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Class #24: Solving MDPs 
& Reinforcement Learning

Machine Learning (COMP 135):  M. Allen, 15 Apr. 20
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Review: The Bellman Equation
} Richard Bellman (1957), working in Control Theory,  was able 

to show that the utility of any state s, given policy of action p, 
can be defined recursively in terms of the utility of any states 
we can get to from s by taking the action that p dictates:

} Furthermore, he showed how to actually calculate this value 
using an iterative dynamic programming algorithm 
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]
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Solving the Bellman Equation

} Next, we will see how to solve the general Bellman Equation for any set of 
states, probabilities, and rewards, over any time horizon

} Here, we see the solution for a grid with dynamics as follows:
} Agent policy: move randomly in one of 4 directions
} If agent hits a wall, reward is  R = -1
} All other moves are reward R = 0, except for in two special states A and B, 

where any action takes agent to A´ or B´ with reward indicated
} Discount factor (gamma) is g = 0.9
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A B

+5

+10 B´

A´

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0
Actions

Example from: Sutton & Barto, 1998
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function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s) 
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation:  given a policy, we calculate the expected value for every state 
if we follow the policy, iterating until values converge (quit changing very much)
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Note: if we set Q to

approximation error is 
at most e

" (1� �)

�
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Finding the Optimal Policy (π*)

} Before, to calculate U π(s ), 
we only looked at single 
set of actions: those given 
for each state by policy,  

} Now, we will consider all 
possible actions, taking 
the one that is the best at 
each state before we sum 
over the various 
probabilities and rewards 
in the system
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s

s’ s’ s’ s’ s’ s’

max

a1 a2 a3

EV =
X

i

pi ri

ai = ⇡(si)

5

Bellman Equations
} We have seen that the utility of any state s in a given 

policy π can be calculated iteratively:

} This same equation can be used to find the value of the 
best possible policy, simply by calculating what we get if 
we always take the best action:
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U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U?(s) = max
⇡

U⇡(s)

= max
a

X

s0

P (s, a, s0) [R(s, a, s0) + � U?(s0)]
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Solving for the Optimal Policy

} Before, we looked at the value of the purely random policy 
for this particular grid problem

} We can use the Bellman Equation to find the optimal policy 
} Here we see the optimal value function, U*, and the associated 

optimal policy, π* (where in some cases, multiple actions are all 
equally good/bad)
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A B

+5

+10 B´

A´

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

Problem domain U* p*

Example from: Sutton & Barto, 1998
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Policy Improvement
} Once we figure out the value for each state under our current 

policy, we can choose new actions

} Our choice is simple:  just set our new policy in a greedy way, 
choosing the best action available
} This choice is based on the current set of values

} Creates a new policy when we change some action
} If the policy does change, then we need to update our values again
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U⇡(s) =
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

⇡0(s) = argmax
a

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]
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Improving Policies Iteratively
} Again, a simple 

iterative algorithm:  
1. Evaluate the 

current policy.

2. Set all actions to 
best ones found 
when evaluating.

3. If the policy has 
changed, repeat.

4. When no action 
changes,  end.
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function Policy-Iteration (mdp) returns a policy

inputs: mdp, an MDP

local variables: U , a vector of utility values for states s 2 S,

⇡, a policy to be updated

8s 2 S : U(S) = 0 and ⇡(s) = a random action

repeat while changed? = true

U  Policy-Evaluation(mdp, ⇡)

changed? false

8s 2 S :

a ⇡(s)

⇡(s) argmax
a2A

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

if : ⇡(s) 6= a, then : changed? true

return ⇡
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Policy Iteration
} It can be shown that in 

time, this process will 
converge to a policy π*
with value function U*, 
that is nearly optimal

} As with policy evaluation, 
we can put bounds on the 
amount of non-optimality 
(based on the value-
update parameter D)
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U → U π

π → greedy(U )

π U

π* U*
⋮
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Learning the Value of a Policy
} The dynamic programming algorithm we have seen works 

fine if we already know everything about an MDP 
system, including:
1. Probabilities of all state-action transitions
2. Rewards we get in each case

} If we don’t have this information, how can we figure out 
the value of a policy?
} Turns out we can use a sampling method
} “Follow the policy, and see what happens”
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Next Few Weeks

} Topics: Reinforcement Learning, Wrap-Up

} Homework 04: due Monday, 13 April, 5:00 PM

} Project 02: due Monday, 27 April, 5:00 PM
} Sentiment analysis in review text
} Uses two different models of textual data

} Office Hours:
} Hours and Zoom links can be found on Piazza and Canvas
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