
1

Class #12:
Applications of
Nearest-Neighbors Clustering

Machine Learning (COMP 135): M. Allen, 26 Feb. 20

1

Uses of Nearest Neighbors
} Once we have found the k-nearest neighbors of a point,

we can use this information:
1. In and of itself: sometimes we just want to know what

those nearest neighbors actually are (items that are
similar to a given piece of data)

2. For additional classification purposes: we want to
find the nearest neighbors in a set of already-classified
data, and then use those neighbors to classify new data

3. For regression purposes: we want to find the nearest
neighbors in a set of points for which we already know a
functional (scalar) output, and then use those outputs to
generate the output for some new data

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 2

2

Measuring Distances for
Document Clustering & Retrieval

} Suppose we want to rank documents in a data-base or on the web
based on how similar they are
} We want a distance measurement that relates them
} We can do a nearest-neighbor query for any article to get a set of those

that are the closest (and most similar)
} Searching for additional information based on a given document is

equivalent to finding its nearest neighbors in the set of all document

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 3

3

The “Bag of Words” Document Model
} Suppose we have a set of documents X = {x1, x2,…, xn}

} Let W = {w |w is a word in some document xi}

} We can then treat each document xi as a vector of word-counts
(how many times each word occurs in the document):

Ci = {ci,1, ci,2,…, ci,|W|}
} Assuming some fixed order of the set of words W
} Not every word occurs in every document, so that some count values

may be set to 0

} As previously noted, values tend to work better for purposes of
classification if they are normalized, so we set each value to be
between 0 and 1 by dividing on largest count seen for any word in
any document:

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 4

ci,j
ci,j

maxk,m ck,m

4

2

Distances between Words
} We can now compute the distance function between any

two documents (here we use the Euclidean):

} We could then build a KD-Tree, using the vectors of
words as our dimension values, and query for some set of
most similar documents to any document we start with

} Problem: word counts turn out to be a lousy metric!
} Common every-day words dominate the counts, making most

documents appear quite similar, and making retrieval poor

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 5

d(xi, xj) =

vuut
|W |X

k=1

(ci,k � cj,k)2

5

Better Measures of Document Similarity
} We want to emphasize rare words over common ones:
1. Define word frequency: t(w,x) as the (normalized) count of occurrences of word

w in document x

2. Define inverse document frequency of word w :

3. Use combined measure for each word and document:

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 6

id(w) = log
|X|

1 + |{x 2 X |w 2 x}|

tid(w, x) = t(w, x)⇥ id(w)

Total # of
documents

that contain
word w

cx(w) = # times word w occurs in document x

c?x = max
w2W

cx(w)

t(w, x) =
cx(w)

c?x
<latexit sha1_base64="9AlSyY3dNL6afTRkAF6okxiuCqU=">AAACiHicZVFNa9wwEJXdr8T92rTHXIbutmwhbG03kORQCMmlxxS62UC8GK0sb0Rky0jj2MH41/T/9J5/E63XPbgZkBhG772ZeVoVUhj0/QfHffb8xctXO7ve6zdv370f7X24NKrUjM+ZkkpfrajhUuR8jgIlvyo0p9lK8sXq9nzzvrjj2giV/8b7gi8zus5FKhhFW4pHf1hcT6uv8OUHRMhrbKIxoMi4gUrpBCbVBBRjpTYgckgUKzOeI0zqSQtR5EW6lLzxC2ybILS3xyKDOq47uYzWcVNBZImLFvo+Q1LYkXBaHdTbEVJNWbOFtk0v1sajsT/zu4CnSdAnY9LHRTz6G/0blUlqzHVguy0bqlEwyVsvKg0vKLula950Frbw2ZYSSJW2xy7YVQe4XGFn2YB9XWJ6vGxEXpTIc7aVSUsJqGDjNiRCc4by3iaUaWH7A7uhdkm0fzJQ2piSHMDd5iMTO6tcK4u/yUI7rzUg+H/dp8llOAu+z8Jfh+PTs96KHbJPPpEpCcgROSU/yQWZE+bsOt+cY+fE9VzfPXJPtlDX6TkfySDcs0dGBsDG</latexit>

6

Inverse Document Frequency
} We want to emphasize rare words over common ones:

} id (w) goes to 0 as the word w becomes more common

} tid (w,x) is highest when w occurs often in document x , but
is rare overall in the full document set

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 7

id(w) = log
|X|

1 + |{x 2 X |w 2 x}|

tid(w, x) = t(w, x)⇥ id(w)

7

An Example
} The inverse document frequency of word w :

} Suppose we have 1,000 documents (|X| = 1000), and the word
the occurs in every single one of them:

} Conversely, if the word banana only appears in 10 of them:

} Thus, when calculating normalized word-counts, banana gets
treated as being about 4,600 times more important than the !
} If we threshold id (w) to a minimum of 0 (never negative) we then

completely ignore words that are in every document

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 8

id(w) = log
|X|

1 + |{x 2 X |w 2 x}|

id(banana) = log
1000

10
⇡ 6.644

id(the) = log
1000

1001
⇡ �0.001442

8

3

Distances between Words
} Given the threshold on the inverse document frequency, the distance between two

documents is now proportional to that measure:

} Our KD-Tree can now efficiently find similar documents based upon this metric
} Mathematically, words for which frequency id (w) = 0 have no effect on the distance

} Obviously, in implementing this we can simply remove those words from word-set W in the first
place to skip useless clock-cycles…

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 9

d(xi, xj) =

vuut
|W |X

k=1

(tid(wk, xi)� tid(wk, xj))2

=

vuut
|W |X

k=1

([t(wk, xi)⇥ id(wk)]� [t(wk, xj)⇥ id(wk)])2

=

vuut
|W |X

k=1

(id(wk)⇥ [t(wk, xi)� t(wk, xj)])2

<latexit sha1_base64="RNW3oSmy0/Xtc0SYqqqhDUtdbRE=">AAADC3icnVJLb9NAEF6bVwmPpnDksiIqiqUS2Wml9lKpKheORSJNpWxqbdabdJO11+yO+5Dlf1D+DNygV67c+TesHaPW5IDESLuancf3zc7MJJXCgO//ctx79x88fLT2uPXk6bPn6+2NF8dGZZrxAVNS6ZMJNVyKhA9AgOQnqeY0nkg+nCzelf7hOddGqOQjXKV8HNNZIqaCUbCmcMPZjLqXodjCl+Hcw2/2MTGfNOTEZHGYL/aD4jQnjOooHxYF7oKIuhfhoowWHn6L77znnnfaLzAhLaIzyXM/hSLfLu/Wv1BHcAeUgIi5wUtgb2xJbt3zFXfF+V+kNcIfwEYN9mO3lBVH2O74Pb8SvKoEtdJBtRyF7Z8kUiyLeQJMUmNGga1qnFMNgkletEhmeErZgs54Xk2xwJvWFOGp0vYkgCtrIy5RUE2tkT3KYLo3zkWSZsATtoSZZhKDwuXAcSQ0ZyCvrEKZFpYfszOqKQO7Fg2ksoXRFj4vdymytcqZsvFncd/WaxsQ/P3dVeW43wu2e/0PO52Dw7oVa+gVeo26KEC76AC9R0dogJhz7Xxxvjs37mf3q/vNvVmGuk6d8xI1xP3xGzHQ8EY=</latexit>

9

Nearest-Neighbor Clustering
for Image Classification

} The STATLOG project (Michie et al., 1994): given satellite imagery of
land, predict its agricultural use for mapping purposes

} Training set: sets of images in 4 spectral bands, with actual use of
land (7 soil/crop categories) based upon manual survey

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 10

470 13. Prototypes and Nearest-Neighbors

Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4 Land Usage Predicted Land Usage

FIGURE 13.6. The first four panels are LANDSAT images for an agricultural
area in four spectral bands, depicted by heatmap shading. The remaining two
panels give the actual land usage (color coded) and the predicted land usage using
a five-nearest-neighbor rule described in the text.

first problem, while 1-nearest-neighbor is best in the second problem by a
factor of 18%. These results underline the importance of using an objective,
data-based method like cross-validation to estimate the best value of a
tuning parameter (see Figure 13.4 and Chapter 7).

13.3.2 Example: k-Nearest-Neighbors and Image Scene
Classification

The STATLOG project (Michie et al., 1994) used part of a LANDSAT
image as a benchmark for classification (82×100 pixels). Figure 13.6 shows
four heat-map images, two in the visible spectrum and two in the infrared,
for an area of agricultural land in Australia. Each pixel has a class label
from the 7-element set G = {red soil, cotton, vegetation stubble, mixture,
gray soil, damp gray soil, very damp gray soil}, determined manually by
research assistants surveying the area. The lower middle panel shows the
actual land usage, shaded by different colors to indicate the classes. The
objective is to classify the land usage at a pixel, based on the information
in the four spectral bands.

Five-nearest-neighbors produced the predicted map shown in the bot-
tom right panel, and was computed as follows. For each pixel we extracted
an 8-neighbor feature map—the pixel itself and its 8 immediate neighbors

Image source: Hastie, et al., Elements of
Statistical Learning (Springer, 2017)

10

Nearest-Neighbor Clustering
for Image Classification

} To predict the usage for a given pixel in a new image:
1. In each band, get value of a pixel and 8 adjacent, for (4 x 9) = 36 features
2. Find the 5 nearest neighbors of that feature-vector in labeled training set
3. Assign the land use class of the majority of those 5 neighbors

} Achieved test error of 9.5% with a very simple algorithm

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 11

470 13. Prototypes and Nearest-Neighbors

Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4 Land Usage Predicted Land Usage

FIGURE 13.6. The first four panels are LANDSAT images for an agricultural
area in four spectral bands, depicted by heatmap shading. The remaining two
panels give the actual land usage (color coded) and the predicted land usage using
a five-nearest-neighbor rule described in the text.

first problem, while 1-nearest-neighbor is best in the second problem by a
factor of 18%. These results underline the importance of using an objective,
data-based method like cross-validation to estimate the best value of a
tuning parameter (see Figure 13.4 and Chapter 7).

13.3.2 Example: k-Nearest-Neighbors and Image Scene
Classification

The STATLOG project (Michie et al., 1994) used part of a LANDSAT
image as a benchmark for classification (82×100 pixels). Figure 13.6 shows
four heat-map images, two in the visible spectrum and two in the infrared,
for an area of agricultural land in Australia. Each pixel has a class label
from the 7-element set G = {red soil, cotton, vegetation stubble, mixture,
gray soil, damp gray soil, very damp gray soil}, determined manually by
research assistants surveying the area. The lower middle panel shows the
actual land usage, shaded by different colors to indicate the classes. The
objective is to classify the land usage at a pixel, based on the information
in the four spectral bands.
Five-nearest-neighbors produced the predicted map shown in the bot-

tom right panel, and was computed as follows. For each pixel we extracted
an 8-neighbor feature map—the pixel itself and its 8 immediate neighbors

Image source: Hastie, et al., Elements of
Statistical Learning (Springer, 2017)

13.3 k-Nearest-Neighbor Classifiers 471

N

N

N N

X

N

N

N

N

FIGURE 13.7. A pixel and its 8-neighbor feature map.

(see Figure 13.7). This is done separately in the four spectral bands, giving
(1+8)×4 = 36 input features per pixel. Then five-nearest-neighbors classi-
fication was carried out in this 36-dimensional feature space. The resulting
test error rate was about 9.5% (see Figure 13.8). Of all the methods used
in the STATLOG project, including LVQ, CART, neural networks, linear
discriminant analysis and many others, k-nearest-neighbors performed best
on this task. Hence it is likely that the decision boundaries in IR36 are quite
irregular.

13.3.3 Invariant Metrics and Tangent Distance

In some problems, the training features are invariant under certain natural
transformations. The nearest-neighbor classifier can exploit such invari-
ances by incorporating them into the metric used to measure the distances
between objects. Here we give an example where this idea was used with
great success, and the resulting classifier outperformed all others at the
time of its development (Simard et al., 1993).

The problem is handwritten digit recognition, as discussed is Chapter 1
and Section 11.7. The inputs are grayscale images with 16 × 16 = 256
pixels; some examples are shown in Figure 13.9. At the top of Figure 13.10,
a “3” is shown, in its actual orientation (middle) and rotated 7.5◦ and 15◦

in either direction. Such rotations can often occur in real handwriting, and
it is obvious to our eye that this “3” is still a “3” after small rotations.
Hence we want our nearest-neighbor classifier to consider these two “3”s
to be close together (similar). However the 256 grayscale pixel values for a
rotated “3” will look quite different from those in the original image, and
hence the two objects can be far apart in Euclidean distance in IR256.

We wish to remove the effect of rotation in measuring distances between
two digits of the same class. Consider the set of pixel values consisting of
the original “3” and its rotated versions. This is a one-dimensional curve in
IR256, depicted by the green curve passing through the “3” in Figure 13.10.
Figure 13.11 shows a stylized version of IR256, with two images indicated by
xi and xi′ . These might be two different “3”s, for example. Through each
image we have drawn the curve of rotated versions of that image, called

11

Nearest-Neighbor Regression
} Given a data-set of various

features of abalone (sex, size,
weight, etc.), a regression
classifier predicts shellfish age

} A training set of
measurements, with real age
determined by counting rings
in the abalone shell, is
analyzed and grouped into
nearest neighbor units

} A predictor for new data is
generated according to the
average age value of neighbors

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 12

12

4

Nearest-Neighbor Regression

} Predictions for 100 points, given regression on shell length and age
} With one-nearest neighbor (left), the result has higher variability and

predictions are noisier
} With five-nearest neighbors (right), results are smoothed out over

multiple data-points
Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 13

1-nearest neighbor 5-nearest neighbors

13

Coming Up Next
} Topics: Support Vector Machines (SVMs) and kernel methods

} Readings linked from class schedule page

} Assignments:
} Project 01: due Monday, 09 March, 5:00 PM

} Feature engineering and classification for image data

} Midterm Exam: Wednesday, 11 March
} Practice exam distributed next week
} Review session in class, Monday, 09 March

} Office Hours: 237 Halligan
} Monday, 10:30 AM – Noon
} Tuesday, 9:00 AM – 1:00 PM
} TA hours can be found on class website

Wednesday, 26 Feb. 2020 Machine Learning (COMP 135) 14

14

