 1.74x + 0.68x2

Data and curve y = 0.68x2 + 1.74x + 0.73
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

h(x)  � y = 1.05 + 1.60x
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Higher-Order Regression Solutions

} It is important to note that the “curves” we get are still linear
} These are the result of projecting a linear structure in a higher dimensional 

space back into the dimensions of the original data

Monday, 27 Jan. 2020 Machine Learning (COMP 135) 7
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Synthetic example: Data and line y = 1.60x + 1.05
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This function looks complicated, and a linear hypothesis does not seem very good

h(x)  � y = 1.05 + 1.60x

7

Higher-Order Fitting

Order-3 Solution Order-4 Solution 

Data and curve y = 0.68x2 + 1.74x + 0.73
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Even Higher-Order Fitting
Order-5 Solution Order-6 Solution 
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Order-7 Solution Order-8 Solution 
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The Risk of Overfitting
} An order-9 solution hits all 

the data points exactly, but is 
very “wild” at points that are 
not given in the data, with 
high variance

} This is a general problem for 
learning:  if we over-train, we 
can end up with a function 
that is very precise on the 
data we already have, but will 
not predict accurately when 
used on new examples

Monday, 27 Jan. 2020 Machine Learning (COMP 135) 10

Order-8 fit

x

y

Order-9 fit

x

y

10

Defining Overfitting
} To precisely understand overfitting, we distinguish between two 

types of error:
1. True error:  the actual error between the hypothesis and the true 

function that we want to learn
2. Training error:  the error observed on our training set of 

examples, during the learning process

} Overfitting is when:
1. We have a choice between hypotheses, h1 & h2
2. We choose h1 because it has lowest training error
3. Choosing h2 would actually be better, since it will have lowest 

true error, even if training error is worse

} In general we do not know true error (would essentially need to 
already know function we are trying to learn)
} How then can we estimate the true error?
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This Week
} Linear and polynomial regression; gradient descent and 

gradient ascent; over-fitting and cross validation

} Readings: 
} Book sections on linear methods and regression (see class schedule)

} Assignment 01: posted to class Piazza
} Due via Gradescope, 9:00 AM, Wednesday, 29 January

} Office Hours:  237 Halligan
} Mondays, 10:30 AM – Noon
} Tuesdays, 9:00 AM – 10:30 AM
} TA hours/locations can be found on class site
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