

1

Non-Parametric Learning Methods

- In a parametric process, once the learning is done, the weight parameters are saved, and we are effectively done
- We can throw out training data, and just record weights
- Not every problem has this feature: in some, learning is always continuing, and is based on all examples so far
- These non-parametric methods have no fixed set of weights (or other numbers) to memorize
- As data continues to come in, we continue to adjust the model, in the middle of our classification task
> Monday, 24 Feb. 202 Machine Learning (COMP 135)

Parametric Learning Methods

- So far, the linear regression/classification methods we have seen are parametric
- Each method assumes that there is some fixed set of weights that is to be learned:

1. Linear weights in linear/logistic regression/classification:

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
$$

2. Non-linear weights in polynomial regression
$w_{0}+w_{1} x_{1}+w_{2} x_{1}^{2}+\cdots+w_{2 n-1} x_{n}+w_{2 n} x_{n}^{2}$

Monday, 24 Feb. 2020
Machine Learning (COMP 135)

2
2

Clustering Problems

- The other techniques we have seen are all supervised
b We have training data for which we know the appropriate output, and minimize some loss function based on this
- In many cases, we want to work with unlabeled data
- We want to take data and group them together
" Data should end up in a group with other "similar" data
- We want to find clusters, without knowing the correct answer ahead of time
- This requires us to give precise meaning to similarity
- We also need efficient ways to do the grouping
- Monday, 24 Feb. 2020

Machine Learning (COMP 135)
4

4

Examples of Clustering

- One use of clustering might be for document processing
, We have many, many different documents in a database
, We want to organize them into groups based on subject matter
- We don't know what the different subjects are ahead of time
- Monday, 24 Feb. 202

Machine Learning (COMP 135)
5

- One idea: classify inputs so any input x has same class as its k nearest neighbors
- Depending upon the size of k, we may get over-fitting
- We can do techniques similar to those for linear regression to figure out what the best value of k might be
- Monday, 24 Feb. 2020

Machine Learning (COMP 135)

Examples of Clustering

- Another use of clustering might be for image processing
- We have many, many different images of flowers
- We want to organize them into groups of specific flowers
- We don't know what the different flowers are ahead of time
- Monday, 24 Feb. 2020

Machine Learning (COMP 135)
6
6

Nearest Neighbor Models

Here, the classes are set so that each point is in the same set as its nearest single neighbor.
This is very likely to be over-fitting on data. New inputs will often end up in the wrong class in the future due to the odd contours of the boundary between classes.

Monday, 24 Feb. 2020
Here, the classes for each point in the problem space is set to have the same class as the majority of its nearest 5 neighbors.
Using more neighbors likely to under-fit data Obviously, if we use value $k=N$ (the total number of examples), then we just lump everything into a single category.

$$
\text { Machine Learning (COMP 135) } 8
$$

8

Measuring Distance between Neighbors

- Suppose we have two inputs, each with n features

$$
\begin{aligned}
& \mathbf{x}_{i}=\left\langle x_{i, 1}, x_{i, 2}, \ldots, x_{i, n}\right\rangle \\
& \mathbf{x}_{j}=\left\langle x_{j, 1}, x_{j, 2}, \ldots, x_{j, n}\right\rangle
\end{aligned}
$$

- Each can be regarded as a point in an n-dimensional space

We can measure the distance between those points using the Minkowski distance (aka L^{p} norm):

$$
L^{p}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\sum_{k=1}^{n}\left|x_{i, k}-x_{j, k}\right|^{p}\right)^{1 / p}
$$

t This works best if we normalize each dimension $x_{i, n}$

- Monday, 24 Feb. 202

Machine Learning (COMP 135)
9

Geometrical Distance Metrics

$$
L^{p}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\sum_{k=1}^{n}\left|x_{i, k}-x_{j, k}\right|^{p}\right)^{1 / p}
$$

- Minkowski distance extends certain intuitive distance numbers to different numbers of dimensions, n
- Depending upon the power, p, we get different measures
- When $p=2$, this is the Euclidean Distance:

$$
L^{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\sum_{k=1}^{n}\left|x_{i, k}-x_{j, k}\right|^{2}}
$$

- In a two dimensional (x, y) space this is:

$$
\sqrt{\left|x_{i}-x_{j}\right|^{2}+\left|y_{i}-y_{j}\right|^{2}}
$$

- Monday, 24 Feb. 2020

Machine Learning (COMP 135) 1

Geometrical Distance Metrics

$$
L^{p}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\sum_{k=1}^{n}\left|x_{i, k}-x_{j, k}\right|^{p}\right)^{1 / p}
$$

The Minkowski distance extends certain intuitive distance numbers to different numbers of dimensions, n

- Depending upon the power, p, we get different measures
- When $p=1$, this is the Manhattan Distance:

$$
L^{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{k=1}^{n}\left|x_{i, k}-x_{j, k}\right|
$$

- In a two dimensional (x, y) space this is:

$$
\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|
$$

- Monday, 24 Feb. 2020

Machine Learning (COMP 135) 10

10

Comparative Distance Metrics

$$
\sqrt{\left|x_{i}-x_{j}\right|^{2}+\left|y_{i}-y_{j}\right|^{2}}
$$

- The Euclidean distance can be extended to 3 or more dimensions
- Computationally, we can actually make
 our lives somewhat easier...
- To do clustering, we only care about relative distances
- Doesn't matter what the actual distance is
p We really only care about which things are closest together
, This means we can skip the square root computation entirely

Monday, 24 Feb. 2020
Machine Learning (COMP 135) 12
12

Finding Nearest Neighbors

- Naïve implementations of these measures can be problematic
- For n dimensions each comparison of two points requires $\mathrm{O}(n)$ operations, which is often reasonable
- However, the classifications work best when we have large amounts of data, relative to the number of dimensions
- Ideally, we have $\mathrm{O}\left(2^{n}\right)$ input points
- Much smaller numbers tend to lead to poor classifications, due to large numbers of outliers
- However, if we simply compare all pairs of points, we have $\mathrm{O}\left(|X|^{2}\right)$ such operations, where $|X|$ is full size of data-set , This can be much too cumbersome for large data-sets

K-D Trees: Efficient Neighbor Calculation

inputs: $X=\left\{\mathbf{x}_{1} \ldots, \mathbf{x}_{m}\right\}$, a set of n-dimensional data-points, and depth d
local variables: $S \geq 1$, a pre-set size limit for sets
if $|X| \leq S$
return : $\operatorname{Node}(X)$, a tree-node containing all elements of X
else :
(the dimensior for spitting inputs)
$n_{\delta} \leftarrow$ the median for dimension δ in X
 $\subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{j}>m_{\delta}$ for dimension $\mathrm{N}^{\circ} \leftarrow \operatorname{Node}\left(m_{\delta}\right)$, a tree-node containing median-value m_{δ} $\mathbf{N}_{\text {left }}^{\circ} \leftarrow \operatorname{Bulld}-\operatorname{Tree}\left(X^{-}, d+1\right)$ $\mathbf{N}_{\text {right }}^{\circ} \leftarrow \operatorname{Buldd-Tree}\left(X^{+}, d+1\right)$ return : ${ }^{\circ}$

- Input parameter d sets the feature we use to divide data into separate subsets
- We cycle through these features: $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_{n} \rightarrow x_{1} \rightarrow \cdots$
- Monday, 24 Feb. 202

Machine Learning (COMP 135) 15

KD-Trees: Efficient Neighbor Calculation

function $\operatorname{Buld}-\operatorname{TreE}(X, d)$ returns a tree
inputs: $X=\left\{\mathbf{x}_{1} \ldots, \quad \mathbf{x}_{1}\right\}$, a set of n-dimensional data-points, and depth local variables: $S>1$, a pre-set size limit for sets
if $|X| \leq S$
return : Node (X), a free-node conting al elements of X
else
$\delta \leftarrow(d \bmod n)+1 \quad$ (the dimension for splitting inputs) $m_{\delta} \leftarrow$ the median for dimension δ in X
$X^{-} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{i} \leq m_{\delta}$ for dimension $X^{+} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{j}>m_{\delta}$ for dimension
$\mathrm{N}^{\circ} \leftarrow \operatorname{Node}\left(m_{\delta}\right)$, a tree-node containing median-value m_{δ} $\mathbf{N}_{\text {ieft }}^{\circ} \leftarrow \operatorname{Bulld}-\operatorname{Tree}\left(X^{-}, d+1\right)$ $\mathbf{N}_{\text {right }}^{\mathrm{o}} \leftarrow \operatorname{Buld-\operatorname {Tree}(}\left(X^{+}, d+1\right)$ return : ${ }^{\circ}$
We can build a data-structure to search for nearest neighbors efficiently

- A recursive algorithm, called on original data set, X :

$$
\text { Monday, } 24 \text { Feb. } 2020 \quad \text { Machine Learning (COMP 135) } 14
$$

14

K-D Trees: Efficient Neighbor Calculation

function $\operatorname{Buld-TreE}(X, d)$ returns a tre
inputs: $X=\left\{\mathbf{x}_{1} \ldots, \mathbf{x}_{m}\right\}$, a set of n-dimensional data-points, and depth local variables: $S>1$, a pre-set size limit for sets
if $|X| \leq S$
return : $\operatorname{Node}(X)$, a tree-node containing all elements of X
else:
$\delta \leftarrow(d \bmod n)+1 \quad$ (the dimension for splitting inputs) $n_{\delta} \leftarrow$ the median for dimension δ in X
$X^{-} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{i} \leq m_{\delta}$ for dimension δ Data divides along $X^{+} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{j}>m_{\delta}$ for dimension δ the chosen feature $\mathrm{N}^{\circ} \leftarrow$ Node $\left(m_{s}\right)$ a tree-node containing median-value m_{δ} $\mathbf{N}_{\text {left }}^{\circ} \leftarrow \operatorname{Bulld}-\operatorname{TreE}\left(X^{-}, d+1\right)$ $\mathbf{N}_{\text {right }}^{\circ} \leftarrow \operatorname{Buld-Tree}\left(X^{+}, d+1\right)$ return : ${ }^{\circ}$
. Once a feature is chosen, we find the median value for that feature, and divide all data in two at that median point

Monday, 24 Feb. 2020
Machine Learning (COMP 135) 16
16

K-D Trees: Efficient Neighbor Calculation

function Buld-Tree (X, d) returns a tree
inputs: $X=\left\{\mathbf{x}_{1} \ldots, \mathbf{x}_{m}\right\}$, a set of n-dimensional data-points, and depth d local variables: $S>1$, a pre-set size limit for sets
if $|X| \leq S$

else :
$\delta \leftarrow(d \bmod n)+1 \quad$ (the dimension for splitting inputs)
$n_{\delta} \leftarrow$ the median for dimension δ in X
$X^{-} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{i} \leq m_{\delta}$ for dimension δ $X^{+} \subseteq X \leftarrow$ the set of all data-points $\mathbf{x}_{j}>m_{\delta}$ for dimension δ $\mathrm{N}^{\circ} \leftarrow \operatorname{Node}\left(m_{\delta}\right)$, a tree-node containing median-value m_{δ} $\mathbf{N}_{\text {left }}^{\circ} \leftarrow \operatorname{Build}-\operatorname{Tree}\left(X^{-}, d+1\right.$ $\mathbf{N}_{\text {right }}^{\circ} \leftarrow \operatorname{Bulld}-\operatorname{TrEE}\left(X^{+}, d+1\right)$ return : ${ }^{\circ}$

Recursively builds a binary tree, with sub-tree roots each containing a median valu
Recursion terminates whenever we hit a pre-determined minimum data-set size
Recursion terminates whenever we hit a pre-determined minimum data-set size
Monday, 24 Feb. $2020 \quad$ Machine Learning (COMP 135) 17
17

A 2-Dimensional Example

- We then split each group along y-dimension median separately

- We repeat on the other branch, and continue in each case, splitting again on dimensions x, y, x, y, x, y, \ldots
- Monday, 24 Feb. 2020

Machine Learning (COMP 135) 19

A 2-Dimensional Example

- We start with a set of 2-dimensional data-points, $p_{i}=\left(x_{i}, y_{i}\right)$

- Split along x-dimension median to start building our tree

- Monday, 24 Feb. 2020

Machine Learning (COMP 135)
18
18

A 2-Dimensional Example

- We stop when we have small enough subsets, each of which is stored in and represented by a leaf-node of our tree
- Interior nodes store median values
- Monday, 24 Feb. 2020

A 2-Dimensional Example

- Interior nodes store median values
- Each node (leaf or interior) also stores information about the least (tightest) bounding box of all points below it in its sub-tree
- Monday, 24 Feb. 2020

Machine Learning (COMP 135) 2
21

Querying the Tree for the Nearest Neighbor Split on:

- Once we have found the proper subset, we measure all distances within it
- The closest neighbor may be in this set, but it may not

Monday, 24 Feb. 202
Machine Learning (COMP 135) 23

Querying the Tree for the Nearest Neighbor

- Suppose we want to find the nearest neighbor of a new data-point (red)
- We start by isolating what sub-set it belongs to, following branches according to the median values (like a binary search tree)

Monday, 24 Feb. 2020
Machine Learning (COMP 135)
22

22

Querying the Tree for the Nearest Neighbor

- We need to check any data-point that could be closer to our new point
- The tree helps us here, as we can do some pruning as we go backwards up the tree towards the root
- Monday, 24 Feb. 2020

Machine Learning (COMP 135)

24

Querying the Tree for the Nearest Neighbor

- As we back-track up the tree, we check any branch where the stored bounding box intersects our current bounds
- Monday, 24 Feb. 202

Machine Learning (COMP 135)
25

Querying the Tree for the Nearest Neighbor

- When we see a sub-tree with a bounding box that does not intersect our current bound, we can ignore it, saving time overall
- Monday, 24 Feb. 2020

Machine Learning (COMP 135)
27

Querying the Tree for the Nearest Neighbor

- When this happens, we compute distances to all required nodes, and update distance measure if necessary
- Monday, 24 Feb. 2020
Machine Learning (COMP 135)

26
26

Querying the Tree for the Nearest Neighbor

- When we see a sub-tree with a bounding box that does not intersect our current bound, we can ignore it, saving time overall
- Once we are at the root, we have found the overall nearest neighbor
- Monday, 24 Feb. 2020

Machine Learning (COMP 135) 2

28

Querying the Tree for the Nearest Neighbor

The data-structure may allow us to prune off large numbers of nodes, restricting those that we need to measure distance from new point

- Although it is possible that we still have to do $\mathrm{O}(\mathrm{N})$ comparisons, under many distributions of data-points, we get $\mathrm{O}(\log \mathrm{N})$, significantly speeding up our algorithm for classification
- Monday, 24 Feb. 202

Machine Learning (COMP 135)

Uses of Nearest Neighbors

- Once we have found the k-nearest neighbors of a point, we can use this information:
I. In and of itself: sometimes we just want to know what those nearest neighbors actually are (items that are similar to a given piece of data)

2. For additional classification purposes: we want to find the nearest neighbors in a set of already-classified data, and then use those neighbors to classify new data
3. For regression purposes: we want to find the nearest neighbors in a set of points for which we already know a functional (scalar) output, and then use those outputs to generate the output for some new data

K-D Trees for k-Nearest Neighbors

- If what we want is not the single nearest neighbor point, but some set of k such points (for better classification), the exact same approach can be used
- Works the same way, but the distance measure is set to use the full set of neighbors (i.e., distance to farthest one of the k nearest)

Monday, 24 Feb. 2020

This Week

- Topics: Clustering (nearest-neighbor) methods
- Readings linked from class schedule page

Assignments:

, Homework 03: due Wednesday, 26 Feb., 9:00 AM
Logistic regression \& decision treesx

- Project 01: due Monday, 09 March, 5:00 PM
, Feature engineering and classification for image data
, Midterm Exam:Wednesday, II March
- Office Hours: 237 Halligan
, Monday, 10:30 AM - Noon
, Tuesday, 9:00 AM - 1:00 PM
TA hours can be found on class website

