Gradient Descent for L2 Penalized Logistic Regr.

N
Lo T
min —A\w” w — log BernPMF(t,,|o(w T
nin nz::l g (tnlo(w” ¢(z)))
£(w)

input: initial w € R You need to specify:
. ) * Max. num iterations T
input: step size sg € R . Stepsize s

] e Convergence threshold d
while not converged:

w < w —So Ve L(w)



Will gradient descent always find same
solution?

ocal minimum

Global minimum Global minimum
> >
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Will gradient descent always find same

solution?

Global minimum

Yes, if loss looks like this

>

ocal minimum

Global minimum

>

Not if multiple local minima
exist
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Loss for logistic regression is convex!

ocal minimum

Global minimum Global minimum
> >
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Intuition: 1D gradient descent

Choosing good step size matters!

£G0)

f)

* =

X’ X’ X' X
Too small: converge Too big: overshoot and
very slowly even diverge
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Log likelihood vs iterations
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Log likelihood over all data points

—38000

Maximizing likelihood: Higher is better!
(could multiply by -1 and minimize instead)
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If step size is too small
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If step size is large

Log likelihood over all data points
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If step size is too large

Log likelihood over all data points
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If step size is way too large

Log likelihood over all data points
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Rule for picking step sizes

* Never try just one!
e Usually: Want largest step size that doesn’t diverge

* Try several values (exponentially spaced) until
* Find one clearly too small
* Find one clearly too large (unhelpful oscillation / divergence)

* Always make trace plots!
e Show the loss, norm of gradient, and parameter values versus epoch

* Smarter choices for step size:
* Decaying methods
e Search methods
* Second-order methods



Decaying step sizes

input: initial w € R

input: initial step size sg € Ry

while not converged:
Linear decay SO

w — w — ¢V L(w) T

s¢ <— decay(sg,?
( ) ) Exponential decay e

t<+—t+1 So€
Often helpful, but hard to get right!
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Searching for good step size

Goal: min f(ZC)
£
Step
Direction: Ax = —fo(il?) _.é.x Skl

o
Possible step lengths

Exact Line Search: Expensive but gold standard

Search for the best scalar s >= 0, such that:
>k

s* = arg m>1{)1 f(z + sAx)



Searching for good step size

Goal: min f(ilj) M
£
Step
Direction: Ax = —fo(il?) _.é.x Skl

o
Possible step lengths

Backtracking Line Search: More Efficient!
s=1

while reduced slope linear extrapolation f(z + sAz) < f(z + sAz) :
$<0.9-s



Backtracking line search

| : f(a:)*—+— ;Vf(.’l,‘)TA.’L‘

Python : scipy.optimize.line_search

f(z) + atVf(z)T Az

t

t=0 to
acceptable step sizes

rejected step sizes

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of a smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <

t < to.
s=1

A

Linear extrapolation
with reduced slope by factor

alpha

while reduced slope linear extrapolation f(z + sAx) < f(x + sAx) :

s+ 0.9-s
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More resources on step sizes!

Online Textbook: Convex Optimization
http://web.stanford.edu/~boyd/cvxbook/bv cvxbook.pdf

Stephen Boyd and
Lieven Vandenberghe

convex Convex Optimization
0 Dtl m iZ atl on Stephen Boyd and Lieven Vandenberghe

Cambridge University Press

IVIIRE TMTUEIIEDS = TUILWL CUIVIF 100 - OMIllIg 2VUlT
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http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

2" order methods for gradient descent
Big Idea: 2"? deriv. can help!

Xo

A comparison of gradient descent &
(green) and Newton's method (red) for
minimizing a function (with small step
sizes). Newton's method uses
curvature information (i.e. the second
derivative) to take a more direct route.

Mike Hughes - Tufts COMP 135 - Spring 2019

17



Newton’s method:

Use second-derivative to rescale step size!
Goal: min f(ilf)
L
Step f'(x,)
Direction: AT = (o) = B minimu
Will stgp .directly to

Ar = —H(Qj)_lvxf(aj) I:ffiSICILIIG(jI’GtI'C!

In high dimensions, need the Hessian

matrix
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Animation of Newton’s method

f(x)
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To optimize, we want to find zeros of first derivative!
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L-BFGS: gold standard approximate 2"9 order GD

Python : scipy.optimize.fmin_| _bfgs b

L-BFGS : Limited Memory Broyden—Fletcher—Goldfarb—Shanno (BFGS)

* Provide loss and gradient functions
* Approximates the Hessian via recent history of gradient steps

Az — —-vx f@) Az = (@) 'V, f(2)

In high dimensions, need the Hessian matrix Instead, use low-rank
But this is quadratic in length of x , expensive approximation
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https://en.wikipedia.org/wiki/BFGS_method

