
1

Class #10:
Feature Engineering

Machine Learning (COMP 135): M. Allen, 20 Feb. 20

1

Feature Engineering
} As we saw with polynomial regression, we often want to
transform our data in order to get better results from a
machine learning algorithm

} We often get better results by:
1. Changing how features are represented.
2. Adding new features.
3. Deleting/ignoring some features.

Thursday, 20 Feb. 2020 Machine Learning (COMP 135) 2

2

Example: Higher-Order Polynomial Features

Discussion: The results show that the mean squared error (MSE) decreases steadily as the degree of the
polynomial increases. These increases are most significant at first, and then slow down, showing that the
higher-degree polynomial functions are not that much better, once we get past degree 3.

1.2 Discuss the results seen in the plots above

2. k-fold cross-validation

} As seen in Assignment 02,
transforming data by
mapping to higher-degree
polynomials, and then
fitting a linear regression,
can reduce error
} Gains are most significant

at first, and then error
starts to level off

Thursday, 20 Feb. 2020 Machine Learning (COMP 135) 3

3

The Cost of Feature Transformation

} Not every transformation is as useful as others
} The polynomial degrees above 3 from previous slide also start to show some

evidence of over-fitting, as revealed by cross-validation

Thursday, 20 Feb. 2020 Machine Learning (COMP 135) 4

Errors for each polynomial degree (train, test):
 1. 6.978 7.441
 2. 2.246 2.626
 3. 0.472 0.558
 4. 0.470 0.575
 5. 0.464 0.575
 6. 0.462 0.587
10. 0.457 0.625
11. 0.453 0.655
12. 0.452 0.663

Discussion: The results show that the model is best at degree 3; at that point, both training and test error are
close to minimal values. Before that point, the models underfit, with higher MSE. After that point, while training
error decreases slightly, the testing error starts to increase as the model starts to overfit.

Results are generated and plotted (as for part 1), for the higher polynomial degrees $d = {15, 17, 19, 21, 25,
30, 35, 40, 50}$.

higher_poly = [15, 17, 19, 21, 25, 30, 35, 40, 50]
prediction_list, error_list = test_polynomials(higher_poly)
plot_predictions(higher_poly, prediction_list, error_list)

2.3 Discuss the results seen in the plots above

3. Higher-order polynomials

3.1 Plot a grid of prediction results/errors for the higher-order polynomials

4

2

The Cost of Feature Transformation

Discussion: The results show that the higher-order polynomials do an increasingly worse job of fitting to the
data. Larger and larger regions of the prediction line are constant and incorrect, and while the model tries to fit
the higher range of values, the overall error grows considerably.

This reveals a limitation of the implementation of the polynomial regression models and algorithms. While
mathematically we would expect that higher-order polynomials only fit the data even better (with massive

3.2 Discuss the results seen in the plots above

} Not every transformation
is useful—at very high
polynomials, some of the
mathematics of the linear
regression libraries in
sklearn break down
} Mathematically, we expect

better and better fits
} In practice, the method

ceases working effectively,
and models are generally
useless

Thursday, 20 Feb. 2020 Machine Learning (COMP 135) 5

5

Feature Rescaling

Input: Each numeric feature has arbitrary min/max
} Some in [0, 1], Some in [-5, 5], Some [-3333, -2222]

Transformed feature vector
} Set each feature value f to have [0, 1] range

} min_f = minimum observed in training set
} max_f = maximum observed in training set

6Machine Learning (COMP 135)

�(xn)f =
xnf �minf
maxf �minf

Thursday, 20 Feb. 2020

6

Input: Each feature is numeric, has arbitrary scale

Transformed feature vector
• Set each feature value f to have zero mean, unit variance

Empirical mean observed in training set

Empirical standard deviation observed in training set

Feature Standardization

�(xn)f =
xnf � µf

�f

7Machine Learning (COMP 135)

µf

�f

Thursday, 20 Feb. 2020

7

Feature Standardization

} Treats each feature as “Normal(0, 1)”
} Typical range will be -3 to +3

} If original data is approximately normal

} Also called z-score transform

8Machine Learning (COMP 135)

�(xn)f =
xnf � µf

�f

Thursday, 20 Feb. 2020

8

3

Best Subset Selection

} Main issue: too many subsets
} There are O(2p) such collections of features
} For problems with large feature-sets, this grows quickly infeasible

9Machine Learning (COMP 135)Thursday, 20 Feb. 2020

9

Forward Stepwise Selection
1. Start with zero feature model (guess mean)

} Store as M_0

2. Add best scoring single feature (among all F)
} Store as M_1

3. For each size k = 2, … F
} Try each possible not-included feature (F – k + 1)
} Add best scoring feature to the model M_k-1
} Store as M_k

4. Pick best among M_0, M_1, … M_F,
based upon the validation data

10Machine Learning (COMP 135)Thursday, 20 Feb. 2020

10

Best vs Forward Stepwise

11Machine Learning (COMP 135)

Easy to find cases where forward stepwise ‘s
greedy approach doesn’t deliver best possible

subset.
Thursday, 20 Feb. 2020

11

Backwards Stepwise Selection
The basic forward model can also be run backwards:
1. Start with all features
2. Gradually test all models with one feature removed

from each
3. Repeat to remove 2, 3, … features, down to single-

feature versions

12Machine Learning (COMP 135)Thursday, 20 Feb. 2020

12

4

Next Week
} Special schedule: Class Wednesday & Thursday

} Topics: Clustering methods
} Readings linked from class schedule page

} Assignments:
} Homework 03: due Wednesday, 26 Feb., 9:00 AM

} Logistic regression & decision trees
} Project 01: due Monday, 09 March, 5:00 PM

} Feature engineering and classification for image data
} Midterm Exam: Wednesday, 11 March

} Office Hours: 237 Halligan
} Monday, 10:30 AM – Noon
} Tuesday, 9:00 AM – 1:00 PM
} TA hours can be found on class website

Thursday, 20 Feb. 2020 Machine Learning (COMP 135) 13

13

