
1

Class #24: Solving MDPs
& Reinforcement Learning

Machine Learning (COMP 135): M. Allen, 15 Apr. 20

1

Review: The Bellman Equation
} Richard Bellman (1957), working in Control Theory, was able

to show that the utility of any state s, given policy of action p,
can be defined recursively in terms of the utility of any states
we can get to from s by taking the action that p dictates:

} Furthermore, he showed how to actually calculate this value
using an iterative dynamic programming algorithm

Wednesday, 15 Apr. 2020 Machine Learning (COMP 135) 2

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

2

Solving the Bellman Equation

} Next, we will see how to solve the general Bellman Equation for any set of
states, probabilities, and rewards, over any time horizon

} Here, we see the solution for a grid with dynamics as follows:
} Agent policy: move randomly in one of 4 directions
} If agent hits a wall, reward is R = -1
} All other moves are reward R = 0, except for in two special states A and B,

where any action takes agent to A´ or B´ with reward indicated
} Discount factor (gamma) is g = 0.9

3Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

A B

+5

+10 B´

A´

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0
Actions

Example from: Sutton & Barto, 1998

3

function Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

local variables: �, maximal amount policy values change per iteration,

⇥, a small positive constant

8s 2 S : U(S) = 0

repeat while � � ⇥

� 0

8s 2 S :

u U(s)

U(s)
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

� max(�, |U(s)� u|)

return value function U ⇡ U⇡

Evaluating a Policy Iteratively

} Policy evaluation: given a policy, we calculate the expected value for every state
if we follow the policy, iterating until values converge (quit changing very much)

4Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

Note: if we set Q to

approximation error is
at most e

" (1� �)

�

4

2

Finding the Optimal Policy (π*)

} Before, to calculate U π(s),
we only looked at single
set of actions: those given
for each state by policy,

} Now, we will consider all
possible actions, taking
the one that is the best at
each state before we sum
over the various
probabilities and rewards
in the system

5Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

s

s’ s’ s’ s’ s’ s’

max

a1 a2 a3

EV =
X

i

pi ri

ai = ⇡(si)

5

Bellman Equations
} We have seen that the utility of any state s in a given

policy π can be calculated iteratively:

} This same equation can be used to find the value of the
best possible policy, simply by calculating what we get if
we always take the best action:

Wednesday, 15 Apr. 2020 Machine Learning (COMP 135) 6

U⇡(s) =
X

s0

P (s,⇡(s), s0) [R(s,⇡(s), s0) + � U⇡(s0)]

U?(s) = max
⇡

U⇡(s)

= max
a

X

s0

P (s, a, s0) [R(s, a, s0) + � U?(s0)]

6

Solving for the Optimal Policy

} Before, we looked at the value of the purely random policy
for this particular grid problem

} We can use the Bellman Equation to find the optimal policy
} Here we see the optimal value function, U*, and the associated

optimal policy, π* (where in some cases, multiple actions are all
equally good/bad)

7Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

A B

+5

+10 B´

A´

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

Problem domain U* p*

Example from: Sutton & Barto, 1998

7

Policy Improvement
} Once we figure out the value for each state under our current

policy, we can choose new actions

} Our choice is simple: just set our new policy in a greedy way,
choosing the best action available
} This choice is based on the current set of values

} Creates a new policy when we change some action
} If the policy does change, then we need to update our values again

Wednesday, 15 Apr. 2020 Machine Learning (COMP 135) 8

U⇡(s) =
X

s0

P (s,⇡(s), s0)[R(s,⇡(s), s0) + � U(s0)]

⇡0(s) = argmax
a

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

8

3

Improving Policies Iteratively
} Again, a simple

iterative algorithm:
1. Evaluate the

current policy.

2. Set all actions to
best ones found
when evaluating.

3. If the policy has
changed, repeat.

4. When no action
changes, end.

Wednesday, 15 Apr. 2020 Machine Learning (COMP 135) 9

function Policy-Iteration (mdp) returns a policy

inputs: mdp, an MDP

local variables: U , a vector of utility values for states s 2 S,

⇡, a policy to be updated

8s 2 S : U(S) = 0 and ⇡(s) = a random action

repeat while changed? = true

U Policy-Evaluation(mdp, ⇡)

changed? false

8s 2 S :

a ⇡(s)

⇡(s) argmax
a2A

X

s0

P (s, a, s0)[R(s, a, s0) + � U(s0)]

if : ⇡(s) 6= a, then : changed? true

return ⇡

9

Policy Iteration
} It can be shown that in

time, this process will
converge to a policy π*
with value function U*,
that is nearly optimal

} As with policy evaluation,
we can put bounds on the
amount of non-optimality
(based on the value-
update parameter D)

10Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

U → U π

π → greedy(U)

π U

π* U*
⋮

10

Learning the Value of a Policy
} The dynamic programming algorithm we have seen works

fine if we already know everything about an MDP
system, including:
1. Probabilities of all state-action transitions
2. Rewards we get in each case

} If we don’t have this information, how can we figure out
the value of a policy?
} Turns out we can use a sampling method
} “Follow the policy, and see what happens”

11Wednesday, 15 Apr. 2020 Machine Learning (COMP 135)

11

Next Few Weeks

} Topics: Reinforcement Learning, Wrap-Up

} Homework 04: due Monday, 13 April, 5:00 PM

} Project 02: due Monday, 27 April, 5:00 PM
} Sentiment analysis in review text
} Uses two different models of textual data

} Office Hours:
} Hours and Zoom links can be found on Piazza and Canvas

Wednesday, 15 Apr. 2020 Machine Learning (COMP 135) 21

21

