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Class #25: 
Reinforcement Learning

Machine Learning (COMP 135):  M. Allen, 22 Apr. 20
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Learning the Value of a Policy
} The dynamic programming algorithm we have seen works 

fine if we already know everything about an MDP 
system, including:
1. Probabilities of all state-action transitions
2. Rewards we get in each case

} If we don’t have this information, how can we figure out 
the value of a policy?
} Turns out we can use a sampling method
} “Follow the policy, and see what happens”
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Temporal Difference (TD) Updates

} Agent in an MDP takes actions, sees new states and rewards
} Now, we don’t base value-update on a probability distribution

} Instead, based on the single state we actually see, over and over again, stopping whenever we 
hit a terminal condition, for some number of learning episodes

3Monday, 20 Apr. 2020 Machine Learning (COMP 135)

function TD-Policy-Evaluation(mdp, ⇡) returns a value function

inputs: mdp, an MDP, and ⇡, a policy to be evaluated

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

take action ⇡(s)

observe: next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return value function U ⇡ U⇡
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The Basic TD(0) Update

} When we make one-step update, we add one-step reward
that we get, r, plus the difference between where we start, 
U (s ), and where we end up U (s´), discounted by the 
factor g as usual

} If state where we end up s´ is better than original state s 
after discounting, then the value of s goes up

} If s´ is worse than s , the value of s goes down
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U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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The Basic TD(0) Update

} We also weight the value-update amount by another 
constant a, (less than 1), called a step-size parameter

1. If this value shrinks to 0 over time, values stop changing

2. If we do this slowly, the update will eventually converge 
to actual value of state if we follow the policy p

} For example, if we update over episodes, e = 1, 2, 3,…, we 
can set the parameter for each episode to be:
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�e =
1
e

U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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Advantages and a Problem
} With TD updates, we only update the states we actually 

see given the policy we are following
} Don’t need to know MDP dynamics
} May only have to update very few states, saving much time to 

get the values of those we actually reach under our policy

} However, this can be a source of difficulty:  we may not be 
able to find a better policy, since we don’t know values of 
states that we never happen to visit
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Exploration and Exploitation
} If we use the Dynamic Programming method, we calculate 

the value of every state
} Easy to update policy (just be greedy)
} This is exploitation:  use best values seen to choose actions

} When we are learning, however, we sometimes don’t 
know what certain states are like, because we’ve never 
actually seen them yet
} Our current policy may never get us to things we really want
} Thus, we must use exploration:  try out things even if our 

current best policy doesn’t think it’s a good idea
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Almost-Greedy Policies
} One simple way to add exploration is to use a policy 

that is mostly greedy, but not always

} An “epsilon-greedy” (e-greedy) policy sets some 
probability threshold, e, and chooses actions by:
1. Picking a random number R ∈ [0,1]
2. If R ≤ e, choosing the action at random
3. If R > e, acting in a greedy fashion (as before)
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Learning with e-greedy policies
} We can add this idea to our sampling update method
} After we take an action, and see a state-transition from s

to s´, we do the same updates as before:

} When we choose actions, we do so in an e-greedy way, 
sometimes following the policy based on learned values, 
and sometimes trying random things

} Over enough time, this can converge to true value 
function U* of the optimal policy p*
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U(s) = U(s) + ↵[r + � U(s0)� U(s)]
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TD-Learning

} Algorithm is the same, but explores using sometimes-greedy and 
sometimes-probabilistic action-choices instead of fixed policy p
} We reduce learning parameter a just as before to converge
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function TD-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, U(s) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

choose action a, using ✏-greedy policy based on U(s)

observe next state s0, one-step reward r

U(s) U(s) + ↵[r + � U(s0)� U(s)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon U(s)
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Randomness and Weighting in Learning
} Our algorithm uses two parameters, a and e (plus the 

usual discount factor g), to control its overall behavior

} Each can be adapted over time to control algorithm

1. e: the amount of randomness in the policy
} When we don’t know much, set it to a high value, so that 

we start off with lots of random exploration
} We reduce this value over time until e = 0, and we are being 

purely greedy, and just exploiting what he have learned

2. a: the weight on each learning-update step 
} Reduce this over time, as well:  when a = 0, U-values don’t 

change anymore, and we can converge on final policy values
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Randomness and Weighting in Learning
} The control parameters a and e give us simple ways to 

control complex learning behavior

} We don’t always want to reduce each over time

} In a purely stationary environment, where system 
dynamics don’t ever change, and all probabilities stay the 
same, we can simply slowly reduce each until we 
converge upon a stable learned behavior

} In a non-stationary environment, where things may 
change at some point, learned solutions may quit working 
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Non-Stationary Environments
} Suppose environment starts off in one configuration:

} Over time, we can learn a policy for shortest path to goal

} By letting e and a go to 0, the policy becomes stable
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GOAL

s0
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Non-Stationary Environments
} The environment may change, however:

} If e and a stay at 0, policy is sub-optimal from now on
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GOAL

s0
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Non-Stationary Environments
} We may be able to tell that environment changes, however

} If value drops off over a long time, we can increase e and a 
again, to resume learning and find new optimal policy
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GOAL
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15

Bellman Equations for Q-values
} Instead of the value of a state U(s ), we can calculate the 

value of a state-action pair Q(s,a )
} The value of taking action a in state s, and then following 

the policy π after that:

} Similarly, we calculate optimal values Q*(s,a ) of taking a
in state s, then following best possible policy after that:

} We can do learning for Q-values, too…
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Q�(s, a) =
�

s�

P (s, a, s�) [R(s, a, s�) + � Q�(s�, ⇥(s�))]

Q�(s, a) =
�

s�

P (s, a, s�)
⇥
R(s, a, s�) + � max

a�
Q�(s�, a�)

⇤
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TD (SARSA) Learning for Q-values

} Same basic RL method, converging to optimal Q*
} Called SARSA, due to information used (s, a, r, s´, a´)
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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On-Policy Updates

} Both basic TD and SARSA are on-policy learning/update methods
} We choose our initial action (a) based on current e-greedy policy
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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On-Policy Updates

} When we do the value update, we also choose the next action (a´ ) based 
on the same current e-greedy policy  
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function SARSA-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

set action a, chosen ✏-greedily based on Q(s, a)

repeat for each time-step t of episode E, until s is terminal:

take action a

observe next state s0, one-step reward r

set next action a0, chosen ✏-greedily based on Q(s0, a0)

Q(s, a) Q(s, a) + ↵[r + �Q(s0, a0)�Q(s, a)]

s s0; a a0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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The Effect of On-Policy Updates
} When we do this sort of updating, we are not basing our value 

calculation on the best possible policy
} Instead, we are basing it on our learning policy, which means 

the values that we base our updates and choices on will 
combine the values that we get from:

1. greedy action selection for exploitation
2. random actions in some states for exploration

} Values we learn can reflect what would happen in a state if we 
sometimes acted in a non-optimal way
} For example, on the edge of a cliff, we will sometimes randomly 

explore jumping off the cliff when learning
} Edge-states are thus risky, and get lower value than they would really 

have under the optimal policy (where we only do the best thing, and 
never jump)
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Off-Policy Methods
} One possible solution is to update the values we learn 

based on the best actions only 

} That is, we ignore rewards and outcomes that come from 
any of the possible bad actions we take when exploring

} The policy being updated is then not the current learning 
version, but the optimal one
} This is the policy that we wanted to learn in the end, anyway!

} How can we do this?
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Q-Learning:  Off-Policy Updates

} We still choose actions (a ) in an e-greedy way (so we are sometimes random)

} However, we update values based upon whatever action would actually be best
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function Q-Learning(mdp) returns a policy

inputs: mdp, an MDP

8s 2 S, 8a 2 A, Q(s, a) = 0

repeat for each episode E:

set start-state s s0

repeat for each time-step t of episode E, until s is terminal:

set action a, chosen ✏-greedily based on Q(s, a)

take action a

observe next state s0, one-step reward r

Q(s, a) Q(s, a) + ↵[r + � max
a0

Q(s0, a0)�Q(s, a)]

s s0

return policy ⇡, set greedily for every state s 2 S, based upon Q(s, a)
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Comparing the Methods: Cliff Problem
} Shortest path to the goal 

goes along edge of a cliff
} SARSA learns safer path, 

since edge-states get 
lower values due to 
random falls

} Q-Learning learns best 
path, since it ignores 
random jumps off edge

} Why does QL do worse 
in the end?  How can we 
fix this over a period of 
time?
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Example from: Sutton & Barto, 1998
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Unifying the Methods
} Both SARSA and Q-Learning can be made to converge to the 

same optimal policy over time
} By reducing the epsilon-value in our e-greedy policy, we 

eventually reduce the randomness
} Thus, the SARSA agent will eventually learn better values even 

for risky states, and come to use the optimal policy, too (e.g. 
walking along the cliff ’s edge)

} So what’s the difference?
} In many cases, Q-Learning can converge on values somewhat faster
} Doesn’t have to spend time “fixing” the values of states where it has 

over-estimated negative risk
} Thus we can reduce the e-value more rapidly, and learn optimal 

state-values more quickly 
} What are the potential risks of doing this?

Monday, 20 Apr. 2020 Machine Learning (COMP 135) 24

24



7

End of Semester
} Topics: Reinforcement Learning, Wrap-Up

} Note: Last live Q&A this Wednesday (none next week)

} Project 02: due Monday, 27 April, 5:00 PM
} Sentiment analysis in review text
} Uses two different models of textual data

} Final Paper: due Friday, 08 May, 5:00 PM
} Prompt, rubric, and sample essay on Piazza now

} Office Hours:
} Hours and Zoom links can be found on Piazza and Canvas
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