

Uses of Nearest Neighbors

- Once we have found the k-nearest neighbors of a point, we can use this information:
- In and of itself: sometimes we just want to know what those nearest neighbors actually are (items that are similar to a given piece of data)
- 2. For additional classification purposes: we want to find the nearest neighbors in a set of *already-classified* data, and then use those neighbors to classify new data
- 3. For regression purposes: we want to find the nearest neighbors in a set of points for which we already know a functional (scalar) output, and then use those outputs to generate the output for some new data

Wednesday, 26 Feb. 2020

```
Machine Learning (COMP 135) 2
```


The inverse document frequence	v of word <i>w</i> :	
File inverse document in equence		
$id(w) = \log \frac{1}{1+ \{z\} }$	$\overline{x \in X \mid w \in x\} }$	
 Suppose we have 1,000 docum the occurs in every single one of 1 	ents ($ X = 1000$), and the w of them:	vord
$id(the) = \log \frac{1}{1}$	$\frac{300}{001} \approx -0.001442$	
 Conversely, if the word banane 	a only appears in 10 of them:	
id(banana) = 1	$\log \frac{1000}{10} \approx 6.644$	
 Thus, when calculating normalize treated as being about 4,600 tim If we threshold <i>id</i> (<i>w</i>) to a minimize combletely innere words that are 	ed word-counts, <i>banana</i> gets les more important than <i>the</i> ! um of 0 (never negative) we then an every document	

