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Class #07:  
Logistic Regression

Machine Learning (COMP 135):  M. Allen, 10 Feb. 20
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Reminder: Threshold Functions
1. We have data-points with n features:

2. We have a linear function defined by n+1 weights:

3. We can write this linear function as:

4. We can then find the linear boundary, where:

5. And use it to define our threshold between classes:
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x = (x1, x2, . . . , xn)

w = (w0, w1, w2, . . . , wn)

w · x

w · x = 0

hw =

(
1 w · x � 0

0 w · x < 0

Outputs 1 and 0 here are 
arbitrary labels for one 
of two possible classes
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Hard Thresholds are Hard!
} The hard threshold function used by 

the perceptron algorithm (among 
others) produces some conceptual 
and mathematical challenges

} Gives a yes/no answer everywhere, 
which can be tricky when our data 
isn’t linearly separable
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hw =

(
1 w · x � 0

0 w · x < 0
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Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).

Function is 
discontinuous 

(non-differentiable) 
at x = 0
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The Logistic Function
} We can generate a smooth curve 

by instead using the logistic
function as a threshold

} We can treat this value as a 
probability of belonging to one 
class or another
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hw(x) =
1

1 + e�w·x
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Probability function 
is 0.5 at x = 0
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Using the Logistic for Classification
} Treated as a probability, the logistic 

can still be used to classify data, 
where the class is the one that has 
highest probability overall, while 
also supplying a probability for that 
outcome
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hw(x) =
1

1 + e�w·x
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A “coin flip” where 
we have x = 0
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Issues with Linear Classification
} Consider data about 

heart-attack risk, based 
upon body mass index 
(BMI) and blood 
pressure (BP)

} Even assuming linearly 
separable training data, 
linear classification gives 
a hard cut-off that may 
not be appropriate
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BMI

B P

heart attack

no heart attack

6

Issues with Linear Classification
} Given that multiple

possible lines can 
separate this data, how 
do we classify a new 
instance when it lies in 
the region between the 
training instances?
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BMI

BP

heart attack

no heart attack

don’t know?
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Issues with Linear Classification
} Even if we did settle on 

some fixed line, what do 
we do with something 
that is very close to the 
separator?
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BMI

B P

heart attack

no heart attack

don’t know?
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Using Probabilistic Classification
} Logistic regression also 

generates a linear 
separator (where the 
weight-function = 0), but 
now it is giving us a 
distribution over data

} A new data point close 
to the line still has some 
positive probability of 
being in the class on the 
other side of it
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BMI

BP

heart attack

no heart attack

don’t know?

less likely

more likely

9

Properties of the Logistic Function
} Also known as the Sigmoid, 

from the shape of its plot
} It always has a value in range: 

0 ≤ x ≤ 1

} The function is everywhere
differentiable, and has a 
derivative that is easy to 
calculate, which turns out to 
be useful for learning:
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hw(x) =
1

1 + e�w·x
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h0
w(x) = hw(x)(1� hw(x))
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Logistic Regression
} In perceptron learning we update the weight vector in each case 

based upon a mis-classified instance, using the equation:

} In the case of the logistic, we do the same, but add an extra term:
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wj  wj + ↵(yi � hw(xi))⇥ xi,j

wj  wj + ↵(yi � hw(xi))⇥ hw(xi)(1� hw(xi))⇥ xi,j

The difference between what 
output should be, and what our 

weights make it

The derivative of the logistic

The j th
feature-value
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Applying the Logistic

} When we have data that is not linearly separable, our hard threshold 
still has to make a hard decision

} With the logistic, we get a smooth surface where things close to the 
boundary between classes are only probably in one or the other
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Figure 18.15 FILES: . (a) Plot of two seismic data parameters, body wave magnitude x1 and surface
wave magnitude x2, for earthquakes (white circles) and nuclear explosions (black circles) occurring
between 1982 and 1990 in Asia and the Middle East (?). Also shown is a decision boundary between
the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer
linearly separable.
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Image source: Russel & Norvig, AI:  A Modern Approach (Prentice Hal, 2010)
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Gradient Descent for Logistic Regression
} We can use the same approach as for linear classification,  starting 

with some random (or uniform) weights and then:

1. Choose an input xi from our data set that is wrongly classified.
2. Update vector of weights,                                           :

3. Repeat until weights no longer change; modify learning parameter 𝛼 over 
time to guarantee this.

} Again, we make 𝛼 smaller and smaller over time, and the 
algorithm converges as 
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w = (w0, w1, w2, . . . , wn)

↵ ! 0

wj  wj + ↵(yi � hw(xi))⇥ hw(xi)(1� hw(xi))⇥ xi,j
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Gradient Descent for Logistic Regression

} The logistic update equation, via gradient descent, minimizes the log 
loss (as seen in last lecture), also known as the binary cross entropy: 

} For these purposes, we treat the output of the logistic as the probability we 
are interested in:

} Over time, we drive the loss towards 0
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wj  wj + ↵(yi � hw(xi))⇥ hw(xi)(1� hw(xi))⇥ xi,j

L = � 1

N

NX

i=1

yi log pi + (1� yi) log(1� pi)
<latexit sha1_base64="fkfezScpB9t5NCUF0IMiSW9DpUY="></latexit>

pi , hw(xi)
<latexit sha1_base64="vE0xia06mz/33Yn6QStdFWIVjC0=">AAACDnicZVDLTgIxFO3gC/E16tJNAzHRaMgMLnRJdOMSEwEThkw6nQ40dtqxcwclhG/Qhb+iO2Xryj1/YwFdICdpcnJ6H+eeIBE8BccZW7ml5ZXVtfx6YWNza3vH3t1rpCrTlNWpEkrfBSRlgktWBw6C3SWakTgQrBncX03+mz2mU67kLfQT1o5JR/KIUwJG8u3jxOfYA82J7Aj2gLu+FxPoBtHgcXj0R5+GPj/27ZJTdqbAi8T9JaVq0Tt5HVf7Nd/+9kJFs5hJoIKkact1EmgPiAZOBRsWvCxlCaH3pMMG00OG+NBIIY6UNk8CnqpzdVLB1PhcdyuD6KI94DLJgEk6GxNlAoPCk5txyDWjIPqGEKq52Y9pl2hCwSQzN0lngoWnuDeJMzReRUeZ+m5cMX5NAO7/cxdJo1J2z8qVG5PEJZohjw5QER0hF52jKrpGNVRHFD2jN/SJRtaL9W59WKNZac767dlHc7C+fgAPRJ/a</latexit>
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Logarithmic Loss vs. Error

} This graph assumes:
1. True label is 1
2. Threshold used is 0.5 

(i.e., hw = 1 if probability 
assigned is p ≥ 0.5)

3. Log base 2 is used
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E(hw(xi), yi) =

(
0 if hw(xi) = yi
1 if hw(xi) 6= yi

L(hw(xi), yi) = �[yi log hw(xi) + (1� yi) log(1� hw(xi))]
<latexit sha1_base64="cAlaRql5jvDuf1AIQ91Ji8NtkBQ="></latexit>

1/0

log

} For an individual data element, the log loss is an upper bound on a 
threshold-based (1/0) loss:
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Linear Regression Logistic Regression

A value x ∈ ℝ A value 0 ≤ x ≤ 1

A hard boundary between 
classes on either side of a 

line

Probability of belonging 
to a certain class

Tries to find line that
best fits to the data

Tries to find separator that 
best divides the classes 

Linear vs. Logistic Regression 
for Classification Purposes
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Logistic

Loss function

Weight-update equation

Linear vs. Logistic Regression 
in Mathematical Terms
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Linear

Loss function

Weight-update equation

Loss(w) =
NX

j=1

(yj � hw(xj))
2

wi  wi + ↵
X

j

xj,i (yj � hw(xj))

� 1

N

NX

j=1

[yj log hw(xj) + (1� yj) log(1� hw(xj))]

wj  wj + ↵(yj � hw(xj))

⇥ hw(xj)(1� hw(xj))⇥ xi,j
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Another Approach: ADALINE classifiers
} Rather than a perceptron or logistic approach, what if we 

tried to use linear regression itself to build a classifier?
} For two classes, we could:

1. Label data using two class-labels, y 𝜖 {+1, –1}
2. Fit a linear regression to this data using squared loss (now 

measured as the difference between the linear value and the 
class-label, not some other real number) and the same 
weight-updates as before

3. Classify data based upon whether the resulting linear 
function is ≥ 0 (in which case it is assigned +1) or not (–1)

} This is known as a least-squares or ADALINE (Adaptive
Linear Neuron) classifier
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Treatment of Outliers in Data

} Logistic regression (green) and 
ADALINE (magenta) give similar 
results on some data

} The ADALINE is skewed by 
outliers, however, as loss function 
sees them as “too correct”
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Images from: C. Bishop, 
Pattern Recognition and 

Machine Learning. 
Springer (2006).
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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reduction. Consider first the case of two classes, and suppose we take the D-

ADALINE

logistic

19

Classifier Performance

} ADALINE has trouble separating data in 
some cases

} The green (+) data are almost all 
incorrect for this 2-line regression

} Logistic regression (again with 2 distinct 
lines of separation, using 2 different 
regressions) performs well on same data
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Images from: C. Bishop, 
Pattern Recognition and 

Machine Learning. 
Springer (2006).
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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History of the Logistic (1838–1847)
} The logistic function and its name 

come from three papers by 
Pierre François Verhulst (right), a 
statistician and student of 
Alphonse Quételet (left)

} They were interested in modeling 
human population growth, which 
will tend to grow exponentially 
unless checked, but has an upper 
bound (equilibrium) at which it 
maxes out and stops growing
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} The Sigmoid curve was a good fit for real population data 
for France, Belgium, and Russia up to the year 1833
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History of the Logistic (20th C.)
} The logistic was re-discovered by 

Raymond Pearl (left) and Lowell Reed 
(right) in the 1920’s

} They later discovered Verhulst’s earlier 
work, and credited him, but his logistic 
terminology didn’t really catch on until the 
work of others, after WWII

} Pearl and collaborators went on to apply 
the logistic curve to models of human and 
fruit fly populations, as well as to the 
growth of cantaloupes
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} In the 40’s and 50’s, statisticians working to model bioassay (effects of medicines and 
other substances on living tissues) popularized the use of the logistic and its name

} Due to computational  conveniences, this became more popular than other models

22

This Week
} Logistic regression; decision trees

} Readings: 
} Book excerpts (online texts)

} Linked from class schedule

} Assignment 02:  due Wednesday, 12 Feb. (9:00 AM)

} Office Hours:  237 Halligan
} Monday, 10:30 AM – Noon
} Tuesday, 9:00 AM – 10:30 AM
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